compressionlibs/ziplib/test/oldezlib/Zlib/trees.c
changeset 0 e4d67989cc36
equal deleted inserted replaced
-1:000000000000 0:e4d67989cc36
       
     1 /* trees.c -- output deflated data using Huffman coding
       
     2  * Copyright (C) 1995-1998 Jean-loup Gailly
       
     3  * For conditions of distribution and use, see copyright notice in zlib.h 
       
     4  */
       
     5 
       
     6 /*
       
     7  *  ALGORITHM
       
     8  *
       
     9  *      The "deflation" process uses several Huffman trees. The more
       
    10  *      common source values are represented by shorter bit sequences.
       
    11  *
       
    12  *      Each code tree is stored in a compressed form which is itself
       
    13  * a Huffman encoding of the lengths of all the code strings (in
       
    14  * ascending order by source values).  The actual code strings are
       
    15  * reconstructed from the lengths in the inflate process, as described
       
    16  * in the deflate specification.
       
    17  *
       
    18  *  REFERENCES
       
    19  *
       
    20  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
       
    21  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
       
    22  *
       
    23  *      Storer, James A.
       
    24  *          Data Compression:  Methods and Theory, pp. 49-50.
       
    25  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
       
    26  *
       
    27  *      Sedgewick, R.
       
    28  *          Algorithms, p290.
       
    29  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
       
    30  */
       
    31 
       
    32 /* @(#) $Id$ */
       
    33 
       
    34 /* #define GEN_TREES_H */
       
    35 
       
    36 #include "deflate.h"
       
    37 
       
    38 #ifdef DEBUG
       
    39 #  include <ctype.h>
       
    40 #endif
       
    41 
       
    42 /* ===========================================================================
       
    43  * Constants
       
    44  */
       
    45 
       
    46 #define MAX_BL_BITS 7
       
    47 /* Bit length codes must not exceed MAX_BL_BITS bits */
       
    48 
       
    49 #define END_BLOCK 256
       
    50 /* end of block literal code */
       
    51 
       
    52 #define REP_3_6      16
       
    53 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
       
    54 
       
    55 #define REPZ_3_10    17
       
    56 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
       
    57 
       
    58 #define REPZ_11_138  18
       
    59 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
       
    60 
       
    61 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
       
    62    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
       
    63 
       
    64 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
       
    65    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
       
    66 
       
    67 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
       
    68    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
       
    69 
       
    70 local const uch bl_order[BL_CODES]
       
    71    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
       
    72 /* The lengths of the bit length codes are sent in order of decreasing
       
    73  * probability, to avoid transmitting the lengths for unused bit length codes.
       
    74  */
       
    75 
       
    76 #define Buf_size (8 * 2*sizeof(char))
       
    77 /* Number of bits used within bi_buf. (bi_buf might be implemented on
       
    78  * more than 16 bits on some systems.)
       
    79  */
       
    80 
       
    81 /* ===========================================================================
       
    82  * Local data. These are initialized only once.
       
    83  */
       
    84 
       
    85 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
       
    86 
       
    87 #if defined(GEN_TREES_H) || !defined(STDC)
       
    88 /* non ANSI compilers may not accept trees.h */
       
    89 
       
    90 local ct_data static_ltree[L_CODES+2];
       
    91 /* The static literal tree. Since the bit lengths are imposed, there is no
       
    92  * need for the L_CODES extra codes used during heap construction. However
       
    93  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
       
    94  * below).
       
    95  */
       
    96 
       
    97 local ct_data static_dtree[D_CODES];
       
    98 /* The static distance tree. (Actually a trivial tree since all codes use
       
    99  * 5 bits.)
       
   100  */
       
   101 
       
   102 uch _dist_code[DIST_CODE_LEN];
       
   103 /* Distance codes. The first 256 values correspond to the distances
       
   104  * 3 .. 258, the last 256 values correspond to the top 8 bits of
       
   105  * the 15 bit distances.
       
   106  */
       
   107 
       
   108 uch _length_code[MAX_MATCH-MIN_MATCH+1];
       
   109 /* length code for each normalized match length (0 == MIN_MATCH) */
       
   110 
       
   111 local int base_length[LENGTH_CODES];
       
   112 /* First normalized length for each code (0 = MIN_MATCH) */
       
   113 
       
   114 local int base_dist[D_CODES];
       
   115 /* First normalized distance for each code (0 = distance of 1) */
       
   116 
       
   117 #else
       
   118 #  include "trees.h"
       
   119 #endif /* GEN_TREES_H */
       
   120 
       
   121 struct static_tree_desc_s {
       
   122     const ct_data *static_tree;  /* static tree or NULL */
       
   123     const intf *extra_bits;      /* extra bits for each code or NULL */
       
   124     int     extra_base;          /* base index for extra_bits */
       
   125     int     elems;               /* max number of elements in the tree */
       
   126     int     max_length;          /* max bit length for the codes */
       
   127 };
       
   128 
       
   129 local static_tree_desc  static_l_desc =
       
   130 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
       
   131 
       
   132 local static_tree_desc  static_d_desc =
       
   133 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
       
   134 
       
   135 local static_tree_desc  static_bl_desc =
       
   136 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
       
   137 
       
   138 /* ===========================================================================
       
   139  * Local (static) routines in this file.
       
   140  */
       
   141 
       
   142 local void tr_static_init OF((void));
       
   143 local void init_block     OF((deflate_state *s));
       
   144 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
       
   145 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
       
   146 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
       
   147 local void build_tree     OF((deflate_state *s, tree_desc *desc));
       
   148 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
       
   149 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
       
   150 local int  build_bl_tree  OF((deflate_state *s));
       
   151 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
       
   152                               int blcodes));
       
   153 local void compress_block OF((deflate_state *s, ct_data *ltree,
       
   154                               ct_data *dtree));
       
   155 local void set_data_type  OF((deflate_state *s));
       
   156 local unsigned bi_reverse OF((unsigned value, int length));
       
   157 local void bi_windup      OF((deflate_state *s));
       
   158 local void bi_flush       OF((deflate_state *s));
       
   159 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
       
   160                               int header));
       
   161 
       
   162 #ifdef GEN_TREES_H
       
   163 local void gen_trees_header OF((void));
       
   164 #endif
       
   165 
       
   166 #ifndef DEBUG
       
   167 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
       
   168    /* Send a code of the given tree. c and tree must not have side effects */
       
   169 
       
   170 #else /* DEBUG */
       
   171 #  define send_code(s, c, tree) \
       
   172      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
       
   173        send_bits(s, tree[c].Code, tree[c].Len); }
       
   174 #endif
       
   175 
       
   176 /* ===========================================================================
       
   177  * Output a short LSB first on the stream.
       
