/*
* Copyright (c) 2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include "MemSpyDriverHeapWalker.h"
// User includes
#include "MemSpyDriverUtils.h"
// Defines
#define __NEXT_CELL(p) ((RMemSpyDriverRHeapBase::SCell*)(((TUint8*)p)+p->len))
#define PRINTDEBUG( a ) { if ( PrintDebug() ) a; }
RMemSpyDriverHeapWalker::RMemSpyDriverHeapWalker( RMemSpyDriverRHeapBase& aHeap, TBool aDebugAllocator )
: iHeap( aHeap ), iIsDebugAllocator( aDebugAllocator ), iPrintDebug( EFalse ), iObserver( NULL )
{
InitialiseStats();
}
RMemSpyDriverHeapWalker::RMemSpyDriverHeapWalker( RMemSpyDriverRHeapBase& aHeap, TBool aDebugAllocator, MMemSpyHeapWalkerObserver& aObserver )
: iHeap( aHeap ), iIsDebugAllocator( aDebugAllocator ), iPrintDebug( EFalse ), iObserver( &aObserver )
{
InitialiseStats();
}
TInt RMemSpyDriverHeapWalker::Traverse()
//
// Walk the heap calling the info function.
//
{
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - START - delta: 0x%08x", iHeap.ClientToKernelDelta() ));
InitialiseStats();
if ( iObserver )
{
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - heap walk init..." ));
iObserver->HandleHeapWalkInit();
}
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - heap walk init complete" ));
TAny* heapBase = KernelAddress( iHeap.iBase );
TAny* heapTop = KernelAddress( iHeap.iTop );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - kernel-side chunk address: 0x%08x, chunkBase: 0x%08x, heapBase: 0x%08x, heapTop: 0x%08x", iHeap.ChunkKernelAddress(), iHeap.Chunk().iBase, heapBase, heapTop));
TRACE_DATA( MemSpyDriverUtils::DataDump("%lS", (TUint8*) iHeap.ChunkKernelAddress(), iHeap.Chunk().iSize, iHeap.Chunk().iSize ) );
TInt nestingLevel = 0;
TInt allocationNumber = 0;
//
RMemSpyDriverRHeapBase::SCell* pC = (RMemSpyDriverRHeapBase::SCell*) heapBase; // allocated cells
RMemSpyDriverRHeapBase::SCell* pF = &iHeap.iFree; // free cells
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - before while loop entry - pC: 0x%08x, pF: 0x%08x, heapBase: 0x%08x, heapTop: 0x%08x", pC, pF, heapBase, heapTop));
//
while( ( pF == &iHeap.iFree ) || ( pF >= heapBase && pF < heapTop ) )
{
pF = (RMemSpyDriverRHeapBase::SCell*) KernelAddress( pF->next ); // next free cell
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - pC: 0x%08x, pF: 0x%08x, heapBase: 0x%08x, heapTop: 0x%08x", pC, pF, heapBase, heapTop));
if ( pF )
{
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - freeCell: 0x%08x", pF ));
if ( pF >= heapBase && pF < heapTop )
{
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - freeCell->next: 0x%08x", pF->next ));
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - freeCell->len: 0x%08x", pF->len ));
}
else
{
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - FATAL ERROR - freeCell: 0x%08x is outside heap bounds!", pF ));
}
PRINTDEBUG( Kern::Printf(" "));
}
if (!pF)
{
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - next free cell address is NULL"));
pF = (RMemSpyDriverRHeapBase::SCell*) heapTop; // to make size checking work
}
else if ( (TUint8*) pF < heapBase || (TUint8*) pF >= heapTop || (KernelAddress( pF->next ) && KernelAddress( pF->next ) <= pF ) )
{
// free cell pointer off the end or going backwards
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - EBadFreeCellAddress: 0x%08x", pF ));
NotifyCell( EMemSpyDriverBadFreeCellAddress, UserAddress(pF), 0 );
return KErrAbort;
}
else
{
TInt l = pF->len;
if ( l< iHeap.iMinCell || (l & (iHeap.iAlign-1)))
{
// free cell length invalid
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - EBadFreeCellSize: 0x%08x", pF ));
NotifyCell( EMemSpyDriverBadFreeCellSize, UserAddress(pF), l );
return KErrAbort;
}
}
while ( pC != pF ) // walk allocated cells up to next free cell
{
if ( pC )
{
// The 'next' cell field is only applicable if the cell is a 'free' cell, hence we only print the cell's
// address, its length, and its _calculated_ next cell (based upon address + length). Calc length is done
// a bit later on...
