perfsrv/memspy/Driver/Shared/heaputils.cpp
changeset 48 516af714ebb4
child 52 c2f44e33b468
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/perfsrv/memspy/Driver/Shared/heaputils.cpp	Fri Sep 17 08:38:31 2010 +0300
@@ -0,0 +1,1684 @@
+// heaputils.cpp
+// 
+// Copyright (c) 2010 Accenture. All rights reserved.
+// This component and the accompanying materials are made available
+// under the terms of the "Eclipse Public License v1.0"
+// which accompanies this distribution, and is available
+// at the URL "http://www.eclipse.org/legal/epl-v10.html".
+// 
+// Initial Contributors:
+// Accenture - Initial contribution
+//
+#ifdef TEST_HYBRIDHEAP_ASSERTS
+#define private public
+#include <e32def.h>
+#include "slab.h"
+#include "page_alloc.h"
+#include "heap_hybrid.h"
+#endif
+
+#include "heaputils.h"
+
+#ifdef __KERNEL_MODE__
+
+#include <kern_priv.h>
+#define MEM Kern
+__ASSERT_COMPILE(sizeof(LtkUtils::RKernelSideAllocatorHelper) == 10*4);
+#define KERN_ENTER_CS() NKern::ThreadEnterCS()
+#define KERN_LEAVE_CS() NKern::ThreadLeaveCS()
+#define LOG(args...)
+#define HUEXPORT_C
+#else
+
+#include <e32std.h>
+#define MEM User
+#define KERN_ENTER_CS()
+#define KERN_LEAVE_CS()
+//#include <e32debug.h>
+//#define LOG(args...) RDebug::Printf(args)
+#define LOG(args...)
+
+#ifdef STANDALONE_ALLOCHELPER
+#define HUEXPORT_C
+#else
+#define HUEXPORT_C EXPORT_C
+#endif
+
+#endif // __KERNEL_MODE__
+
+using LtkUtils::RAllocatorHelper;
+const TUint KPageSize = 4096;
+__ASSERT_COMPILE(sizeof(RAllocatorHelper) == 9*4);
+
+// RAllocatorHelper
+
+HUEXPORT_C RAllocatorHelper::RAllocatorHelper()
+	: iAllocatorAddress(0), iAllocatorType(EUnknown), iInfo(NULL), iValidInfo(0), iTempSlabBitmap(NULL), iPageCache(NULL), iPageCacheAddr(0)
+#ifdef __KERNEL_MODE__
+	, iChunk(NULL)
+#endif
+	{
+	}
+
+namespace LtkUtils
+	{
+	class THeapInfo
+		{
+	public:
+		THeapInfo()
+			{
+			ClearStats();
+			}
+
+		void ClearStats()
+			{
+			memclr(this, sizeof(THeapInfo));
+			}
+
+		TInt iAllocatedSize; // number of bytes in allocated cells (excludes free cells, cell header overhead)
+		TInt iCommittedSize; // amount of memory actually committed (includes cell header overhead, gaps smaller than an MMU page)
+		TInt iAllocationCount; // number of allocations currently
+		TInt iMaxCommittedSize; // or thereabouts
+		TInt iMinCommittedSize;
+		TInt iUnusedPages;
+		TInt iCommittedFreeSpace;
+		// Heap-only stats
+		TInt iHeapFreeCellCount;
+		// Hybrid-only stats
+		TInt iDlaAllocsSize;
+		TInt iDlaAllocsCount;
+		TInt iDlaFreeSize;
+		TInt iDlaFreeCount;
+		TInt iSlabAllocsSize;
+		TInt iSlabAllocsCount;
+		TInt iPageAllocsSize;
+		TInt iPageAllocsCount;
+		TInt iSlabFreeCellSize;
+		TInt iSlabFreeCellCount;
+		TInt iSlabFreeSlabSize;
+		TInt iSlabFreeSlabCount;
+		};
+	}
+
+const TInt KTempBitmapSize = 256; // KMaxSlabPayload / mincellsize, technically. Close enough.
+
+#ifdef __KERNEL_MODE__
+
+TInt RAllocatorHelper::OpenKernelHeap()
+	{
+	_LIT(KName, "SvHeap");
+	NKern::ThreadEnterCS();
+	DObjectCon* chunkContainer = Kern::Containers()[EChunk];
+	chunkContainer->Wait();
+	const TInt chunkCount = chunkContainer->Count();
+	DChunk* foundChunk = NULL;
+	for(TInt i=0; i<chunkCount; i++)
+		{
+		DChunk* chunk = (DChunk*)(*chunkContainer)[i];
+		if (chunk->NameBuf() && chunk->NameBuf()->Find(KName) != KErrNotFound)
+			{
+			// Found it. No need to open it, we can be fairly confident the kernel heap isn't going to disappear from under us
+			foundChunk = chunk;
+			break;
+			}
+		}
+	iChunk = foundChunk;
+    chunkContainer->Signal();
+#ifdef __WINS__
+	TInt err = OpenChunkHeap((TLinAddr)foundChunk->Base(), 0); // It looks like DChunk::iBase/DChunk::iFixedBase should both be ok for the kernel chunk
+#else
+	// Copied from P::KernelInfo
+	const TRomHeader& romHdr=Epoc::RomHeader();
+	const TRomEntry* primaryEntry=(const TRomEntry*)Kern::SuperPage().iPrimaryEntry;
+	const TRomImageHeader* primaryImageHeader=(const TRomImageHeader*)primaryEntry->iAddressLin;
+	TLinAddr stack = romHdr.iKernDataAddress + Kern::RoundToPageSize(romHdr.iTotalSvDataSize);
+	TLinAddr heap = stack + Kern::RoundToPageSize(primaryImageHeader->iStackSize);
+	TInt err = OpenChunkHeap(heap, 0); // aChunkMaxSize is only used for trying the middle of the chunk for hybrid allocatorness, and the kernel heap doesn't use that (thankfully). So we can safely pass in zero.