   178  * IN assertion: there is enough room in pendingBuf.
       
   179  */
       
   180 #define put_short(s, w) { \
       
   181     put_byte(s, (uch)((w) & 0xff)); \
       
   182     put_byte(s, (uch)((ush)(w) >> 8)); \
       
   183 }
       
   184 
       
   185 /* ===========================================================================
       
   186  * Send a value on a given number of bits.
       
   187  * IN assertion: length <= 16 and value fits in length bits.
       
   188  */
       
   189 #ifdef DEBUG
       
   190 local void send_bits      OF((deflate_state *s, int value, int length));
       
   191 
       
   192 local void send_bits(deflate_state *s, int value, int length)
       
   193 /* int value;   value to send */
       
   194 /* int length;  number of bits */
       
   195 
       
   196 {
       
   197     Tracevv((stderr," l %2d v %4x ", length, value));
       
   198     Assert(length > 0 && length <= 15, "invalid length");
       
   199     s->bits_sent += (ulg)length;
       
   200 
       
   201     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
       
   202      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
       
   203      * unused bits in value.
       
   204      */
       
   205     if (s->bi_valid > (int)Buf_size - length) {
       
   206         s->bi_buf |= (value << s->bi_valid);
       
   207         put_short(s, s->bi_buf);
       
   208         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
       
   209         s->bi_valid += length - Buf_size;
       
   210     } else {
       
   211         s->bi_buf |= value << s->bi_valid;
       
   212         s->bi_valid += length;
       
   213     }
       
   214 }
       
   215 #else /* !DEBUG */
       
   216 
       
   217 #define send_bits(s, value, length) \
       
   218 { int len = length;\
       
   219   if (s->bi_valid > (int)Buf_size - len) {\
       
   220     int val = value;\
       
   221     s->bi_buf |= (val << s->bi_valid);\
       
   222     put_short(s, s->bi_buf);\
       
   223     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
       
   224     s->bi_valid += len - Buf_size;\
       
   225   } else {\
       
   226     s->bi_buf |= (value) << s->bi_valid;\
       
   227     s->bi_valid += len;\
       
   228   }\
       
   229 }
       
   230 #endif /* DEBUG */
       
   231 
       
   232 
       
   233 #define MAX(a,b) (a >= b ? a : b)
       
   234 /* the arguments must not have side effects */
       
   235 
       
   236 /* ===========================================================================
       
   237  * Initialize the various 'constant' tables.
       
   238  */
       
   239 local void tr_static_init()
       
   240 {
       
   241 #if defined(GEN_TREES_H) || !defined(STDC)
       
   242     static int static_init_done = 0;
       
   243     int n;        /* iterates over tree elements */
       
   244     int bits;     /* bit counter */
       
   245     int length;   /* length value */
       
   246     int code;     /* code value */
       
   247     int dist;     /* distance index */
       
   248     ush bl_count[MAX_BITS+1];
       
   249     /* number of codes at each bit length for an optimal tree */
       
   250 
       
   251     if (static_init_done) return;
       
   252 
       
   253     /* For some embedded targets, global variables are not initialized: */
       
   254     static_l_desc.static_tree = static_ltree;
       
   255     static_l_desc.extra_bits = extra_lbits;
       
   256     static_d_desc.static_tree = static_dtree;
       
   257     static_d_desc.extra_bits = extra_dbits;
       
   258     static_bl_desc.extra_bits = extra_blbits;
       
   259 
       
   260     /* Initialize the mapping length (0..255) -> length code (0..28) */
       
   261     length = 0;
       
   262     for (code = 0; code < LENGTH_CODES-1; code++) {
       
   263         base_length[code] = length;
       
   264         for (n = 0; n < (1<<extra_lbits[code]); n++) {
       
   265             _length_code[length++] = (uch)code;
       
   266         }
       
   267     }
       
   268     Assert (length == 256, "tr_static_init: length != 256");
       
   269     /* Note that the length 255 (match length 258) can be represented
       
   270      * in two different ways: code 284 + 5 bits or code 285, so we
       
   271      * overwrite length_code[255] to use the best encoding:
       
   272      */
       
   273     _length_code[length-1] = (uch)code;
       
   274 
       
   275     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
       
   276     dist = 0;
       
   277     for (code = 0 ; code < 16; code++) {
       
   278         base_dist[code] = dist;
       
   279         for (n = 0; n < (1<<extra_dbits[code]); n++) {
       
   280             _dist_code[dist++] = (uch)code;
       
   281         }
       
   282     }
       
   283     Assert (dist == 256, "tr_static_init: dist != 256");
       
   284     dist >>= 7; /* from now on, all distances are divided by 128 */
       
   285     for ( ; code < D_CODES; code++) {
       
   286         base_dist[code] = dist << 7;
       
   287         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
       
   288             _dist_code[256 + dist++] = (uch)code;
       
   289         }
       
   290     }
       
   291     Assert (dist == 256, "tr_static_init: 256+dist != 512");
       
   292 
       
   293     /* Construct the codes of the static literal tree */
       
   294     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
       
   295     n = 0;
       
   296     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
       
   297     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
       
   298     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
       
   299     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
       
   300     /* Codes 286 and 287 do not exist, but we must include them in the
       
   301      * tree construction to get a canonical Huffman tree (longest code
       
   302      * all ones)
       
   303      */
       
   304     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
       
   305 
       
   306     /* The static distance tree is trivial: */
       
   307     for (n = 0; n < D_CODES; n++) {
       
   308         static_dtree[n].Len = 5;
       
   309         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
       
   310     }
       
   311     static_init_done = 1;
       
   312 
       
   313 #  ifdef GEN_TREES_H
       
   314     gen_trees_header();
       
   315 #  endif
       
   316 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
       
   317 }
       
   318 
       
   319 /* ===========================================================================
       
   320  * Genererate the file trees.h describing the static trees.
       