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - allocCell: 0x%08x", pC ));
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - allocCell->len: 0x%08x", pC->len ));
PRINTDEBUG( Kern::Printf(" "));
}
TInt l = pC->len;
if (l<iHeap.iMinCell || (l & (iHeap.iAlign-1)))
{
// allocated cell length invalid
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - EBadAllocatedCellSize: 0x%08x", pC ));
NotifyCell( EMemSpyDriverBadAllocatedCellSize, UserAddress(pC), l );
return KErrAbort;
}
// ALLOCATED CELL
if ( iIsDebugAllocator )
{
RMemSpyDriverRHeapBase::SDebugCell* debugCell = (RMemSpyDriverRHeapBase::SDebugCell*) pC;
nestingLevel = debugCell->nestingLevel;
allocationNumber = debugCell->allocCount;
}
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - EGoodAllocatedCell: 0x%08x", pC ));
if ( NotifyCell( EMemSpyDriverGoodAllocatedCell, UserAddress(pC), l, nestingLevel, allocationNumber ) == EFalse )
{
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - END1 - KErrAbort on NotifyCell..."));
return KErrAbort;
}
RMemSpyDriverRHeapBase::SCell* pN = (RMemSpyDriverRHeapBase::SCell*) __NEXT_CELL( pC );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - allocCell next: 0x%08x", pN ));
if (pN > pF)
{
// cell overlaps next free cell
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - EBadAllocatedCellAddress: 0x%08x", pC ));
NotifyCell( EMemSpyDriverBadAllocatedCellAddress, UserAddress(pC), l );
return KErrAbort;
}
pC = pN;
}
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - freeCell before exit check is: 0x%08x", pF ));
if ((TUint8*) pF >= heapTop )
{
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - freeCell reached top of heap -> done"));
break; // reached end of heap
}
pC = (RMemSpyDriverRHeapBase::SCell*) __NEXT_CELL(pF); // step to next allocated cell
// FREE CELL
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - EGoodFreeCell: 0x%08x", pF ));
if ( NotifyCell( EMemSpyDriverGoodFreeCell, UserAddress(pF), pF->len ) == EFalse )
{
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - END2 - KErrAbort on NotifyCell..."));
return KErrAbort;
}
}
FinaliseStats();
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::Traverse() - END - pF: 0x%08x, pC: 0x%08x, heapBase: 0x%08x, heapTop: 0x%08x", pF, pC, heapBase, heapTop));
return KErrNone;
}
void RMemSpyDriverHeapWalker::CopyStatsTo( TMemSpyHeapStatisticsRHeap& aStats )
{
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::CopyStatsTo() - START"));
// Copy free cell info
TMemSpyHeapStatisticsRHeapFree& free = aStats.StatsFree();
free.SetTypeCount( iStats.iFreeCellCount );
free.SetTypeSize( iStats.iTotalFreeSpace );
// If the last cell was a free cell, and it was also the largest cell
// then we use the prior largest free cell instead. This is because
// slack space is already reported separately.