+
+#endif
+	if (!err) err = FinishConstruction();
+	NKern::ThreadLeaveCS();
+	return err;
+	}
+
+#else
+
+HUEXPORT_C TInt RAllocatorHelper::Open(RAllocator* aAllocator)
+	{
+	iAllocatorAddress = (TLinAddr)aAllocator;
+	TInt udeb = EuserIsUdeb();
+	if (udeb < 0) return udeb; // error
+
+	TInt err = IdentifyAllocatorType(udeb);
+	if (!err)
+		{
+		err = FinishConstruction(); // Allocate everything up front
+		}
+	if (!err)
+		{
+		// We always stealth our own allocations, again to avoid tripping up allocator checks
+		SetCellNestingLevel(iInfo, -1);
+		SetCellNestingLevel(iTempSlabBitmap, -1);
+		SetCellNestingLevel(iPageCache, -1);
+		}
+	return err;
+	}
+
+#endif
+
+TInt RAllocatorHelper::FinishConstruction()
+	{
+	TInt err = KErrNone;
+	KERN_ENTER_CS();
+	if (!iInfo)
+		{
+		iInfo = new THeapInfo;
+		if (!iInfo) err = KErrNoMemory;
+		}
+	if (!err && !iTempSlabBitmap)
+		{
+		iTempSlabBitmap = (TUint8*)MEM::Alloc(KTempBitmapSize);
+		if (!iTempSlabBitmap) err = KErrNoMemory;
+		}
+	if (!err && !iPageCache)
+		{
+		iPageCache = MEM::Alloc(KPageSize);
+		if (!iPageCache) err = KErrNoMemory;
+		}
+
+	if (err)
+		{
+		delete iInfo;
+		iInfo = NULL;
+		MEM::Free(iTempSlabBitmap);
+		iTempSlabBitmap = NULL;
+		MEM::Free(iPageCache);
+		iPageCache = NULL;
+		}
+	KERN_LEAVE_CS();
+	return err;
+	}
+
+TInt RAllocatorHelper::ReadWord(TLinAddr aLocation, TUint32& aResult) const
+	{
+	// Check if we can satisfy the read from the cache
+	if (aLocation >= iPageCacheAddr)
+		{
+		TUint offset = aLocation - iPageCacheAddr;
+		if (offset < KPageSize)
+			{
+			aResult = ((TUint32*)iPageCache)[offset >> 2];
+			return KErrNone;
+			}
+		}
+
+	// If we reach here, not in page cache. Try and read in the new page
+	if (iPageCache)
+		{
+		TLinAddr pageAddr = aLocation & ~(KPageSize-1);
+		TInt err = ReadData(pageAddr, iPageCache, KPageSize);
+		if (!err)
+			{
+			iPageCacheAddr = pageAddr;
+			aResult = ((TUint32*)iPageCache)[(aLocation - iPageCacheAddr) >> 2];
+			return KErrNone;
+			}
+		}
+
+	// All else fails, try just reading it uncached
+	return ReadData(aLocation, &aResult, sizeof(TUint32));
+	}
+
+TInt RAllocatorHelper::ReadByte(TLinAddr aLocation, TUint8& aResult) const
+	{
+	// Like ReadWord but 8-bit
+
+	// Check if we can satisfy the read from the cache
+	if (aLocation >= iPageCacheAddr)
+		{
+		TUint offset = aLocation - iPageCacheAddr;
+		if (offset < KPageSize)
+			{
+			aResult = ((TUint8*)iPageCache)[offset];
+			return KErrNone;
+			}
+		}
+
+	// If we reach here, not in page cache. Try and read in the new page
+	if (iPageCache)
+		{
+		TLinAddr pageAddr = aLocation & ~(KPageSize-1);
+		TInt err = ReadData(pageAddr, iPageCache, KPageSize);
+		if (!err)
+			{
+			iPageCacheAddr = pageAddr;
+			aResult = ((TUint8*)iPageCache)[(aLocation - iPageCacheAddr)];
+			return KErrNone;
+			}
+		}
+
+	// All else fails, try just reading it uncached
+	return ReadData(aLocation, &aResult, sizeof(TUint8));
+	}
+
+
+TInt RAllocatorHelper::WriteWord(TLinAddr aLocation, TUint32 aWord)
+	{
+	// Invalidate the page cache if necessary
+	if (aLocation >= iPageCacheAddr && aLocation - iPageCacheAddr < KPageSize)
+		{
+		iPageCacheAddr = 0;
+		}
+
+	return WriteData(aLocation, &aWord, sizeof(TUint32));
+	}
+
+TInt RAllocatorHelper::ReadData(TLinAddr aLocation, TAny* aResult, TInt aSize) const
+	{
+	// RAllocatorHelper base class impl is for allocators in same address space, so just copy it
+	memcpy(aResult, (const TAny*)aLocation, aSize);
+	return KErrNone;
+	}
+
+TInt RAllocatorHelper::WriteData(TLinAddr aLocation, const TAny* aData, TInt aSize)
+	{
+	memcpy((TAny*)aLocation, aData, aSize);
+	return KErrNone;
+	}
+
+#ifdef __KERNEL_MODE__
+
+LtkUtils::RKernelSideAllocatorHelper::RKernelSideAllocatorHelper()
+	: iThread(NULL)
+	{}
+
+void LtkUtils::RKernelSideAllocatorHelper::Close()
+	{
+	NKern::ThreadEnterCS();
+	if (iThread)
+		{
+		iThread->Close(NULL);
+		}
+	iThread = NULL;
+	RAllocatorHelper::Close();
+	NKern::ThreadLeaveCS();
+	}
+
+TInt LtkUtils::RKernelSideAllocatorHelper::ReadData(TLinAddr aLocation, TAny* aResult, TInt aSize) const
+	{
+	return Kern::ThreadRawRead(iThread, (const TAny*)aLocation, aResult, aSize);
+	}
+
+TInt LtkUtils::RKernelSideAllocatorHelper::WriteData(TLinAddr aLocation, const TAny* aData, TInt aSize)
+	{
+	return Kern::ThreadRawWrite(iThread, (TAny*)aLocation, aData, aSize);
+	}
+
+TInt LtkUtils::RKernelSideAllocatorHelper::TryLock()
+	{
+	return KErrNotSupported;
+	}
+
+void LtkUtils::RKernelSideAllocatorHelper::TryUnlock()
+	{
+	// Not supported
+	}
+
+TInt LtkUtils::RKernelSideAllocatorHelper::OpenUserHeap(TUint aThreadId, TLinAddr aAllocatorAddress, TBool aEuserIsUdeb)
+	{
+	NKern::ThreadEnterCS();
+	DObjectCon* threads = Kern::Containers()[EThread];
+	threads->Wait();
+	iThread = Kern::ThreadFromId(aThreadId);
+	if (iThread && iThread->Open() != KErrNone)
+		{
+		// Failed to open
+		iThread = NULL;
+		}
+	threads->Signal();
+	NKern::ThreadLeaveCS();
+	if (!iThread) return KErrNotFound;
+	iAllocatorAddress = aAllocatorAddress;
+	TInt err = IdentifyAllocatorType(aEuserIsUdeb);
+	if (err) Close();
+	return err;
+	}
+
+#endif // __KERNEL_MODE__
+
+TInt RAllocatorHelper::OpenChunkHeap(TLinAddr aChunkBase, TInt aChunkMaxSize)
+	{
+	iAllocatorAddress = aChunkBase;
+#ifdef __KERNEL_MODE__
+	// Must be in CS
+	// Assumes that this only ever gets called for the kernel heap. Otherwise goes through RKernelSideAllocatorHelper::OpenUserHeap.
+	TInt udeb = EFalse; // We can't figure this out until after we've got the heap
+	TBool isTheKernelHeap = ETrue;
+#else
+	// Assumes the chunk isn't the kernel heap. It's not a good idea to try messing with the kernel heap from user side...
+	TInt udeb = EuserIsUdeb();
+	if (udeb < 0) return udeb; // error
+    TBool isTheKernelHeap = EFalse;
+#endif
+
+	TInt err = IdentifyAllocatorType(udeb, isTheKernelHeap);
+	if (err == KErrNone && iAllocatorType == EAllocator)
+		{
+		// We've no reason to assume it's an allocator because we don't know the iAllocatorAddress actually is an RAllocator*
+		err = KErrNotFound;
+		}
+	if (err && aChunkMaxSize > 0)
+		{
+		TInt oldErr = err;