   321  */
       
   322 #ifdef GEN_TREES_H
       
   323 #  ifndef DEBUG
       
   324 #    include <stdio.h>
       
   325 #  endif
       
   326 
       
   327 #  define SEPARATOR(i, last, width) \
       
   328       ((i) == (last)? "\n};\n\n" :    \
       
   329        ((i) % (width) == (width)-1 ? ",\n" : ", "))
       
   330 
       
   331 void gen_trees_header()
       
   332 {
       
   333     FILE *header = fopen("trees.h", "w");
       
   334     int i;
       
   335 
       
   336     Assert (header != NULL, "Can't open trees.h");
       
   337     fprintf(header,
       
   338 	    "/* header created automatically with -DGEN_TREES_H */\n\n");
       
   339 
       
   340     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
       
   341     for (i = 0; i < L_CODES+2; i++) {
       
   342 	fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
       
   343 		static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
       
   344     }
       
   345 
       
   346     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
       
   347     for (i = 0; i < D_CODES; i++) {
       
   348 	fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
       
   349 		static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
       
   350     }
       
   351 
       
   352     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
       
   353     for (i = 0; i < DIST_CODE_LEN; i++) {
       
   354 	fprintf(header, "%2u%s", _dist_code[i],
       
   355 		SEPARATOR(i, DIST_CODE_LEN-1, 20));
       
   356     }
       
   357 
       
   358     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
       
   359     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
       
   360 	fprintf(header, "%2u%s", _length_code[i],
       
   361 		SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
       
   362     }
       
   363 
       
   364     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
       
   365     for (i = 0; i < LENGTH_CODES; i++) {
       
   366 	fprintf(header, "%1u%s", base_length[i],
       
   367 		SEPARATOR(i, LENGTH_CODES-1, 20));
       
   368     }
       
   369 
       
   370     fprintf(header, "local const int base_dist[D_CODES] = {\n");
       
   371     for (i = 0; i < D_CODES; i++) {
       
   372 	fprintf(header, "%5u%s", base_dist[i],
       
   373 		SEPARATOR(i, D_CODES-1, 10));
       
   374     }
       
   375 
       
   376     fclose(header);
       
   377 }
       
   378 #endif /* GEN_TREES_H */
       
   379 
       
   380 /* ===========================================================================
       
   381  * Initialize the tree data structures for a new zlib stream.
       
   382  */
       
   383 void _tr_init(deflate_state *s)
       
   384 {
       
   385     tr_static_init();
       
   386 
       
   387     s->l_desc.dyn_tree = s->dyn_ltree;
       
   388     s->l_desc.stat_desc = &static_l_desc;
       
   389 
       
   390     s->d_desc.dyn_tree = s->dyn_dtree;
       
   391     s->d_desc.stat_desc = &static_d_desc;
       
   392 
       
   393     s->bl_desc.dyn_tree = s->bl_tree;
       
   394     s->bl_desc.stat_desc = &static_bl_desc;
       
   395 
       
   396     s->bi_buf = 0;
       
   397     s->bi_valid = 0;
       
   398     s->last_eob_len = 8; /* enough lookahead for inflate */
       
   399 #ifdef DEBUG
       
   400     s->compressed_len = 0L;
       
   401     s->bits_sent = 0L;
       
   402 #endif
       
   403 
       
   404     /* Initialize the first block of the first file: */
       
   405     init_block(s);
       
   406 }
       
   407 
       
   408 /* ===========================================================================
       
   409  * Initialize a new block.
       
   410  */
       
   411 local void init_block(deflate_state *s)
       
   412 {
       
   413     int n; /* iterates over tree elements */
       
   414 
       
   415     /* Initialize the trees. */
       
   416     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
       
   417     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
       
   418     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
       
   419 
       
   420     s->dyn_ltree[END_BLOCK].Freq = 1;
       
   421     s->opt_len = s->static_len = 0L;
       
   422     s->last_lit = s->matches = 0;
       
   423 }
       
   424 
       
   425 #define SMALLEST 1
       
   426 /* Index within the heap array of least frequent node in the Huffman tree */
       
   427 
       
   428 
       
   429 /* ===========================================================================
       
   430  * Remove the smallest element from the heap and recreate the heap with
       
   431  * one less element. Updates heap and heap_len.
       
   432  */
       
   433 #define pqremove(s, tree, top) \
       
   434 {\
       
   435     top = s->heap[SMALLEST]; \
       
   436     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
       
   437     pqdownheap(s, tree, SMALLEST); \
       
   438 }
       
   439 
       
   440 /* ===========================================================================
       
   441  * Compares to subtrees, using the tree depth as tie breaker when
       
   442  * the subtrees have equal frequency. This minimizes the worst case length.
       
   443  */
       
   444 #define smaller(tree, n, m, depth) \
       
   445    (tree[n].Freq < tree[m].Freq || \
       
   446    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
       
   447 
       
   448 /* ===========================================================================
       
   449  * Restore the heap property by moving down the tree starting at node k,
       
   450  * exchanging a node with the smallest of its two sons if necessary, stopping
       
   451  * when the heap property is re-established (each father smaller than its
       
   452  * two sons).
       
   453  */
       
   454 local void pqdownheap(deflate_state *s, ct_data *tree, int k)
       
   455 /* ct_data *tree;      the tree to restore */
       
   456 /* int k;              node to move down */
       
   457 {
       
   458     int v = s->heap[k];
       
   459     int j = k << 1;  /* left son of k */
       
   460     while (j <= s->heap_len) {
       
   461         /* Set j to the smallest of the two sons: */
       
   462         if (j < s->heap_len &&
       
   463             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
       
   464             j++;
       
   465         }
       
   466         /* Exit if v is smaller than both sons */
       
   467         if (smaller(tree, v, s->heap[j], s->depth)) break;
       
   468 
       
   469         /* Exchange v with the smallest son */
       
   470         s->heap[k] = s->heap[j];  k = j;
       
   471 
       
   472         /* And continue down the tree, setting j to the left son of k */
       
   473         j <<= 1;
       
   474     }
       
   475     s->heap[k] = v;
       
   476 }
       
   477 
       
   478 /* ===========================================================================
       
   479  * Compute the optimal bit lengths for a tree and update the total bit length
       
   480  * for the current block.
       
