/*
* Copyright (c) 2004 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description: Implementation of the doppler effect class
*
*/
// INCLUDE FILES
#ifdef _DEBUG
#include <e32svr.h>
#endif
#include <DopplerBase.h>
#include <e32math.h>
#include <math.h>
//360 degrees:
#define TWO_PI 6283
//180 degrees:
#define PI 3142
//90 degrees:
#define QUARTER_PI 1570
// ============================ MEMBER FUNCTIONS ===============================
// -----------------------------------------------------------------------------
// CDoppler::CDoppler
// C++ default constructor can NOT contain any code, that
// might leave.
// -----------------------------------------------------------------------------
//
EXPORT_C CDoppler::CDoppler()
: iDopplerData(),
iDataPckgTo(iDopplerData),
iDataPckgFrom(iDopplerData)
{
}
// Destructor
EXPORT_C CDoppler::~CDoppler()
{
}
// -----------------------------------------------------------------------------
// CDoppler::CartesianVelocity
// -----------------------------------------------------------------------------
//
EXPORT_C void CDoppler::CartesianVelocity( TInt32& aX, TInt32& aY, TInt32& aZ )
{
aX = iDopplerData.iVelocityX;
aY = iDopplerData.iVelocityY;
aZ = iDopplerData.iVelocityZ;
}
// -----------------------------------------------------------------------------
// CDoppler::Factor
// -----------------------------------------------------------------------------
//
EXPORT_C TUint32 CDoppler::Factor() const
{
return iDopplerData.iFactor;
}
// -----------------------------------------------------------------------------
// CDoppler::FactorMax
// -----------------------------------------------------------------------------
//
EXPORT_C TUint32 CDoppler::FactorMax() const
{
return iDopplerData.iMaxFactor;
}
// -----------------------------------------------------------------------------
// CDoppler::SetCartesianVelocityL
// -----------------------------------------------------------------------------
//
EXPORT_C void CDoppler::SetCartesianVelocityL( TInt32 aX, TInt32 aY, TInt32 aZ )
{
iDopplerData.iVelocityX = aX;
iDopplerData.iVelocityY = aY;
iDopplerData.iVelocityZ = aZ;
TReal SqrtXYZ = 0, squareX = 0, squareY = 0, squareZ = 0;
Math::Pow(squareX, aX, 2);
Math::Pow(squareY, aY, 2);
Math::Pow(squareZ, aZ, 2);
TReal sum = squareX + squareY + squareZ;
Math::Sqrt(SqrtXYZ, sum);
//Singularity region
if(!((aX==0) && (aZ==0)))
{
TReal zDividedByXAtan = atan2 (-aX, -aZ);
if (zDividedByXAtan > 0)
iDopplerData.iAzimuth = -(TInt32) (zDividedByXAtan * 1000 + 0.5);
else
iDopplerData.iAzimuth = -(TInt32) (zDividedByXAtan * 1000 - 0.5);
}
// else { we are exactly on Y-axis and therefore azimuth is undefined; let's use the previous azimuth value instead }
if (!((aX ==0) && (aY == 0) && (aZ == 0)))
{
TReal result;
TReal yDividedBySqrtXYZ = aY/SqrtXYZ;
User::LeaveIfError(Math::ASin(result, yDividedBySqrtXYZ)); //was ACos
if (result > 0)
iDopplerData.iElevation = (TInt32) (result * 1000 + 0.5);
else
iDopplerData.iElevation = (TInt32) (result * 1000 - 0.5);
}
// else { we are exactly in origin and therefore elevation is undefined; let's use the previous elevation value instead }
iDopplerData.iRadius= (TInt32) (SqrtXYZ + 0.5);
while(iDopplerData.iElevation > PI)
{
iDopplerData.iElevation = iDopplerData.iElevation - TWO_PI;
}
if(iDopplerData.iElevation > QUARTER_PI)
{
iDopplerData.iElevation = iDopplerData.iElevation - (iDopplerData.iElevation - QUARTER_PI) * 2;
iDopplerData.iAzimuth = iDopplerData.iAzimuth + PI;
}
while(iDopplerData.iElevation < -PI)
{
iDopplerData.iElevation = iDopplerData.iElevation + TWO_PI;
}
if(iDopplerData.iElevation < -QUARTER_PI)
{