+		TAllocatorType oldType = iAllocatorType;
+		// Try middle of chunk, in case it's an RHybridHeap
+		iAllocatorAddress += aChunkMaxSize / 2;
+		err = IdentifyAllocatorType(udeb, isTheKernelHeap);
+		if (err || iAllocatorType == EAllocator)
+			{
+			// No better than before
+			iAllocatorAddress = aChunkBase;
+			iAllocatorType = oldType;
+			err = oldErr;
+			}
+		}
+#ifdef __KERNEL_MODE__
+	if (err == KErrNone)
+		{
+		// Now we know the allocator, we can figure out the udeb-ness
+		RAllocator* kernelAllocator = reinterpret_cast<RAllocator*>(iAllocatorAddress);
+		kernelAllocator->DebugFunction(RAllocator::ESetFail, (TAny*)9999, (TAny*)0); // Use an invalid fail reason - this should have no effect on the operation of the heap
+		TInt err = kernelAllocator->DebugFunction(7, NULL, NULL); // 7 is RAllocator::TAllocDebugOp::EGetFail
+		if (err == 9999)
+			{
+			// udeb new hybrid heap
+			udeb = ETrue;
+			}
+		else if (err == KErrNotSupported)
+			{
+			// Old heap - fall back to slightly nasty non-thread-safe method
+			kernelAllocator->DebugFunction(RAllocator::ESetFail, (TAny*)RAllocator::EFailNext, (TAny*)1);
+			TAny* res = Kern::Alloc(4);
+			if (!res) udeb = ETrue;
+			Kern::Free(res);
+			}
+		else
+			{
+			// it's new urel
+			}
+
+		// Put everything back
+		kernelAllocator->DebugFunction(RAllocator::ESetFail, (TAny*)RAllocator::ENone, (TAny*)0);
+		// And update the type now we know the udeb-ness for certain
+		err = IdentifyAllocatorType(udeb, isTheKernelHeap);
+		}
+#endif
+	return err;
+	}
+
+
+// The guts of RAllocatorHelper
+
+enum TWhatToGet
+	{
+	ECommitted = 1,
+	EAllocated = 2,
+	ECount = 4,
+	EMaxSize = 8,
+	EUnusedPages = 16,
+	ECommittedFreeSpace = 32,
+	EMinSize = 64,
+	EHybridStats = 128,
+	};
+
+class RHackAllocator : public RAllocator
+	{
+public:
+	using RAllocator::iHandles;
+	using RAllocator::iTotalAllocSize;
+	using RAllocator::iCellCount;
+	};
+
+class RHackHeap : public RHeap
+	{
+public:
+	// Careful, only allowed to use things that are still in the new RHeap, and are still in the same place
+	using RHeap::iMaxLength;
+	using RHeap::iChunkHandle;
+	using RHeap::iLock;
+	using RHeap::iBase;
+	using RHeap::iAlign;
+	using RHeap::iTop;
+	};
+
+const TInt KChunkSizeOffset = 30*4;
+const TInt KPageMapOffset = 141*4;
+//const TInt KDlOnlyOffset = 33*4;
+const TInt KMallocStateOffset = 34*4;
+const TInt KMallocStateTopSizeOffset = 3*4;
+const TInt KMallocStateTopOffset = 5*4;
+const TInt KMallocStateSegOffset = 105*4;
+const TInt KUserHybridHeapSize = 186*4;
+const TInt KSparePageOffset = 167*4;
+const TInt KPartialPageOffset = 165*4;
+const TInt KFullSlabOffset = 166*4;
+const TInt KSlabAllocOffset = 172*4;
+const TInt KSlabParentOffset = 1*4;
+const TInt KSlabChild1Offset = 2*4;
+const TInt KSlabChild2Offset = 3*4;
+const TInt KSlabPayloadOffset = 4*4;
+const TInt KSlabsetSize = 4;
+
+#ifdef TEST_HYBRIDHEAP_ASSERTS
+__ASSERT_COMPILE(_FOFF(RHybridHeap, iChunkSize) == KChunkSizeOffset);
+__ASSERT_COMPILE(_FOFF(RHybridHeap, iPageMap) == KPageMapOffset);
+__ASSERT_COMPILE(_FOFF(RHybridHeap, iGlobalMallocState) == KMallocStateOffset);
+__ASSERT_COMPILE(sizeof(malloc_state) == 107*4);
+__ASSERT_COMPILE(_FOFF(malloc_state, iTopSize) == KMallocStateTopSizeOffset);
+__ASSERT_COMPILE(_FOFF(malloc_state, iTop) == KMallocStateTopOffset);
+__ASSERT_COMPILE(_FOFF(malloc_state, iSeg) == KMallocStateSegOffset);
+__ASSERT_COMPILE(sizeof(RHybridHeap) == KUserHybridHeapSize);
+__ASSERT_COMPILE(_FOFF(RHybridHeap, iSparePage) == KSparePageOffset);
+__ASSERT_COMPILE(_FOFF(RHybridHeap, iPartialPage) == KPartialPageOffset);
+__ASSERT_COMPILE(_FOFF(RHybridHeap, iSlabAlloc) == KSlabAllocOffset);
+__ASSERT_COMPILE(_FOFF(slab, iParent) == KSlabParentOffset);
+__ASSERT_COMPILE(_FOFF(slab, iChild1) == KSlabChild1Offset);
+__ASSERT_COMPILE(_FOFF(slab, iChild2) == KSlabChild2Offset);
+__ASSERT_COMPILE(_FOFF(slab, iPayload) == KSlabPayloadOffset);
+__ASSERT_COMPILE(sizeof(slabset) == KSlabsetSize);
+#endif
+
+TInt RAllocatorHelper::TryLock()
+	{
+#ifdef __KERNEL_MODE__
+	NKern::ThreadEnterCS();
+	DMutex* m = *(DMutex**)(iAllocatorAddress + _FOFF(RHackHeap, iLock));
+	if (m) Kern::MutexWait(*m);
+	return KErrNone;
+#else
+	if (iAllocatorType != EUnknown && iAllocatorType != EAllocator)
+		{
+		RFastLock& lock = *reinterpret_cast<RFastLock*>(iAllocatorAddress + _FOFF(RHackHeap, iLock));
+		lock.Wait();
+		return KErrNone;
+		}
+	return KErrNotSupported;
+#endif
+	}
+
+void RAllocatorHelper::TryUnlock()
+	{
+#ifdef __KERNEL_MODE__
+	DMutex* m = *(DMutex**)(iAllocatorAddress + _FOFF(RHackHeap, iLock));
+	if (m) Kern::MutexSignal(*m);
+	NKern::ThreadLeaveCS();
+#else
+	if (iAllocatorType != EUnknown && iAllocatorType != EAllocator)
+		{
+		RFastLock& lock = *reinterpret_cast<RFastLock*>(iAllocatorAddress + _FOFF(RHackHeap, iLock));
+		lock.Signal();
+		}
+#endif
+	}
+
+HUEXPORT_C void RAllocatorHelper::Close()
+	{
+	KERN_ENTER_CS();
+	iAllocatorType = EUnknown;
+	iAllocatorAddress = 0;
+	delete iInfo;
+	iInfo = NULL;
+	iValidInfo = 0;
+	MEM::Free(iTempSlabBitmap);
+	iTempSlabBitmap = NULL;
+	MEM::Free(iPageCache);
+	iPageCache = NULL;
+	iPageCacheAddr = 0;
+	KERN_LEAVE_CS();
+	}
+
+TInt RAllocatorHelper::IdentifyAllocatorType(TBool aAllocatorIsUdeb, TBool aIsTheKernelHeap)
+	{
+	iAllocatorType = EUnknown;
+
+	TUint32 handlesPtr = 0;
+	TInt err = ReadWord(iAllocatorAddress + _FOFF(RHackAllocator, iHandles), handlesPtr);
+
+	if (err) return err;
+	if (aIsTheKernelHeap || 
+	    handlesPtr == iAllocatorAddress + _FOFF(RHackHeap, iChunkHandle) || 
+	    handlesPtr == iAllocatorAddress + _FOFF(RHackHeap, iLock))
+		{
+		// It's an RHeap of some kind - I doubt any other RAllocator subclass will use iHandles in this way
+		TUint32 base = 0;
+		err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iBase), base);
+		if (err) return err;
+		TInt objsize = (TInt)base - (TInt)iAllocatorAddress;
+		if (objsize <= 32*4)
+			{
+			// Old RHeap
+			iAllocatorType = aAllocatorIsUdeb ? EUdebOldRHeap : EUrelOldRHeap;
+			}
+		else
+			{
+			// new hybrid heap - bigger than the old one. Likewise figure out if udeb or urel.