   481  * IN assertion: the fields freq and dad are set, heap[heap_max] and
       
   482  *    above are the tree nodes sorted by increasing frequency.
       
   483  * OUT assertions: the field len is set to the optimal bit length, the
       
   484  *     array bl_count contains the frequencies for each bit length.
       
   485  *     The length opt_len is updated; static_len is also updated if stree is
       
   486  *     not null.
       
   487  */
       
   488 local void gen_bitlen(deflate_state *s, tree_desc *desc)
       
   489 /* tree_desc *desc;     the tree descriptor */
       
   490 {
       
   491     ct_data *tree        = desc->dyn_tree;
       
   492     int max_code         = desc->max_code;
       
   493     const ct_data *stree = desc->stat_desc->static_tree;
       
   494     const intf *extra    = desc->stat_desc->extra_bits;
       
   495     int base             = desc->stat_desc->extra_base;
       
   496     int max_length       = desc->stat_desc->max_length;
       
   497     int h;              /* heap index */
       
   498     int n, m;           /* iterate over the tree elements */
       
   499     int bits;           /* bit length */
       
   500     int xbits;          /* extra bits */
       
   501     ush f;              /* frequency */
       
   502     int overflow = 0;   /* number of elements with bit length too large */
       
   503 
       
   504     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
       
   505 
       
   506     /* In a first pass, compute the optimal bit lengths (which may
       
   507      * overflow in the case of the bit length tree).
       
   508      */
       
   509     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
       
   510 
       
   511     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
       
   512         n = s->heap[h];
       
   513         bits = tree[tree[n].Dad].Len + 1;
       
   514         if (bits > max_length) bits = max_length, overflow++;
       
   515         tree[n].Len = (ush)bits;
       
   516         /* We overwrite tree[n].Dad which is no longer needed */
       
   517 
       
   518         if (n > max_code) continue; /* not a leaf node */
       
   519 
       
   520         s->bl_count[bits]++;
       
   521         xbits = 0;
       
   522         if (n >= base) xbits = extra[n-base];
       
   523         f = tree[n].Freq;
       
   524         s->opt_len += (ulg)f * (bits + xbits);
       
   525         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
       
   526     }
       
   527     if (overflow == 0) return;
       
   528 
       
   529     Trace((stderr,"\nbit length overflow\n"));
       
   530     /* This happens for example on obj2 and pic of the Calgary corpus */
       
   531 
       
   532     /* Find the first bit length which could increase: */
       
   533     do {
       
   534         bits = max_length-1;
       
   535         while (s->bl_count[bits] == 0) bits--;
       
   536         s->bl_count[bits]--;      /* move one leaf down the tree */
       
   537         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
       
   538         s->bl_count[max_length]--;
       
   539         /* The brother of the overflow item also moves one step up,
       
   540          * but this does not affect bl_count[max_length]
       
   541          */
       
   542         overflow -= 2;
       
   543     } while (overflow > 0);
       
   544 
       
   545     /* Now recompute all bit lengths, scanning in increasing frequency.
       
   546      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
       
   547      * lengths instead of fixing only the wrong ones. This idea is taken
       
   548      * from 'ar' written by Haruhiko Okumura.)
       
   549      */
       
   550     for (bits = max_length; bits != 0; bits--) {
       
   551         n = s->bl_count[bits];
       
   552         while (n != 0) {
       
   553             m = s->heap[--h];
       
   554             if (m > max_code) continue;
       
   555             if (tree[m].Len != (unsigned) bits) {
       
   556                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
       
   557                 s->opt_len += ((long)bits - (long)tree[m].Len)
       
   558                               *(long)tree[m].Freq;
       
   559                 tree[m].Len = (ush)bits;
       
   560             }
       
   561             n--;
       
   562         }
       
   563     }
       
   564 }
       
   565 
       
   566 /* ===========================================================================
       
   567  * Generate the codes for a given tree and bit counts (which need not be
       
   568  * optimal).
       
   569  * IN assertion: the array bl_count contains the bit length statistics for
       
   570  * the given tree and the field len is set for all tree elements.
       
   571  * OUT assertion: the field code is set for all tree elements of non
       
   572  *     zero code length.
       
   573  */
       
   574 local void gen_codes (ct_data *tree, int max_code, ushf *bl_count)
       
   575 /* ct_data *tree;              the tree to decorate */
       
   576 /* int max_code;               largest code with non zero frequency */
       
   577 /* ushf *bl_count;             number of codes at each bit length */
       
   578 {
       
   579     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
       
   580     ush code = 0;              /* running code value */
       
   581     int bits;                  /* bit index */
       
   582     int n;                     /* code index */
       
   583 
       
   584     /* The distribution counts are first used to generate the code values
       
   585      * without bit reversal.
       
   586      */
       
   587     for (bits = 1; bits <= MAX_BITS; bits++) {
       
   588         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
       
   589     }
       
   590     /* Check that the bit counts in bl_count are consistent. The last code
       
   591      * must be all ones.
       
   592      */
       
   593     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
       
   594             "inconsistent bit counts");
       
   595     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
       
   596 
       
   597     for (n = 0;  n <= max_code; n++) {
       
   598         int len = tree[n].Len;
       
   599         if (len == 0) continue;
       
   600         /* Now reverse the bits */
       
   601         tree[n].Code = bi_reverse(next_code[len]++, len);
       
   602 
       
   603         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
       
   604              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
       
   605     }
       
   606 }
       
   607 
       
   608 /* ===========================================================================
       
   609  * Construct one Huffman tree and assigns the code bit strings and lengths.
       
   610  * Update the total bit length for the current block.
       
   611  * IN assertion: the field freq is set for all tree elements.
       