TAny* largestFreeCellAddress = (TAny*) iStats.iLargestCellAddressFree;
TUint largestFreeCellSize = iStats.iLargestCellSizeFree;
if ( iStats.iLastCellWasFreeCell && iStats.iLargestCellSizeFree == iStats.iSlackSpace && iStats.iSpackSpaceCellAddress == iStats.iLargestCellAddressFree )
{
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::CopyStatsTo() - using previous max free cell stats, since largest free cell is slack cell at end of heap..."));
largestFreeCellAddress = (TAny*) iStats.iLargestCellAddressFreePrevious;
largestFreeCellSize = iStats.iLargestCellSizeFreePrevious;
}
free.SetLargestCellAddress( largestFreeCellAddress );
free.SetLargestCellSize( largestFreeCellSize );
free.SetSlackSpaceCellSize( iStats.iSlackSpace );
free.SetSlackSpaceCellAddress( (TAny*) iStats.iSpackSpaceCellAddress );
free.SetChecksum( iStats.iFreeCellCRC );
// Copy allocated cell info
TMemSpyHeapStatisticsRHeapAllocated& alloc = aStats.StatsAllocated();
alloc.SetTypeCount( iStats.iAllocCellCount );
alloc.SetTypeSize( iStats.iTotalAllocSpace );
alloc.SetLargestCellAddress( (TAny*) iStats.iLargestCellAddressAlloc );
alloc.SetLargestCellSize( iStats.iLargestCellSizeAlloc );
// Copy common info
TMemSpyHeapStatisticsRHeapCommon& common = aStats.StatsCommon();
common.SetTotalCellCount( iStats.iNumberOfWalkedCells );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::CopyStatsTo() - END"));
}
void RMemSpyDriverHeapWalker::SetObserver( MMemSpyHeapWalkerObserver* aObserver )
{
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::SetObserver() - aObserver: 0x%08x", aObserver ));
iObserver = aObserver;
}
TAny* RMemSpyDriverHeapWalker::KernelAddress( TAny* aUserAddress, TUint aDelta )
{
TAny* ret = NULL;
//
if ( aUserAddress )
{
TRACE_HEAP( Kern::Printf("RMemSpyDriverHeapWalker::KernelAddress() - aUserAddress: 0x%08x", aUserAddress));
ret = (TUint8*) aUserAddress + aDelta;
}
//
TRACE_HEAP( Kern::Printf("RMemSpyDriverHeapWalker::KernelAddress() - ret: 0x%08x", ret));
return ret;
}
TAny* RMemSpyDriverHeapWalker::UserAddress( TAny* aKernelAddress, TUint aDelta )
{
TAny* ret = NULL;
//
if ( aKernelAddress )
{
TRACE_HEAP( Kern::Printf("RMemSpyDriverHeapWalker::UserAddress() - aKernelAddress: 0x%08x", aKernelAddress));
ret = (TUint8*) aKernelAddress - aDelta;
}
//
TRACE_HEAP( Kern::Printf("RMemSpyDriverHeapWalker::UserAddress() - ret: 0x%08x", ret));
return ret;
}
TAny* RMemSpyDriverHeapWalker::KernelAddress( TAny* aUserAddress) const
{
return KernelAddress( aUserAddress, iHeap.ClientToKernelDelta() );
}
TAny* RMemSpyDriverHeapWalker::UserAddress( TAny* aKernelAddress ) const
{
return UserAddress( aKernelAddress, iHeap.ClientToKernelDelta() );
}
RMemSpyDriverRHeapBase::SCell* RMemSpyDriverHeapWalker::CellByUserAddress( TAny* aAddress, TUint aDelta )
{
RMemSpyDriverRHeapBase::SCell* ret = (RMemSpyDriverRHeapBase::SCell*) KernelAddress( aAddress, aDelta );
return ret;
}
TBool RMemSpyDriverHeapWalker::NotifyCell( TMemSpyDriverCellType aType, TAny* aCellAddress, TInt aLength, TInt aNestingLevel, TInt aAllocNumber )
{
// Update stats first
UpdateStats( aType, aCellAddress, aLength, aNestingLevel, aAllocNumber );
// Notify observer
TBool continueTraversal = ETrue;
if ( iObserver )
{
continueTraversal = iObserver->HandleHeapCell( aType, aCellAddress, aLength, aNestingLevel, aAllocNumber );
}
//
return continueTraversal;
}
void RMemSpyDriverHeapWalker::UpdateStats( TMemSpyDriverCellType aCellType, TAny* aCellAddress, TInt aLength, TInt aNestingLevel, TInt aAllocNumber )
{
switch( aCellType )
{
case EMemSpyDriverGoodAllocatedCell:
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::UpdateStats - EGoodAllocatedCell - 0x%08x, len: %8d, nestingLev: %8d, allocNum: %8d", aCellAddress, aLength, aNestingLevel, aAllocNumber ));
break;
case EMemSpyDriverGoodFreeCell:
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::UpdateStats - EGoodFreeCell - 0x%08x, len: %8d, nestingLev: %8d, allocNum: %8d", aCellAddress, aLength, aNestingLevel, aAllocNumber ));
break;
case EMemSpyDriverBadAllocatedCellSize:
Kern::Printf("RMemSpyDriverHeapWalker::UpdateStats - EBadAllocatedCellSize - 0x%08x, len: %8d, nestingLev: %8d, allocNum: %8d", aCellAddress, aLength, aNestingLevel, aAllocNumber );
break;
case EMemSpyDriverBadAllocatedCellAddress:
Kern::Printf("RMemSpyDriverHeapWalker::UpdateStats - EBadAllocatedCellAddress - 0x%08x, len: %8d, nestingLev: %8d, allocNum: %8d", aCellAddress, aLength, aNestingLevel, aAllocNumber );
break;
case EMemSpyDriverBadFreeCellAddress:
Kern::Printf("RMemSpyDriverHeapWalker::UpdateStats - EBadFreeCellAddress - 0x%08x, len: %8d, nestingLev: %8d, allocNum: %8d", aCellAddress, aLength, aNestingLevel, aAllocNumber );
break;
case EMemSpyDriverBadFreeCellSize:
Kern::Printf("RMemSpyDriverHeapWalker::UpdateStats - EBadFreeCellSize - 0x%08x, len: %8d, nestingLev: %8d, allocNum: %8d", aCellAddress, aLength, aNestingLevel, aAllocNumber );
break;
default:
Kern::Printf("RMemSpyDriverHeapWalker::UpdateStats - UHANDLED TYPE! - 0x%08x, len: %8d, nestingLev: %8d, allocNum: %8d, type: %d", aCellAddress, aLength, aNestingLevel, aAllocNumber, aCellType );
break;
}
if ( aCellType == EMemSpyDriverGoodFreeCell )
{
// Update checksum
iStats.iFreeCellCRC = iStats.iFreeCellCRC ^ reinterpret_cast<TUint32>( aCellAddress );
// Track cell counts and length
++iStats.iFreeCellCount;
iStats.iTotalFreeSpace += aLength;
iStats.iLastFreeCellLength = aLength;
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::UpdateStats - WAS FREE CELL - iFreeCellCRC: 0x%08x, iFreeCellCount: %d, iTotalFreeSpace: %d, iLastFreeCellLength: %d", iStats.iFreeCellCRC, iStats.iFreeCellCount, iStats.iTotalFreeSpace, iStats.iLastFreeCellLength));
// Identify biggest cell
if ( (TUint) aLength > iStats.iLargestCellSizeFree )
{
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::UpdateStats - this cell (%d bytes big) is bigger than previous largested FREE cell (%d bytes) => making it the new largest FREE cell", aLength, iStats.iLargestCellSizeFree));
iStats.iLargestCellSizeFreePrevious = iStats.iLargestCellSizeFree;
iStats.iLargestCellSizeFree = aLength;
iStats.iLargestCellAddressFreePrevious = iStats.iLargestCellAddressFree;
iStats.iLargestCellAddressFree = (TLinAddr) aCellAddress;
}
// Identify first cell
if ( iStats.iFirstFreeCellAddress == 0 )
{
iStats.iFirstFreeCellLength = aLength;
iStats.iFirstFreeCellAddress = (TLinAddr) aCellAddress;
}
}
else if ( aCellType == EMemSpyDriverGoodAllocatedCell )
{
// Track cell counts and length
++iStats.iAllocCellCount;
iStats.iTotalAllocSpace += aLength;
iStats.iLastFreeCellLength = 0;
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::UpdateStats - WAS ALLOC CELL - iAllocCellCount: %d, iTotalAllocSpace: %d", iStats.iAllocCellCount, iStats.iTotalAllocSpace));
// Identify biggest cell
if ( (TUint) aLength > iStats.iLargestCellSizeAlloc )
{
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::UpdateStats - this cell (%d bytes big) is bigger than previous largested ALLOC cell (%d bytes) => making it the new largest ALLOC cell", aLength, iStats.iLargestCellSizeAlloc));
iStats.iLargestCellSizeAlloc = aLength;