+			iAllocatorType = aAllocatorIsUdeb ? EUdebHybridHeap : EUrelHybridHeap;
+			}
+		}
+	else
+		{
+		iAllocatorType = EAllocator;
+		}
+	return KErrNone;
+	}
+
+HUEXPORT_C TInt RAllocatorHelper::SetCellNestingLevel(TAny* aCell, TInt aNestingLevel)
+	{
+	TInt err = KErrNone;
+
+	switch (iAllocatorType)
+		{
+		case EUdebOldRHeap:
+		case EUdebHybridHeap:
+			// By this reckoning, they're in the same place amazingly
+			{
+			TLinAddr nestingAddr = (TLinAddr)aCell - 8;
+			err = WriteWord(nestingAddr, aNestingLevel);
+			break;
+			}
+		default:
+			break;
+		}
+	return err;
+	}
+
+HUEXPORT_C TInt RAllocatorHelper::GetCellNestingLevel(TAny* aCell, TInt& aNestingLevel)
+	{
+	switch (iAllocatorType)
+		{
+		case EUdebOldRHeap:
+		case EUdebHybridHeap:
+			// By this reckoning, they're in the same place amazingly
+			{
+			TLinAddr nestingAddr = (TLinAddr)aCell - 8;
+			return ReadWord(nestingAddr, (TUint32&)aNestingLevel);
+			}
+		default:
+			return KErrNotSupported;
+		}
+	}
+
+TInt RAllocatorHelper::RefreshDetails(TUint aMask)
+	{
+	TInt err = FinishConstruction();
+	if (err) return err;
+
+	// Invalidate the page cache
+	iPageCacheAddr = 0;
+
+	TryLock();
+	err = DoRefreshDetails(aMask);
+	TryUnlock();
+	return err;
+	}
+
+const TInt KHeapWalkStatsForOldHeap = (EUnusedPages|ECommittedFreeSpace);
+const TInt KHeapWalkStatsForNewHeap = (EAllocated|ECount|EUnusedPages|ECommittedFreeSpace|EHybridStats);
+
+TInt RAllocatorHelper::DoRefreshDetails(TUint aMask)
+	{
+	TInt err = KErrNotSupported;
+	switch (iAllocatorType)
+		{
+		case EUrelOldRHeap:
+		case EUdebOldRHeap:
+			{
+			if (aMask & ECommitted)
+				{
+				// The old RHeap::Size() used to use iTop - iBase, which was effectively chunkSize - sizeof(RHeap)
+				// I think that for CommittedSize we should include the size of the heap object, just as it includes
+				// the size of heap cell metadata and overhead. Plus it makes sure the committedsize is a multiple of the page size
+				TUint32 top = 0;
+				//TUint32 base = 0;
+				//err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iBase), base);
+				//if (err) return err;
+				err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iTop), top);
+				if (err) return err;
+
+				//iInfo->iCommittedSize = top - base;
+				iInfo->iCommittedSize = top - iAllocatorAddress;
+				iValidInfo |= ECommitted;
+				}
+			if (aMask & EAllocated)
+				{
+				TUint32 allocSize = 0;
+				err = ReadWord(iAllocatorAddress + _FOFF(RHackAllocator, iTotalAllocSize), allocSize);
+				if (err) return err;
+				iInfo->iAllocatedSize = allocSize;
+				iValidInfo |= EAllocated;
+				}
+			if (aMask & ECount)
+				{
+				TUint32 count = 0;
+				err = ReadWord(iAllocatorAddress + _FOFF(RHackAllocator, iCellCount), count);
+				if (err) return err;
+				iInfo->iAllocationCount = count;
+				iValidInfo |= ECount;
+				}
+			if (aMask & EMaxSize)
+				{
+				TUint32 maxlen = 0;
+				err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iMaxLength), maxlen);
+				if (err) return err;
+				iInfo->iMaxCommittedSize = maxlen;
+				iValidInfo |= EMaxSize;
+				}
+			if (aMask & EMinSize)
+				{
+				TUint32 minlen = 0;
+				err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iMaxLength) - 4, minlen); // This isn't a typo! iMinLength is 4 bytes before iMaxLength, on old heap ONLY
+				if (err) return err;
+				iInfo->iMinCommittedSize = minlen;
+				iValidInfo |= EMinSize;
+				}
+			if (aMask & KHeapWalkStatsForOldHeap)
+				{
+				// Need a heap walk
+				iInfo->ClearStats();
+				iValidInfo = 0;
+				err = DoWalk(&WalkForStats, NULL);
+				if (err == KErrNone) iValidInfo |= KHeapWalkStatsForOldHeap;
+				}
+			return err;
+			}
+		case EUrelHybridHeap:
+		case EUdebHybridHeap:
+			{
+			TBool needWalk = EFalse;
+			if (aMask & ECommitted)
+				{
+				// RAllocator::Size uses iChunkSize - sizeof(RHybridHeap);
+				// We can't do exactly the same, because we can't calculate sizeof(RHybridHeap), only ROUND_UP(sizeof(RHybridHeap), iAlign)
+				// And if fact we don't bother and just use iChunkSize
+				TUint32 chunkSize = 0;
+				err = ReadWord(iAllocatorAddress + KChunkSizeOffset, chunkSize);
+				if (err) return err;
+				//TUint32 baseAddr = 0;
+				//err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iBase), baseAddr);
+				//if (err) return err;
+				iInfo->iCommittedSize = chunkSize; // - (baseAddr - iAllocatorAddress);
+				iValidInfo |= ECommitted;
+				}
+			if (aMask & (EAllocated|ECount))
+				{
+				if (iAllocatorType == EUdebHybridHeap)
+					{
+					// Easy, just get them from the counter
+					TUint32 totalAlloc = 0;
+					err = ReadWord(iAllocatorAddress + _FOFF(RHackAllocator, iTotalAllocSize), totalAlloc);
+					if (err) return err;
+					iInfo->iAllocatedSize = totalAlloc;
+					iValidInfo |= EAllocated;
+
+					TUint32 cellCount = 0;
+					err = ReadWord(iAllocatorAddress + _FOFF(RHackAllocator, iCellCount), cellCount);
+					if (err) return err;
+					iInfo->iAllocationCount = cellCount;
+					iValidInfo |= ECount;
+					}
+				else
+					{
+					// A heap walk is needed
+					needWalk = ETrue;
+					}
+				}
+			if (aMask & EMaxSize)
+				{
+				TUint32 maxlen = 0;
+				err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iMaxLength), maxlen);
+				if (err) return err;
+				iInfo->iMaxCommittedSize = maxlen;
+				iValidInfo |= EMaxSize;
+				}
+			if (aMask & EMinSize)
+				{
+				TUint32 minlen = 0;
+				err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iAlign) + 4*4, minlen); // iMinLength is in different place to old RHeap
+				if (err) return err;
+				iInfo->iMinCommittedSize = minlen;
+				iValidInfo |= EMinSize;
+				}
+			if (aMask & (EUnusedPages|ECommittedFreeSpace|EHybridStats))
+				{
+				// EAllocated and ECount have already been taken care of above
+				needWalk = ETrue;
+				}
+
+			if (needWalk)
+				{
+				iInfo->ClearStats();
+				iValidInfo = 0;
+				err = DoWalk(&WalkForStats, NULL);
+				if (err == KErrNone) iValidInfo |= KHeapWalkStatsForNewHeap;
+				}
+			return err;
+			}
+		default:
+			return KErrNotSupported;
+		}
+	}
+
+TInt RAllocatorHelper::CheckValid(TUint aMask)
+	{
+	if ((iValidInfo & aMask) == aMask)
+		{
+		return KErrNone;
+		}
+	else
+		{
+		return RefreshDetails(aMask);
+		}
+	}
+
+HUEXPORT_C TInt RAllocatorHelper::CommittedSize()
+	{
+	TInt err = CheckValid(ECommitted);
+	if (err) return err;
+	return iInfo->iCommittedSize;
+	}
+
+HUEXPORT_C TInt RAllocatorHelper::AllocatedSize()
+	{
+	TInt err = CheckValid(EAllocated);
+	if (err) return err;
+	return iInfo->iAllocatedSize;
+	}
+
+HUEXPORT_C TInt RAllocatorHelper::AllocationCount()
+	{
+	TInt err = CheckValid(ECount);
+	if (err) return err;
+	return iInfo->iAllocationCount;
+	}
+
+HUEXPORT_C TInt RAllocatorHelper::RefreshDetails()
+	{
+	return RefreshDetails(iValidInfo);
+	}
+
+HUEXPORT_C TInt RAllocatorHelper::MaxCommittedSize()
+	{
+	TInt err = CheckValid(EMaxSize);
+	if (err) return err;
+	return iInfo->iMaxCommittedSize;
+	}
+
+HUEXPORT_C TInt RAllocatorHelper::MinCommittedSize()
+	{
+	TInt err = CheckValid(EMinSize);
+	if (err) return err;
+	return iInfo->iMinCommittedSize;
+	}
+
+HUEXPORT_C TInt RAllocatorHelper::AllocCountForCell(TAny* aCell) const
+	{
+	TUint32 allocCount = 0;
+	switch (iAllocatorType)
+		{
+		case EUdebOldRHeap:
+		case EUdebHybridHeap: // Both are in the same place, amazingly
+			{
+			TLinAddr allocCountAddr = (TLinAddr)aCell - 4;
+			TInt err = ReadWord(allocCountAddr, allocCount);