   612  * OUT assertions: the fields len and code are set to the optimal bit length
       
   613  *     and corresponding code. The length opt_len is updated; static_len is
       
   614  *     also updated if stree is not null. The field max_code is set.
       
   615  */
       
   616 local void build_tree(deflate_state *s, tree_desc *desc)
       
   617 /* tree_desc *desc;        the tree descriptor */
       
   618 {
       
   619     ct_data *tree         = desc->dyn_tree;
       
   620     const ct_data *stree  = desc->stat_desc->static_tree;
       
   621     int elems             = desc->stat_desc->elems;
       
   622     int n, m;          /* iterate over heap elements */
       
   623     int max_code = -1; /* largest code with non zero frequency */
       
   624     int node;          /* new node being created */
       
   625 
       
   626     /* Construct the initial heap, with least frequent element in
       
   627      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
       
   628      * heap[0] is not used.
       
   629      */
       
   630     s->heap_len = 0, s->heap_max = HEAP_SIZE;
       
   631 
       
   632     for (n = 0; n < elems; n++) {
       
   633         if (tree[n].Freq != 0) {
       
   634             s->heap[++(s->heap_len)] = max_code = n;
       
   635             s->depth[n] = 0;
       
   636         } else {
       
   637             tree[n].Len = 0;
       
   638         }
       
   639     }
       
   640 
       
   641     /* The pkzip format requires that at least one distance code exists,
       
   642      * and that at least one bit should be sent even if there is only one
       
   643      * possible code. So to avoid special checks later on we force at least
       
   644      * two codes of non zero frequency.
       
   645      */
       
   646     while (s->heap_len < 2) {
       
   647         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
       
   648         tree[node].Freq = 1;
       
   649         s->depth[node] = 0;
       
   650         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
       
   651         /* node is 0 or 1 so it does not have extra bits */
       
   652     }
       
   653     desc->max_code = max_code;
       
   654 
       
   655     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
       
   656      * establish sub-heaps of increasing lengths:
       
   657      */
       
   658     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
       
   659 
       
   660     /* Construct the Huffman tree by repeatedly combining the least two
       
   661      * frequent nodes.
       
   662      */
       
   663     node = elems;              /* next internal node of the tree */
       
   664     do {
       
   665         pqremove(s, tree, n);  /* n = node of least frequency */
       
   666         m = s->heap[SMALLEST]; /* m = node of next least frequency */
       
   667 
       
   668         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
       
   669         s->heap[--(s->heap_max)] = m;
       
   670 
       
   671         /* Create a new node father of n and m */
       
   672         tree[node].Freq = tree[n].Freq + tree[m].Freq;
       
   673         s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
       
   674         tree[n].Dad = tree[m].Dad = (ush)node;
       
   675 #ifdef DUMP_BL_TREE
       
   676         if (tree == s->bl_tree) {
       
   677             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
       
   678                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
       
   679         }
       
   680 #endif
       
   681         /* and insert the new node in the heap */
       
   682         s->heap[SMALLEST] = node++;
       
   683         pqdownheap(s, tree, SMALLEST);
       
   684 
       
   685     } while (s->heap_len >= 2);
       
   686 
       
   687     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
       
   688 
       
   689     /* At this point, the fields freq and dad are set. We can now
       
   690      * generate the bit lengths.
       
   691      */
       
   692     gen_bitlen(s, (tree_desc *)desc);
       
   693 
       
   694     /* The field len is now set, we can generate the bit codes */
       
   695     gen_codes ((ct_data *)tree, max_code, s->bl_count);
       
   696 }
       
   697 
       
   698 /* ===========================================================================
       
   699  * Scan a literal or distance tree to determine the frequencies of the codes
       
   700  * in the bit length tree.
       
   701  */
       
   702 local void scan_tree (deflate_state *s, ct_data *tree, int max_code)
       
   703 /* ct_data *tree;         the tree to be scanned */
       
   704 /* int max_code;          and its largest code of non zero frequency */
       
   705 {
       
   706     int n;                     /* iterates over all tree elements */
       
   707     int prevlen = -1;          /* last emitted length */
       
   708     int curlen;                /* length of current code */
       
   709     int nextlen = tree[0].Len; /* length of next code */
       
   710     int count = 0;             /* repeat count of the current code */
       
   711     int max_count = 7;         /* max repeat count */
       
   712     int min_count = 4;         /* min repeat count */
       
   713 
       
   714     if (nextlen == 0) max_count = 138, min_count = 3;
       
   715     tree[max_code+1].Len = (ush)0xffff; /* guard */
       
   716 
       
   717     for (n = 0; n <= max_code; n++) {
       
   718         curlen = nextlen; nextlen = tree[n+1].Len;
       
   719         if (++count < max_count && curlen == nextlen) {
       
   720             continue;
       
   721         } else if (count < min_count) {
       
   722             s->bl_tree[curlen].Freq += count;
       
   723         } else if (curlen != 0) {
       
   724             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
       
   725             s->bl_tree[REP_3_6].Freq++;
       
   726         } else if (count <= 10) {
       
   727             s->bl_tree[REPZ_3_10].Freq++;
       
   728         } else {
       
   729             s->bl_tree[REPZ_11_138].Freq++;
       
   730         }
       
   731         count = 0; prevlen = curlen;
       
   732         if (nextlen == 0) {
       
   733             max_count = 138, min_count = 3;
       
   734         } else if (curlen == nextlen) {
       
   735             max_count = 6, min_count = 3;
       
   736         } else {
       
   737             max_count = 7, min_count = 4;
       
   738         }
       
   739     }
       
   740 }
       
   741 
       
   742 /* ===========================================================================
       
   743  * Send a literal or distance tree in compressed form, using the codes in
       
   744  * bl_tree.
       