iStats.iLargestCellAddressAlloc = (TLinAddr) aCellAddress;
}
}
else
{
iStats.iLastFreeCellLength = aLength;
}
iStats.iLastCellType = aCellType;
iStats.iLastCellAddress = (TLinAddr) aCellAddress;
iStats.iLastCellWasFreeCell = ( aCellType == EMemSpyDriverGoodFreeCell );
++iStats.iNumberOfWalkedCells;
}
void RMemSpyDriverHeapWalker::InitialiseStats()
{
iStats.iFreeCellCRC = 0;
iStats.iNumberOfWalkedCells = 0;
iStats.iFirstFreeCellAddress = 0;
iStats.iFirstFreeCellLength = 0;
iStats.iLastCellType = EMemSpyDriverGoodAllocatedCell;
iStats.iLastCellWasFreeCell = EFalse;
iStats.iLastFreeCellLength = 0;
iStats.iTotalFreeSpace = 0;
iStats.iTotalAllocSpace = 0;
iStats.iSlackSpace = 0;
iStats.iFreeCellCount = 0;
iStats.iAllocCellCount = 0;
iStats.iLargestCellSizeFree = 0;
iStats.iLargestCellSizeAlloc = 0;
iStats.iLargestCellAddressFree = 0;
iStats.iLargestCellAddressAlloc = 0;
iStats.iLargestCellSizeFreePrevious = 0;
iStats.iLargestCellAddressFreePrevious = 0;
iStats.iSpackSpaceCellAddress = 0;
iStats.iLastCellAddress = 0;
// These two can be identified up front
iStats.iFreeCellOverheadHeaderLength = RMemSpyDriverRHeapBase::FreeCellHeaderSize();
iStats.iAllocCellOverheadHeaderLength = RMemSpyDriverRHeapBase::AllocatedCellHeaderSize( iIsDebugAllocator );
}
void RMemSpyDriverHeapWalker::FinaliseStats()
{
if ( iStats.iLastCellWasFreeCell )
{
iStats.iSlackSpace = iStats.iLastFreeCellLength;
iStats.iSpackSpaceCellAddress = iStats.iLastCellAddress;
}
PrintStats();
}
void RMemSpyDriverHeapWalker::PrintStats()
{
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - HEAP SUMMARY FOR THREAD:" ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - ------------------------------------------------------------" ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iNumberOfWalkedCells : %10d", iStats.iNumberOfWalkedCells ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iFirstFreeCellAddress : 0x%08x", iStats.iFirstFreeCellAddress ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iFirstFreeCellLength : %10d", iStats.iFirstFreeCellLength ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iLastCellWasFreeCell : %10d", iStats.iLastCellWasFreeCell ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iLastCellType : %10d", iStats.iLastCellType ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iLastFreeCellLength : %10d", iStats.iLastFreeCellLength ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iTotalFreeSpace : %10d", iStats.iTotalFreeSpace ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iTotalAllocSpace : %10d", iStats.iTotalAllocSpace ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iSlackSpace : %10d", iStats.iSlackSpace ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iFreeCellCount : %10d", iStats.iFreeCellCount ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iAllocCellCount : %10d", iStats.iAllocCellCount ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iLargestCellSizeFree : %10d", iStats.iLargestCellSizeFree ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iLastFreeCellLength : %10d", iStats.iLastFreeCellLength ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iLargestCellSizeAlloc : %10d", iStats.iLargestCellSizeAlloc ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iLargestCellAddressFree : 0x%08x", iStats.iLargestCellAddressFree ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iLargestCellAddressAlloc : 0x%08x", iStats.iLargestCellAddressAlloc ) );
PRINTDEBUG( Kern::Printf("RMemSpyDriverHeapWalker::PrintStats - iFreeCellCRC : 0x%08x", iStats.iFreeCellCRC ) );
}