+			if (err) return err;
+			return (TInt)allocCount;
+			}
+		default:
+			return KErrNotSupported;
+		}
+	}
+
+struct SContext3
+	{
+	RAllocatorHelper::TWalkFunc3 iOrigWalkFn;
+	TAny* iOrigContext;
+	};
+
+TBool RAllocatorHelper::DispatchClientWalkCallback(RAllocatorHelper& aHelper, TAny* aContext, RAllocatorHelper::TExtendedCellType aCellType, TLinAddr aCellPtr, TInt aCellLength)
+	{
+	WalkForStats(aHelper, NULL, aCellType, aCellPtr, aCellLength);
+	SContext3* context = static_cast<SContext3*>(aContext);
+	return (*context->iOrigWalkFn)(aHelper, context->iOrigContext, aCellType, aCellPtr, aCellLength);
+	}
+
+HUEXPORT_C TInt RAllocatorHelper::Walk(TWalkFunc3 aCallbackFn, TAny* aContext)
+	{
+	// Might as well take the opportunity of updating our stats at the same time as walking the heap for the client
+	SContext3 context = { aCallbackFn, aContext };
+
+	TInt err = FinishConstruction(); // In case this hasn't been done yet
+	if (err) return err;
+
+	TryLock();
+	err = DoWalk(&DispatchClientWalkCallback, &context);
+	TryUnlock();
+	return err;
+	}
+
+TInt RAllocatorHelper::DoWalk(TWalkFunc3 aCallbackFn, TAny* aContext)
+	{
+	TInt err = KErrNotSupported;
+	switch (iAllocatorType)
+		{
+		case EUdebOldRHeap:
+		case EUrelOldRHeap:
+			err = OldSkoolWalk(aCallbackFn, aContext);
+			break;
+		case EUrelHybridHeap:
+		case EUdebHybridHeap:
+			err = NewHotnessWalk(aCallbackFn, aContext);
+			break;
+		default:
+			err = KErrNotSupported;
+			break;
+		}
+	return err;
+	}
+
+struct SContext
+	{
+	RAllocatorHelper::TWalkFunc iOrigWalkFn;
+	TAny* iOrigContext;
+	};
+
+struct SContext2
+	{
+	RAllocatorHelper::TWalkFunc2 iOrigWalkFn;
+	TAny* iOrigContext;
+	};
+
+#define New2Old(aNew) (((aNew)&RAllocatorHelper::EAllocationMask) ? RAllocatorHelper::EAllocation : ((aNew)&RAllocatorHelper::EFreeMask) ? RAllocatorHelper::EFreeSpace : RAllocatorHelper::EBadness)
+
+TBool DispatchOldTWalkFuncCallback(RAllocatorHelper& /*aHelper*/, TAny* aContext, RAllocatorHelper::TExtendedCellType aCellType, TLinAddr aCellPtr, TInt aCellLength)
+	{
+	SContext* context = static_cast<SContext*>(aContext);
+	return (*context->iOrigWalkFn)(context->iOrigContext, New2Old(aCellType), aCellPtr, aCellLength);
+	}
+
+TBool DispatchOldTWalk2FuncCallback(RAllocatorHelper& aHelper, TAny* aContext, RAllocatorHelper::TExtendedCellType aCellType, TLinAddr aCellPtr, TInt aCellLength)
+	{
+	SContext2* context = static_cast<SContext2*>(aContext);
+	return (*context->iOrigWalkFn)(aHelper, context->iOrigContext, New2Old(aCellType), aCellPtr, aCellLength);
+	}
+
+HUEXPORT_C TInt RAllocatorHelper::Walk(TWalkFunc aCallbackFn, TAny* aContext)
+	{
+	// For backwards compatability insert a compatability callback to map between the different types of callback that clients requested
+	SContext context = { aCallbackFn, aContext };
+	return Walk(&DispatchOldTWalkFuncCallback, &context);
+	}
+
+HUEXPORT_C TInt RAllocatorHelper::Walk(TWalkFunc2 aCallbackFn, TAny* aContext)
+	{
+	SContext2 context = { aCallbackFn, aContext };
+	return Walk(&DispatchOldTWalk2FuncCallback, &context);
+	}
+
+
+TInt RAllocatorHelper::OldSkoolWalk(TWalkFunc3 aCallbackFn, TAny* aContext)
+	{
+	TLinAddr pC = 0;
+	TInt err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iBase), pC); // pC = iBase; // allocated cells
+	if (err) return err;
+	TLinAddr pF = iAllocatorAddress + _FOFF(RHackHeap, iAlign) + 3*4; // pF = &iFree; // free cells
+
+	TLinAddr top = 0;
+	err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iTop), top);
+	if (err) return err;
+	const TInt KAllocatedCellHeaderSize = iAllocatorType == EUdebOldRHeap ? 12 : 4;
+	TInt minCell = 0;
+	err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iAlign) + 4, (TUint32&)minCell);
+	if (err) return err;
+	TInt align = 0;
+	err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iAlign), (TUint32&)align);
+	if (err) return err;
+
+	FOREVER
+		{
+		err = ReadWord(pF+4, pF); // pF = pF->next; // next free cell
+		if (err) return err;
+		TLinAddr pFnext = 0;
+		if (pF) err = ReadWord(pF + 4, pFnext);
+		if (err) return err;
+
+		if (!pF)
+			{
+			pF = top; // to make size checking work
+			}
+		else if (pF>=top || (pFnext && pFnext<=pF) )
+			{
+			// free cell pointer off the end or going backwards
+			//Unlock();
+			(*aCallbackFn)(*this, aContext, EHeapBadFreeCellAddress, pF, 0);
+			return KErrCorrupt;
+			}
+		else
+			{
+			TInt l; // = pF->len
+			err = ReadWord(pF, (TUint32&)l);
+			if (err) return err;
+			if (l<minCell || (l & (align-1)))
+				{
+				// free cell length invalid
+				//Unlock();
+				(*aCallbackFn)(*this, aContext, EHeapBadFreeCellSize, pF, l);
+				return KErrCorrupt;
+				}
+			}
+		
+		while (pC!=pF)				// walk allocated cells up to next free cell
+			{
+			TInt l; // pC->len;
+			err = ReadWord(pC, (TUint32&)l);
+			if (err) return err;
+			if (l<minCell || (l & (align-1)))
+				{
+				// allocated cell length invalid
+				//Unlock();
+				(*aCallbackFn)(*this, aContext, EHeapBadAllocatedCellSize, pC, l);
+				return KErrCorrupt;
+				}
+			TBool shouldContinue = (*aCallbackFn)(*this, aContext, EHeapAllocation, pC + KAllocatedCellHeaderSize, l - KAllocatedCellHeaderSize);
+			if (!shouldContinue) return KErrNone;
+			
+			//SCell* pN = __NEXT_CELL(pC);
+			TLinAddr pN = pC + l;
+			if (pN > pF)
+				{
+				// cell overlaps next free cell
+				//Unlock();
+				(*aCallbackFn)(*this, aContext, EHeapBadAllocatedCellAddress, pC, l);
+				return KErrCorrupt;
+				}
+			pC = pN;
+			}
+		if (pF == top)
+			break;		// reached end of heap
+		TInt pFlen = 0;
+		err = ReadWord(pF, (TUint32&)pFlen);
+		if (err) return err;
+		pC = pF + pFlen; // pC = __NEXT_CELL(pF);	// step to next allocated cell
+		TBool shouldContinue = (*aCallbackFn)(*this, aContext, EHeapFreeCell, pF, pFlen);
+		if (!shouldContinue) return KErrNone;
+		}
+	return KErrNone;
+	}
+
+HUEXPORT_C TInt RAllocatorHelper::CountUnusedPages()
+	{
+	TInt err = CheckValid(EUnusedPages);
+	if (err) return err;
+	return iInfo->iUnusedPages;
+	}
+
+HUEXPORT_C TInt RAllocatorHelper::CommittedFreeSpace()
+	{
+	TInt err = CheckValid(ECommittedFreeSpace);
+	if (err) return err;
+	return iInfo->iCommittedFreeSpace;
+	}
+
+#define ROUND_DOWN(val, pow2) ((val) & ~((pow2)-1))
+#define ROUND_UP(val, pow2) ROUND_DOWN((val) + (pow2) - 1, (pow2))
+
+HUEXPORT_C TLinAddr RAllocatorHelper::AllocatorAddress() const
+	{
+	return iAllocatorAddress;
+	}
+
+TBool RAllocatorHelper::WalkForStats(RAllocatorHelper& aSelf, TAny* /*aContext*/, TExtendedCellType aType, TLinAddr aCellPtr, TInt aCellLength)
+	{
+	//ASSERT(aCellLength >= 0);
+	THeapInfo& info = *aSelf.iInfo;
+
+	TInt pagesSpanned = 0; // The number of pages that fit entirely inside the payload of this cell
+	if ((TUint)aCellLength > KPageSize)
+		{
+		TLinAddr nextPageAlignedAddr = ROUND_UP(aCellPtr, KPageSize);
+		pagesSpanned = ROUND_DOWN(aCellPtr + aCellLength - nextPageAlignedAddr, KPageSize) / KPageSize;
+		}
+
+	if (aSelf.iAllocatorType == EUrelOldRHeap || aSelf.iAllocatorType == EUdebOldRHeap)
+		{
+		if (aType & EFreeMask)
+			{
+			info.iUnusedPages += pagesSpanned;
+			info.iCommittedFreeSpace += aCellLength;
+			info.iHeapFreeCellCount++;
+			}
+		}
+	else
+		{
+		if (aType & EAllocationMask)
+			{
+			info.iAllocatedSize += aCellLength;
+			info.iAllocationCount++;
+			}
+		else if (aType & EFreeMask)
+			{
+			// I *think* that DLA will decommit pages from inside free cells...