   745  */
       
   746 local void send_tree (deflate_state *s, ct_data *tree, int max_code)
       
   747 /* ct_data *tree;        the tree to be scanned */
       
   748 /* int max_code;         and its largest code of non zero frequency */
       
   749 {
       
   750     int n;                     /* iterates over all tree elements */
       
   751     int prevlen = -1;          /* last emitted length */
       
   752     int curlen;                /* length of current code */
       
   753     int nextlen = tree[0].Len; /* length of next code */
       
   754     int count = 0;             /* repeat count of the current code */
       
   755     int max_count = 7;         /* max repeat count */
       
   756     int min_count = 4;         /* min repeat count */
       
   757 
       
   758     /* tree[max_code+1].Len = -1; */  /* guard already set */
       
   759     if (nextlen == 0) max_count = 138, min_count = 3;
       
   760 
       
   761     for (n = 0; n <= max_code; n++) {
       
   762         curlen = nextlen; nextlen = tree[n+1].Len;
       
   763         if (++count < max_count && curlen == nextlen) {
       
   764             continue;
       
   765         } else if (count < min_count) {
       
   766             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
       
   767 
       
   768         } else if (curlen != 0) {
       
   769             if (curlen != prevlen) {
       
   770                 send_code(s, curlen, s->bl_tree); count--;
       
   771             }
       
   772             Assert(count >= 3 && count <= 6, " 3_6?");
       
   773             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
       
   774 
       
   775         } else if (count <= 10) {
       
   776             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
       
   777 
       
   778         } else {
       
   779             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
       
   780         }
       
   781         count = 0; prevlen = curlen;
       
   782         if (nextlen == 0) {
       
   783             max_count = 138, min_count = 3;
       
   784         } else if (curlen == nextlen) {
       
   785             max_count = 6, min_count = 3;
       
   786         } else {
       
   787             max_count = 7, min_count = 4;
       
   788         }
       
   789     }
       
   790 }
       
   791 
       
   792 /* ===========================================================================
       
   793  * Construct the Huffman tree for the bit lengths and return the index in
       
   794  * bl_order of the last bit length code to send.
       
   795  */
       
   796 local int build_bl_tree(deflate_state *s)
       
   797 {
       
   798     int max_blindex;  /* index of last bit length code of non zero freq */
       
   799 
       
   800     /* Determine the bit length frequencies for literal and distance trees */
       
   801     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
       
   802     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
       
   803 
       
   804     /* Build the bit length tree: */
       
   805     build_tree(s, (tree_desc *)(&(s->bl_desc)));
       
   806     /* opt_len now includes the length of the tree representations, except
       
   807      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
       
   808      */
       
   809 
       
   810     /* Determine the number of bit length codes to send. The pkzip format
       
   811      * requires that at least 4 bit length codes be sent. (appnote.txt says
       
   812      * 3 but the actual value used is 4.)
       
   813      */
       
   814     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
       
   815         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
       
   816     }
       
   817     /* Update opt_len to include the bit length tree and counts */
       
   818     s->opt_len += 3*(max_blindex+1) + 5+5+4;
       
   819     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
       
   820             s->opt_len, s->static_len));
       
   821 
       
   822     return max_blindex;
       
   823 }
       
   824 
       
   825 /* ===========================================================================
       
   826  * Send the header for a block using dynamic Huffman trees: the counts, the
       
   827  * lengths of the bit length codes, the literal tree and the distance tree.
       
   828  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
       
   829  */
       
   830 local void send_all_trees(deflate_state *s, int lcodes, int dcodes, int blcodes)
       
   831 /* int lcodes, dcodes, blcodes;          number of codes for each tree */
       
   832 {
       
   833     int rank;                    /* index in bl_order */
       
   834 
       
   835     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
       
   836     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
       
   837             "too many codes");
       
   838     Tracev((stderr, "\nbl counts: "));
       
   839     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
       
   840     send_bits(s, dcodes-1,   5);
       
   841     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
       
   842     for (rank = 0; rank < blcodes; rank++) {
       
   843         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
       
   844         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
       
   845     }
       
   846     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
       
   847 
       
   848     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
       
   849     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
       
   850 
       
   851     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
       
   852     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
       
   853 }
       
   854 
       
   855 /* ===========================================================================
       
   856  * Send a stored block
       
   857  */
       
   858 void _tr_stored_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
       
   859 /* charf *buf;        input block */
       
   860 /* ulg stored_len;    length of input block */
       
   861 /* int eof;           true if this is the last block for a file */
       
   862 {
       
   863     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
       
   864 #ifdef DEBUG
       
   865     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
       
   866     s->compressed_len += (stored_len + 4) << 3;
       
   867 #endif
       
   868     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
       
   869 }
       
   870 
       
   871 /* ===========================================================================
       
   872  * Send one empty static block to give enough lookahead for inflate.
       
   873  * This takes 10 bits, of which 7 may remain in the bit buffer.
       
   874  * The current inflate code requires 9 bits of lookahead. If the
       
   875  * last two codes for the previous block (real code plus EOB) were coded
       
   876  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
       
   877  * the last real code. In this case we send two empty static blocks instead
       
   878  * of one. (There are no problems if the previous block is stored or fixed.)
       
   879  * To simplify the code, we assume the worst case of last real code encoded
       
   880  * on one bit only.
       
   881  */
       
   882 void _tr_align(deflate_state *s)
       
   883 {
       
   884     send_bits(s, STATIC_TREES<<1, 3);
       
   885     send_code(s, END_BLOCK, static_ltree);
       
   886 #ifdef DEBUG
       
   887     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
       
   888 #endif
       
   889     bi_flush(s);
       
   890     /* Of the 10 bits for the empty block, we have already sent
       
   891      * (10 - bi_valid) bits. The lookahead for the last real code (before
       
   892      * the EOB of the previous block) was thus at least one plus the length
       
   893      * of the EOB plus what we have just sent of the empty static block.
       
   894      */
       
   895     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
       
   896         send_bits(s, STATIC_TREES<<1, 3);
       
   897         send_code(s, END_BLOCK, static_ltree);
       
   898 #ifdef DEBUG
       
   899         s->compressed_len += 10L;
       
   900 #endif
       
   901         bi_flush(s);
       
   902     }
       
   903     s->last_eob_len = 7;
       
   904 }
       
   905 
       
   906 /* ===========================================================================
       
   907  * Determine the best encoding for the current block: dynamic trees, static
       
   908  * trees or store, and output the encoded block to the zip file.
       