iDopplerData.iElevation = iDopplerData.iElevation + (QUARTER_PI - iDopplerData.iElevation) * 2;
iDopplerData.iAzimuth = iDopplerData.iAzimuth + PI;
}
while (iDopplerData.iAzimuth < 0)
iDopplerData.iAzimuth = iDopplerData.iAzimuth + TWO_PI;
while (iDopplerData.iAzimuth > TWO_PI)
iDopplerData.iAzimuth = iDopplerData.iAzimuth - TWO_PI;
}
// -----------------------------------------------------------------------------
// CDoppler::SetFactorL
// -----------------------------------------------------------------------------
//
EXPORT_C void CDoppler::SetFactorL( TUint32 aFactor )
{
if ( (aFactor <= iDopplerData.iMaxFactor) )
{
iDopplerData.iFactor = aFactor;
}
else
{
User::Leave(KErrArgument);
}
}
// -----------------------------------------------------------------------------
// CDoppler::SetSphericalVelocityL
// -----------------------------------------------------------------------------
//
EXPORT_C void CDoppler::SetSphericalVelocityL( TInt32 aAzimuth, TInt32 aElevation, TInt32 aRadius )
{
while(aElevation > PI)
{
aElevation = aElevation - TWO_PI;
}
if(aElevation > QUARTER_PI)
{
aElevation = aElevation - (aElevation - QUARTER_PI) * 2;
aAzimuth = aAzimuth + PI;
}
while(aElevation < -PI)
{
aElevation = aElevation + TWO_PI;
}
if(aElevation < -QUARTER_PI)
{
aElevation = aElevation + (QUARTER_PI - aElevation) * 2;
aAzimuth = aAzimuth + PI;
}
while (aAzimuth < 0)
aAzimuth = aAzimuth + TWO_PI;
while (aAzimuth > TWO_PI)
aAzimuth = aAzimuth - TWO_PI;
iDopplerData.iAzimuth = aAzimuth;
iDopplerData.iElevation = aElevation;
iDopplerData.iRadius = aRadius;
TReal elevation = aElevation / 1000.0; // conversion from milliradians to radians because Sin and Cos functions eat radians
TReal elevationSin;
TReal elevationCos;
User::LeaveIfError( Math::Sin( elevationSin, elevation ) );
User::LeaveIfError( Math::Cos( elevationCos, elevation ) );
TReal azimuthSin;
TReal azimuthCos;
User::LeaveIfError( Math::Sin( azimuthSin, aAzimuth / 1000.0) );
User::LeaveIfError( Math::Cos(azimuthCos, aAzimuth / 1000.0) );
iDopplerData.iVelocityX = (TInt32)(0.5 + aRadius * elevationCos * azimuthSin);
iDopplerData.iVelocityY = (TInt32)(0.5 + aRadius * elevationSin);
iDopplerData.iVelocityZ = (TInt32)(0.5 - aRadius * elevationCos * azimuthCos);
}
// -----------------------------------------------------------------------------
// CDoppler::SphericalVelocity
// -----------------------------------------------------------------------------
//
EXPORT_C void CDoppler::SphericalVelocity( TInt32& aAzimuth, TInt32& aElevation, TInt32& aRadius )
{
aAzimuth = iDopplerData.iAzimuth;
aElevation = iDopplerData.iElevation;
aRadius = iDopplerData.iRadius ;
}
// -----------------------------------------------------------------------------
// CDoppler::DoEffectData
// -----------------------------------------------------------------------------
//
EXPORT_C const TDesC8& CDoppler::DoEffectData()
{
#ifdef _DEBUG
RDebug::Print(_L("CDoppler::DoEffectData"));
#endif
iDataPckgTo = iDopplerData;
return iDataPckgTo;
}
// -----------------------------------------------------------------------------
// CDoppler::SetEffectData
// -----------------------------------------------------------------------------
//
EXPORT_C void CDoppler::SetEffectData(
const TDesC8& aEffectDataBuffer )
{
#ifdef _DEBUG
RDebug::Print(_L("CDoppler::SetEffectData"));
#endif
TEfDopplerDataPckg dataPckg;
dataPckg.Copy(aEffectDataBuffer);
iDopplerData = dataPckg();
iEnabled = iDopplerData.iEnabled;
iEnforced = iDopplerData.iEnforced;
iHaveUpdateRights = iDopplerData.iHaveUpdateRights;
}
// ========================== OTHER EXPORTED FUNCTIONS =========================
// End of File