+			TInt committedLen = aCellLength - (pagesSpanned * KPageSize);
+			info.iCommittedFreeSpace += committedLen;
+			}
+
+		switch (aType)
+			{
+			case EDlaAllocation:
+				info.iDlaAllocsSize += aCellLength;
+				info.iDlaAllocsCount++;
+				break;
+			case EPageAllocation:
+				info.iPageAllocsSize += aCellLength;
+				info.iPageAllocsCount++;
+				break;
+			case ESlabAllocation:
+				info.iSlabAllocsSize += aCellLength;
+				info.iSlabAllocsCount++;
+				break;
+			case EDlaFreeCell:
+				info.iDlaFreeSize += aCellLength;
+				info.iDlaFreeCount++;
+				break;
+			case ESlabFreeCell:
+				info.iSlabFreeCellSize += aCellLength;
+				info.iSlabFreeCellCount++;
+				break;
+			case ESlabFreeSlab:
+				info.iSlabFreeSlabSize += aCellLength;
+				info.iSlabFreeSlabCount++;
+				break;
+			default:
+				break;
+			}
+		}
+
+	return ETrue;
+	}
+
+#define PAGESHIFT 12
+
+TUint RAllocatorHelper::PageMapOperatorBrackets(unsigned ix, TInt& err) const
+	{
+	//return 1U&(iBase[ix>>3] >> (ix&7));
+	TUint32 basePtr = 0;
+	err = ReadWord(iAllocatorAddress + KPageMapOffset, basePtr);
+	if (err) return 0;
+
+	TUint8 res = 0;
+	err = ReadByte(basePtr + (ix >> 3), res);
+	if (err) return 0;
+
+	return 1U&(res >> (ix&7));
+	}
+
+
+TInt RAllocatorHelper::PageMapFind(TUint start, TUint bit, TInt& err)
+	{
+	TUint32 iNbits = 0;
+	err = ReadWord(iAllocatorAddress + KPageMapOffset + 4, iNbits);
+	if (err) return 0;
+
+	if (start<iNbits) do
+		{
+		//if ((*this)[start]==bit)
+		if (PageMapOperatorBrackets(start, err) == bit || err)
+			return start;
+		} while (++start<iNbits);
+	return -1;
+	}
+
+TUint RAllocatorHelper::PagedDecode(TUint pos, TInt& err)
+	{
+	unsigned bits = PageMapBits(pos,2,err);
+	if (err) return 0;
+	bits >>= 1;
+	if (bits == 0)
+		return 1;
+	bits = PageMapBits(pos+2,2,err);
+	if (err) return 0;
+	if ((bits & 1) == 0)
+		return 2 + (bits>>1);
+	else if ((bits>>1) == 0)
+		{
+		return PageMapBits(pos+4, 4,err);
+		}
+	else
+		{
+		return PageMapBits(pos+4, 18,err);
+		}
+	}
+
+TUint RAllocatorHelper::PageMapBits(unsigned ix, unsigned len, TInt& err)
+	{
+	int l=len;
+	unsigned val=0;
+	unsigned bit=0;
+	while (--l>=0)
+		{
+		//val |= (*this)[ix++]<<bit++;
+		val |= PageMapOperatorBrackets(ix++, err) << bit++;
+		if (err) return 0;
+		}
+	return val;
+	}
+
+enum TSlabType { ESlabFullInfo, ESlabPartialInfo, ESlabEmptyInfo };
+
+#ifndef TEST_HYBRIDHEAP_ASSERTS
+#define MAXSLABSIZE		56
+#define	SLABSHIFT		10
+#define	SLABSIZE		(1 << SLABSHIFT)
+const TInt KMaxSlabPayload = SLABSIZE - KSlabPayloadOffset;
+#endif
+
+TInt RAllocatorHelper::NewHotnessWalk(TWalkFunc3 aCallbackFn, TAny* aContext)
+	{
+	// RHybridHeap does paged, slab then DLA, so that's what we do too
+	// Remember Kernel RHybridHeaps don't even have the page and slab members
+
+	TUint32 basePtr;
+	TInt err = ReadWord(iAllocatorAddress + _FOFF(RHackHeap, iBase), basePtr);
+	if (err) return err;
+	if (basePtr < iAllocatorAddress + KUserHybridHeapSize)
+		{
+		// Must be a kernel one - don't do page and slab
+		}
+	else
+		{
+		// Paged
+		TUint32 membase = 0;
+		err = ReadWord(iAllocatorAddress + KPageMapOffset + 8, membase);
+		if (err) return err;
+
+		TBool shouldContinue = ETrue;
+		for (int ix = 0;(ix = PageMapFind(ix,1,err)) >= 0 && err == KErrNone;)
+			{
+			int npage = PagedDecode(ix, err);
+			if (err) return err;
+			// Introduce paged buffer to the walk function 
+			TLinAddr bfr = membase + (1 << (PAGESHIFT-1))*ix;
+			int len = npage << PAGESHIFT;
+			if ( (TUint)len > KPageSize )
+				{ // If buffer is not larger than one page it must be a slab page mapped into bitmap
+				if (iAllocatorType == EUdebHybridHeap)
+					{
+					bfr += 8;
+					len -= 8;
+					}
+				shouldContinue = (*aCallbackFn)(*this, aContext, EPageAllocation, bfr, len);
+				if (!shouldContinue) return KErrNone;
+				}
+			ix += (npage<<1);
+			}
+		if (err) return err;
+
+		// Slab
+		TUint32 sparePage = 0;
+		err = ReadWord(iAllocatorAddress + KSparePageOffset, sparePage);
+		if (err) return err;
+		if (sparePage)
+			{
+			//Walk(wi, iSparePage, iPageSize, EGoodFreeCell, ESlabSpare); // Introduce Slab spare page to the walk function 
+			// This counts as 4 spare slabs
+			for (TInt i = 0; i < 4; i++)
+				{
+				shouldContinue = (*aCallbackFn)(*this, aContext, ESlabFreeSlab, sparePage + SLABSIZE*i, SLABSIZE);
+				if (!shouldContinue) return KErrNone;
+				}
+			}
+
+		//TreeWalk(&iFullSlab, &SlabFullInfo, i, wi);
+		TInt err = TreeWalk(iAllocatorAddress + KFullSlabOffset, ESlabFullInfo, aCallbackFn, aContext, shouldContinue);
+		if (err || !shouldContinue) return err;
+		for (int ix = 0; ix < (MAXSLABSIZE>>2); ++ix)
+			{
+			TUint32 partialAddr = iAllocatorAddress + KSlabAllocOffset + ix*KSlabsetSize;
+			//TreeWalk(&iSlabAlloc[ix].iPartial, &SlabPartialInfo, i, wi);
+			err = TreeWalk(partialAddr, ESlabPartialInfo, aCallbackFn, aContext, shouldContinue);
+			if (err || !shouldContinue) return err;
+			}
+		//TreeWalk(&iPartialPage, &SlabEmptyInfo, i, wi);
+		TreeWalk(iAllocatorAddress + KPartialPageOffset, ESlabEmptyInfo, aCallbackFn, aContext, shouldContinue);
+		}
+
+	// DLA
+#define CHUNK_OVERHEAD (sizeof(TUint))
+#define CHUNK_ALIGN_MASK (7) 
+#define CHUNK2MEM(p)        ((TLinAddr)(p) + 8)
+#define MEM2CHUNK(mem)      ((TLinAddr)(p) - 8)
+/* chunk associated with aligned address A */
+#define ALIGN_OFFSET(A)\
+	((((TLinAddr)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
+	((8 - ((TLinAddr)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
+#define ALIGN_AS_CHUNK(A)   ((A) + ALIGN_OFFSET(CHUNK2MEM(A)))
+#define CINUSE_BIT 2
+#define INUSE_BITS 3
+
+	TUint32 topSize = 0;
+	err = ReadWord(iAllocatorAddress + KMallocStateOffset + KMallocStateTopSizeOffset, topSize);
+	if (err) return err;
+
+	TUint32 top = 0;