   909  */
       
   910 void _tr_flush_block(deflate_state *s, charf *buf, ulg stored_len, int eof)
       
   911 /* charf *buf;            input block, or NULL if too old */
       
   912 /* ulg stored_len;        length of input block */
       
   913 /* int eof;               true if this is the last block for a file */
       
   914 {
       
   915     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
       
   916     int max_blindex = 0;  /* index of last bit length code of non zero freq */
       
   917 
       
   918     /* Build the Huffman trees unless a stored block is forced */
       
   919     if (s->level > 0) {
       
   920 
       
   921 	 /* Check if the file is ascii or binary */
       
   922 	if (s->data_type == Z_UNKNOWN) set_data_type(s);
       
   923 
       
   924 	/* Construct the literal and distance trees */
       
   925 	build_tree(s, (tree_desc *)(&(s->l_desc)));
       
   926 	Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
       
   927 		s->static_len));
       
   928 
       
   929 	build_tree(s, (tree_desc *)(&(s->d_desc)));
       
   930 	Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
       
   931 		s->static_len));
       
   932 	/* At this point, opt_len and static_len are the total bit lengths of
       
   933 	 * the compressed block data, excluding the tree representations.
       
   934 	 */
       
   935 
       
   936 	/* Build the bit length tree for the above two trees, and get the index
       
   937 	 * in bl_order of the last bit length code to send.
       
   938 	 */
       
   939 	max_blindex = build_bl_tree(s);
       
   940 
       
   941 	/* Determine the best encoding. Compute first the block length in bytes*/
       
   942 	opt_lenb = (s->opt_len+3+7)>>3;
       
   943 	static_lenb = (s->static_len+3+7)>>3;
       
   944 
       
   945 	Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
       
   946 		opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
       
   947 		s->last_lit));
       
   948 
       
   949 	if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
       
   950 
       
   951     } else {
       
   952         Assert(buf != (char*)0, "lost buf");
       
   953 	opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
       
   954     }
       
   955 
       
   956 #ifdef FORCE_STORED
       
   957     if (buf != (char*)0) { /* force stored block */
       
   958 #else
       
   959     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
       
   960                        /* 4: two words for the lengths */
       
   961 #endif
       
   962         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
       
   963          * Otherwise we can't have processed more than WSIZE input bytes since
       
   964          * the last block flush, because compression would have been
       
   965          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
       
   966          * transform a block into a stored block.
       
   967          */
       
   968         _tr_stored_block(s, buf, stored_len, eof);
       
   969 
       
   970 #ifdef FORCE_STATIC
       
   971     } else if (static_lenb >= 0) { /* force static trees */
       
   972 #else
       
   973     } else if (static_lenb == opt_lenb) {
       
   974 #endif
       
   975         send_bits(s, (STATIC_TREES<<1)+eof, 3);
       
   976         compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
       
   977 #ifdef DEBUG
       
   978         s->compressed_len += 3 + s->static_len;
       
   979 #endif
       
   980     } else {
       
   981         send_bits(s, (DYN_TREES<<1)+eof, 3);
       
   982         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
       
   983                        max_blindex+1);
       
   984         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
       
   985 #ifdef DEBUG
       
   986         s->compressed_len += 3 + s->opt_len;
       
   987 #endif
       
   988     }
       
   989     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
       
   990     /* The above check is made mod 2^32, for files larger than 512 MB
       
   991      * and uLong implemented on 32 bits.
       
   992      */
       
   993     init_block(s);
       
   994 
       
   995     if (eof) {
       
   996         bi_windup(s);
       
   997 #ifdef DEBUG
       
   998         s->compressed_len += 7;  /* align on byte boundary */
       
   999 #endif
       
  1000     }
       
  1001     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
       
  1002            s->compressed_len-7*eof));
       
  1003 }
       
  1004 
       
  1005 /* ===========================================================================
       
  1006  * Save the match info and tally the frequency counts. Return true if
       
  1007  * the current block must be flushed.
       
  1008  */
       
  1009 int _tr_tally (deflate_state *s, unsigned dist, unsigned lc)
       
  1010 /* unsigned dist;      distance of matched string */
       
  1011 /* unsigned lc;        match length-MIN_MATCH or unmatched char (if dist==0) */
       
  1012 {
       
  1013     s->d_buf[s->last_lit] = (ush)dist;
       
  1014     s->l_buf[s->last_lit++] = (uch)lc;
       
  1015     if (dist == 0) {
       
  1016         /* lc is the unmatched char */
       
  1017         s->dyn_ltree[lc].Freq++;
       
  1018     } else {
       
  1019         s->matches++;
       
  1020         /* Here, lc is the match length - MIN_MATCH */
       
  1021         dist--;             /* dist = match distance - 1 */
       
  1022         Assert((ush)dist < (ush)MAX_DIST(s) &&
       
  1023                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
       
  1024                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
       
  1025 
       
  1026         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
       
  1027         s->dyn_dtree[d_code(dist)].Freq++;
       
  1028     }
       
  1029 
       
  1030 #ifdef TRUNCATE_BLOCK
       
  1031     /* Try to guess if it is profitable to stop the current block here */
       
  1032     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
       
  1033         /* Compute an upper bound for the compressed length */
       
  1034         ulg out_length = (ulg)s->last_lit*8L;
       
  1035         ulg in_length = (ulg)((long)s->strstart - s->block_start);
       
  1036         int dcode;
       
  1037         for (dcode = 0; dcode < D_CODES; dcode++) {
       
  1038             out_length += (ulg)s->dyn_dtree[dcode].Freq *
       
  1039                 (5L+extra_dbits[dcode]);
       
  1040         }
       
  1041         out_length >>= 3;
       
  1042         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
       
  1043                s->last_lit, in_length, out_length,
       
  1044                100L - out_length*100L/in_length));
       
  1045         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
       
  1046     }
       
  1047 #endif
       
  1048     return (s->last_lit == s->lit_bufsize-1);
       
  1049     /* We avoid equality with lit_bufsize because of wraparound at 64K
       
  1050      * on 16 bit machines and because stored blocks are restricted to
       
  1051      * 64K-1 bytes.
       