+	err = ReadWord(iAllocatorAddress + KMallocStateOffset + KMallocStateTopOffset, top);
+	if (err) return err;
+
+	TInt max = ((topSize-1) & ~CHUNK_ALIGN_MASK) - CHUNK_OVERHEAD;
+	if ( max < 0 )
+		max = 0;
+	
+	TBool shouldContinue = (*aCallbackFn)(*this, aContext, EDlaFreeCell, top, max);
+	if (!shouldContinue) return KErrNone;
+	
+	TUint32 mallocStateSegBase = 0;
+	err = ReadWord(iAllocatorAddress + KMallocStateOffset + KMallocStateSegOffset, mallocStateSegBase);
+	if (err) return err;
+
+	for (TLinAddr q = ALIGN_AS_CHUNK(mallocStateSegBase); q != top; /*q = NEXT_CHUNK(q)*/)
+		{
+		TUint32 qhead = 0;
+		err = ReadWord(q + 4, qhead);
+		if (err) return err;
+		//TInt sz = CHUNKSIZE(q);
+		TInt sz = qhead & ~(INUSE_BITS);
+		if (!(qhead & CINUSE_BIT))
+			{
+			//Walk(wi, CHUNK2MEM(q), sz, EGoodFreeCell, EDougLeaAllocator); // Introduce DL free buffer to the walk function 
+			shouldContinue = (*aCallbackFn)(*this, aContext, EDlaFreeCell, CHUNK2MEM(q), sz);
+			if (!shouldContinue) return KErrNone;
+			}
+		else
+			{
+			//Walk(wi, CHUNK2MEM(q), (sz- CHUNK_OVERHEAD), EGoodAllocatedCell, EDougLeaAllocator); // Introduce DL allocated buffer to the walk function 
+			TLinAddr addr = CHUNK2MEM(q);
+			TInt size = sz - CHUNK_OVERHEAD;
+			if (iAllocatorType == EUdebHybridHeap)
+				{
+				size -= 8;
+				addr += 8;
+				}
+			shouldContinue = (*aCallbackFn)(*this, aContext, EDlaAllocation, addr, size);
+			if (!shouldContinue) return KErrNone;
+			}
+		// This is q = NEXT_CHUNK(q) expanded
+		q = q + sz;
+		}
+	return KErrNone;
+	}
+
+TInt RAllocatorHelper::TreeWalk(TUint32 aSlabRoot, TInt aSlabType, TWalkFunc3 aCallbackFn, TAny* aContext, TBool& shouldContinue)
+	{
+	const TSlabType type = (TSlabType)aSlabType;
+
+	TUint32 s = 0;
+	TInt err = ReadWord(aSlabRoot, s);
+	if (err) return err;
+	//slab* s = *root;
+	if (!s)
+		return KErrNone;
+	
+	for (;;)
+		{
+		//slab* c;
+		//while ((c = s->iChild1) != 0)
+		//	s = c;		// walk down left side to end
+		TUint32 c;
+		for(;;)
+			{
+			err = ReadWord(s + KSlabChild1Offset, c);
+			if (err) return err;
+			if (c == 0) break;
+			else s = c;
+			}
+		for (;;)
+			{
+			//TODOf(s, i, wi);
+			//TODO __HEAP_CORRUPTED_TEST_STATIC
+			TUint32 h;
+			err = ReadWord(s, h); // = aSlab->iHeader;
+			if (err) return err;
+			TUint32 size = (h&0x0003f000)>>12; //SlabHeaderSize(h);
+			TUint debugheadersize = 0;
+			if (iAllocatorType == EUdebHybridHeap) debugheadersize = 8;
+			TUint32 usedCount = (((h&0x0ffc0000)>>18) + 4) / size; // (SlabHeaderUsedm4(h) + 4) / size;
+			switch (type)
+				{
+				case ESlabFullInfo:
+					{
+					TUint32 count = usedCount;
+					TUint32 i = 0;
+					while ( i < count )
+						{
+						TUint32 addr = s + KSlabPayloadOffset + i*size; //&aSlab->iPayload[i*size];
+						shouldContinue = (*aCallbackFn)(*this, aContext, ESlabAllocation, addr + debugheadersize, size - debugheadersize);
+						if (!shouldContinue) return KErrNone;
+						i++;
+						}
+					break;
+					}
+				case ESlabPartialInfo:
+					{
+					//TODO __HEAP_CORRUPTED_TEST_STATIC
+					TUint32 count = KMaxSlabPayload / size;
+					TUint32 freeOffset = (h & 0xff) << 2;
+					if (freeOffset == 0)
+						{
+						// TODO Shouldn't happen for a slab on the partial list
+						}
+					memset(iTempSlabBitmap, 1, KTempBitmapSize); // Everything defaults to in use
+					TUint wildernessCount = count - usedCount;
+					while (freeOffset)
+						{
+						wildernessCount--;
+						TInt idx = (freeOffset-KSlabPayloadOffset)/size;
+						LOG("iTempSlabBitmap freeOffset %d index %d", freeOffset, idx);
+						iTempSlabBitmap[idx] = 0; // Mark it as free
+
+						TUint32 addr = s + freeOffset;
+						TUint8 nextCell = 0;
+						err = ReadByte(addr, nextCell);
+						if (err) return err;
+						freeOffset = ((TUint32)nextCell) << 2;
+						}
+					memset(iTempSlabBitmap + count - wildernessCount, 0, wildernessCount); // Mark the wilderness as free
+					for (TInt i = 0; i < count; i++)
+						{
+						TLinAddr addr = s + KSlabPayloadOffset + i*size;
+						if (iTempSlabBitmap[i])
+							{
+							// In use
+							shouldContinue = (*aCallbackFn)(*this, aContext, ESlabAllocation, addr + debugheadersize, size - debugheadersize);
+							}
+						else
+							{
+							// Free
+							shouldContinue = (*aCallbackFn)(*this, aContext, ESlabFreeCell, addr, size);
+							}
+						if (!shouldContinue) return KErrNone;
+						}
+					break;
+					}
+				case ESlabEmptyInfo:
+					{
+					// Check which slabs of this page are empty
+					TUint32 pageAddr = ROUND_DOWN(s, KPageSize);
+					TUint32 headerForPage = 0;
+					err = ReadWord(pageAddr, headerForPage);
+					if (err) return err;
+					TUint32 slabHeaderPageMap = (headerForPage & 0x00000f00)>>8; // SlabHeaderPagemap(unsigned h)
+					for (TInt slabIdx = 0; slabIdx < 4; slabIdx++)
+						{
+						if (slabHeaderPageMap & (1<<slabIdx))
+							{
+							TUint32 addr = pageAddr + SLABSIZE*slabIdx + KSlabPayloadOffset; //&aSlab->iPayload[i*size];
+							shouldContinue = (*aCallbackFn)(*this, aContext, ESlabFreeSlab, addr, KMaxSlabPayload);
+							if (!shouldContinue) return KErrNone;
+							}
+						}
+					break;
+					}
+				}
+
+			//c = s->iChild2;
+			err = ReadWord(s + KSlabChild2Offset, c);
+			if (err) return err;
+
+			if (c)
+				{	// one step down right side, now try and walk down left
+				s = c;
+				break;
+				}
+			for (;;)
+				{	// loop to walk up right side
+				TUint32 pp = 0;
+				err = ReadWord(s + KSlabParentOffset, pp);
+				if (err) return err;
+				//slab** pp = s->iParent;
+				if (pp == aSlabRoot)
+					return KErrNone;
+#define SlabFor(x) ROUND_DOWN(x, SLABSIZE)
+				s = SlabFor(pp);
+				//if (pp == &s->iChild1)
+				if (pp == s + KSlabChild1Offset)
+					break;
+				}
+			}
+		}
+	}
+
+// Really should be called TotalSizeForCellType(...)
+HUEXPORT_C TInt RAllocatorHelper::SizeForCellType(TExtendedCellType aType)
+	{
+	if (aType & EBadnessMask) return KErrArgument;
+	if (aType == EAllocationMask) return AllocatedSize();
+
+	if (iAllocatorType == EUdebOldRHeap || iAllocatorType == EUrelOldRHeap)
+		{
+		switch (aType)
+			{
+			case EHeapAllocation:
+				return AllocatedSize();
+			case EHeapFreeCell:
+			case EFreeMask:
+				return CommittedFreeSpace();
+			default:
+				return KErrNotSupported;
+			}
+		}
+	else if (iAllocatorType == EUrelHybridHeap || iAllocatorType == EUdebHybridHeap)
+		{
+		TInt err = CheckValid(EHybridStats);
+		if (err) return err;
+
+		switch (aType)
+			{
+			case EHeapAllocation:
+			case EHeapFreeCell:
+				return KErrNotSupported;
+			case EDlaAllocation:
+				return iInfo->iDlaAllocsSize;
+			case EPageAllocation:
+				return iInfo->iPageAllocsSize;
+			case ESlabAllocation:
+				return iInfo->iSlabAllocsSize;
+			case EDlaFreeCell:
+				return iInfo->iDlaFreeSize;
+			case ESlabFreeCell:
+				return iInfo->iSlabFreeCellSize;
+			case ESlabFreeSlab:
+				return iInfo->iSlabFreeSlabSize;
+			case EFreeMask:
+				// Note this isn't the same as asking for CommittedFreeSpace(). SizeForCellType(EFreeMask) may include decommitted pages that lie inside a free cell
+				return iInfo->iDlaFreeSize + iInfo->iSlabFreeCellSize + iInfo->iSlabFreeSlabSize;
+			default:
+				return KErrNotSupported;
+			}
+		}
+	else
+		{
+		return KErrNotSupported;
+		}
+	}
+
+HUEXPORT_C TInt RAllocatorHelper::CountForCellType(TExtendedCellType aType)
+	{
+	if (aType & EBadnessMask) return KErrArgument;
+	if (aType == EAllocationMask) return AllocationCount();
+
+	if (iAllocatorType == EUdebOldRHeap || iAllocatorType == EUrelOldRHeap)
+		{
+		switch (aType)
+			{
+			case EHeapAllocation:
+				return AllocationCount();
+			case EHeapFreeCell:
+			case EFreeMask:
+				{
+				TInt err = CheckValid(ECommittedFreeSpace);
+				if (err) return err;
+				return iInfo->iHeapFreeCellCount;
+				}
+			default:
+				return KErrNotSupported;
+			}
+		}
+	else if (iAllocatorType == EUrelHybridHeap || iAllocatorType == EUdebHybridHeap)
+		{
+		TInt err = CheckValid(EHybridStats);
+		if (err) return err;
+
+		switch (aType)
+			{
+			case EHeapAllocation:
+			case EHeapFreeCell:
+				return KErrNotSupported;
+			case EDlaAllocation:
+				return iInfo->iDlaAllocsCount;
+			case EPageAllocation:
+				return iInfo->iPageAllocsCount;
+			case ESlabAllocation:
+				return iInfo->iSlabAllocsCount;
+			case EDlaFreeCell:
+				return iInfo->iDlaFreeCount;
+			case ESlabFreeCell:
+				return iInfo->iSlabFreeCellCount;
+			case ESlabFreeSlab:
+				return iInfo->iSlabFreeSlabCount;
+			case EFreeMask:
+				// This isn't a hugely meaningful value, but if that's what they asked for...
+				return iInfo->iDlaFreeCount + iInfo->iSlabFreeCellCount + iInfo->iSlabFreeSlabCount;
+			default:
+				return KErrNotSupported;
+			}
+		}
+	else
+		{
+		return KErrNotSupported;
+		}
+	}
+
+HUEXPORT_C TBool LtkUtils::RAllocatorHelper::AllocatorIsUdeb() const
+	{
+	return iAllocatorType == EUdebOldRHeap || iAllocatorType == EUdebHybridHeap;
+	}
+
+
+HUEXPORT_C const TDesC& LtkUtils::RAllocatorHelper::Description() const
+	{
+	_LIT(KRHeap, "RHeap");
+	_LIT(KRHybridHeap, "RHybridHeap");
+	_LIT(KUnknown, "Unknown");
+	switch (iAllocatorType)
+		{
+		case EUrelOldRHeap:
+		case EUdebOldRHeap:
+			return KRHeap;
+		case EUrelHybridHeap:
+		case EUdebHybridHeap:
+			return KRHybridHeap;
+		case EAllocator:
+		case EUnknown:
+		default:
+			return KUnknown;
+		}
+	}
+
+#ifdef __KERNEL_MODE__
+
+DChunk* LtkUtils::RAllocatorHelper::OpenUnderlyingChunk()
+	{
+	// Enter and leave in CS and with no locks held. On exit the returned DChunk has been Open()ed.
+	TInt err = iChunk->Open();
+	if (err) return NULL;
+	return iChunk;
+	}
+
+DChunk* LtkUtils::RKernelSideAllocatorHelper::OpenUnderlyingChunk()
+	{
+	if (iAllocatorType != EUrelOldRHeap && iAllocatorType != EUdebOldRHeap && iAllocatorType != EUrelHybridHeap && iAllocatorType != EUdebHybridHeap) return NULL;
+	// Note RKernelSideAllocatorHelper doesn't use or access RAllocatorHelper::iChunk, because we figure out the chunk handle in a different way.
+	// It is for this reason that iChunk is private, to remove temptation
+	
+	// Enter and leave in CS and with no locks held. On exit the returned DChunk has been Open()ed.
+	TUint32 chunkHandle = 0;
+	TInt err = ReadData(iAllocatorAddress + _FOFF(RHackHeap, iChunkHandle), &chunkHandle, sizeof(TUint32));
+	if (err) return NULL;
+
+	NKern::LockSystem();
+	DChunk* result = (DChunk*)Kern::ObjectFromHandle(iThread, chunkHandle, EChunk);
+	if (result && result->Open() != KErrNone)
+		{
+		result = NULL;
+		}
+	NKern::UnlockSystem();
+	return result;
+	}
+
+LtkUtils::RAllocatorHelper::TType LtkUtils::RAllocatorHelper::GetType() const
+	{
+	switch (iAllocatorType)
+		{
+		case EUrelOldRHeap:
+		case EUdebOldRHeap:
+			return ETypeRHeap;
+		case EUrelHybridHeap:
+		case EUdebHybridHeap:
+			return ETypeRHybridHeap;
+		case EAllocator:
+		case EUnknown:
+		default:
+			return ETypeUnknown;
+		}
+	}
+
+#else
+
+TInt LtkUtils::RAllocatorHelper::EuserIsUdeb()
+	{
+	TAny* buf = User::Alloc(4096);
+	if (!buf) return KErrNoMemory;
+	RAllocator* dummyHeap = UserHeap::FixedHeap(buf, 4096, 4, ETrue);
+	if (!dummyHeap) return KErrNoMemory; // Don't think this can happen
+
+	dummyHeap->__DbgSetAllocFail(RAllocator::EFailNext, 1);
+	TAny* ptr = dummyHeap->Alloc(4);
+	// Because we specified singleThreaded=ETrue we can allow dummyHeap to just go out of scope here
+	User::Free(buf);
+
+	if (ptr)
+		{
+		// Clearly the __DbgSetAllocFail had no effect so we must be urel
+		// We don't need to free ptr because it came from the dummy heap
+		return EFalse;
+		}
+	else
+		{
+		return ETrue;
+		}
+	}
+
+#ifndef STANDALONE_ALLOCHELPER
+
+#include <fshell/ltkutils.h>
+HUEXPORT_C void LtkUtils::MakeHeapCellInvisible(TAny* aCell)
+	{
+	RAllocatorHelper helper;
+	TInt err = helper.Open(&User::Allocator());
+	if (err == KErrNone)
+		{
+		helper.SetCellNestingLevel(aCell, -1);
+		helper.Close();
+		}
+	}
+#endif // STANDALONE_ALLOCHELPER
+
+#endif