  1052      */
       
  1053 }
       
  1054 
       
  1055 /* ===========================================================================
       
  1056  * Send the block data compressed using the given Huffman trees
       
  1057  */
       
  1058 local void compress_block(deflate_state *s, ct_data *ltree, ct_data *dtree)
       
  1059 {
       
  1060     unsigned dist;      /* distance of matched string */
       
  1061     int lc;             /* match length or unmatched char (if dist == 0) */
       
  1062     unsigned lx = 0;    /* running index in l_buf */
       
  1063     unsigned code;      /* the code to send */
       
  1064     int extra;          /* number of extra bits to send */
       
  1065 
       
  1066     if (s->last_lit != 0) do {
       
  1067         dist = s->d_buf[lx];
       
  1068         lc = s->l_buf[lx++];
       
  1069         if (dist == 0) {
       
  1070             send_code(s, lc, ltree); /* send a literal byte */
       
  1071             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
       
  1072         } else {
       
  1073             /* Here, lc is the match length - MIN_MATCH */
       
  1074             code = _length_code[lc];
       
  1075             send_code(s, code+LITERALS+1, ltree); /* send the length code */
       
  1076             extra = extra_lbits[code];
       
  1077             if (extra != 0) {
       
  1078                 lc -= base_length[code];
       
  1079                 send_bits(s, lc, extra);       /* send the extra length bits */
       
  1080             }
       
  1081             dist--; /* dist is now the match distance - 1 */
       
  1082             code = d_code(dist);
       
  1083             Assert (code < D_CODES, "bad d_code");
       
  1084 
       
  1085             send_code(s, code, dtree);       /* send the distance code */
       
  1086             extra = extra_dbits[code];
       
  1087             if (extra != 0) {
       
  1088                 dist -= base_dist[code];
       
  1089                 send_bits(s, dist, extra);   /* send the extra distance bits */
       
  1090             }
       
  1091         } /* literal or match pair ? */
       
  1092 
       
  1093         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
       
  1094         Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
       
  1095 
       
  1096     } while (lx < s->last_lit);
       
  1097 
       
  1098     send_code(s, END_BLOCK, ltree);
       
  1099     s->last_eob_len = ltree[END_BLOCK].Len;
       
  1100 }
       
  1101 
       
  1102 /* ===========================================================================
       
  1103  * Set the data type to ASCII or BINARY, using a crude approximation:
       
  1104  * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
       
  1105  * IN assertion: the fields freq of dyn_ltree are set and the total of all
       
  1106  * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
       
  1107  */
       
  1108 local void set_data_type(deflate_state *s)
       
  1109 {
       
  1110     int n = 0;
       
  1111     unsigned ascii_freq = 0;
       
  1112     unsigned bin_freq = 0;
       
  1113     while (n < 7)        bin_freq += s->dyn_ltree[n++].Freq;
       
  1114     while (n < 128)    ascii_freq += s->dyn_ltree[n++].Freq;
       
  1115     while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
       
  1116     s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
       
  1117 }
       
  1118 
       
  1119 /* ===========================================================================
       
  1120  * Reverse the first len bits of a code, using straightforward code (a faster
       
  1121  * method would use a table)
       
  1122  * IN assertion: 1 <= len <= 15
       
  1123  */
       
  1124 local unsigned bi_reverse(unsigned code, int len)
       
  1125 /* unsigned code;      the value to invert */
       
  1126 /* int len;            its bit length */
       
  1127 {
       
  1128     register unsigned res = 0;
       
  1129     do {
       
  1130         res |= code & 1;
       
  1131         code >>= 1, res <<= 1;
       
  1132     } while (--len > 0);
       
  1133     return res >> 1;
       
  1134 }
       
  1135 
       
  1136 /* ===========================================================================
       
  1137  * Flush the bit buffer, keeping at most 7 bits in it.
       
  1138  */
       
  1139 local void bi_flush(deflate_state *s)
       
  1140 {
       
  1141     if (s->bi_valid == 16) {
       
  1142         put_short(s, s->bi_buf);
       
  1143         s->bi_buf = 0;
       
  1144         s->bi_valid = 0;
       
  1145     } else if (s->bi_valid >= 8) {
       
  1146         put_byte(s, (Byte)s->bi_buf);
       
  1147         s->bi_buf >>= 8;
       
  1148         s->bi_valid -= 8;
       
  1149     }
       
  1150 }
       
  1151 
       
  1152 /* ===========================================================================
       
  1153  * Flush the bit buffer and align the output on a byte boundary
       
  1154  */
       
  1155 local void bi_windup(deflate_state *s)
       
  1156 {
       
  1157     if (s->bi_valid > 8) {
       
  1158         put_short(s, s->bi_buf);
       
  1159     } else if (s->bi_valid > 0) {
       
  1160         put_byte(s, (Byte)s->bi_buf);
       
  1161     }
       
  1162     s->bi_buf = 0;
       
  1163     s->bi_valid = 0;
       
  1164 #ifdef DEBUG
       
  1165     s->bits_sent = (s->bits_sent+7) & ~7;
       
  1166 #endif
       
  1167 }
       
  1168 
       
  1169 /* ===========================================================================
       
  1170  * Copy a stored block, storing first the length and its
       
  1171  * one's complement if requested.
       
  1172  */
       
  1173 local void copy_block(deflate_state *s, charf *buf, unsigned len, int header)
       
  1174 /* charf    *buf;         the input data */
       
  1175 /* unsigned len;          its length */
       
  1176 /* int      header;       true if block header must be written */
       
  1177 {
       
  1178     bi_windup(s);        /* align on byte boundary */
       
  1179     s->last_eob_len = 8; /* enough lookahead for inflate */
       
  1180 
       
  1181     if (header) {
       
  1182         put_short(s, (ush)len);   
       
  1183         put_short(s, (ush)~len);
       
  1184 #ifdef DEBUG
       
  1185         s->bits_sent += 2*16;
       
  1186 #endif
       
  1187     }
       
  1188 #ifdef DEBUG
       
  1189     s->bits_sent += (ulg)len<<3;
       
  1190 #endif
       
  1191     while (len--) {
       
  1192         put_byte(s, *buf++);
       
  1193     }
       
  1194 }