ossrv_pub/boost_apis/boost/python/slice.hpp
changeset 0 e4d67989cc36
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ossrv_pub/boost_apis/boost/python/slice.hpp	Tue Feb 02 02:01:42 2010 +0200
@@ -0,0 +1,266 @@
+#ifndef BOOST_PYTHON_SLICE_JDB20040105_HPP
+#define BOOST_PYTHON_SLICE_JDB20040105_HPP
+
+// Copyright (c) 2004 Jonathan Brandmeyer
+//  Use, modification and distribution are subject to the
+//  Boost Software License, Version 1.0. (See accompanying file 
+//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#include <boost/python/detail/prefix.hpp>
+#include <boost/config.hpp>
+#include <boost/python/object.hpp>
+#include <boost/python/extract.hpp>
+#include <boost/python/converter/pytype_object_mgr_traits.hpp>
+
+#include <boost/iterator/iterator_traits.hpp>
+
+#include <iterator>
+#include <algorithm>
+
+namespace boost { namespace python {
+
+namespace detail
+{
+  class BOOST_PYTHON_DECL slice_base : public object
+  {
+   public:
+      // Get the Python objects associated with the slice.  In principle, these 
+      // may be any arbitrary Python type, but in practice they are usually 
+      // integers.  If one or more parameter is ommited in the Python expression 
+      // that created this slice, than that parameter is None here, and compares 
+      // equal to a default-constructed boost::python::object.
+      // If a user-defined type wishes to support slicing, then support for the 
+      // special meaning associated with negative indicies is up to the user.
+      object start() const;
+      object stop() const;
+      object step() const;
+        
+   protected:
+      explicit slice_base(PyObject*, PyObject*, PyObject*);
+
+      BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice_base, object)
+  };
+}
+
+class slice : public detail::slice_base
+{
+    typedef detail::slice_base base;
+ public:
+    // Equivalent to slice(::)
+    slice() : base(0,0,0) {}
+
+    // Each argument must be slice_nil, or implicitly convertable to object.
+    // They should normally be integers.
+    template<typename Integer1, typename Integer2>
+    slice( Integer1 start, Integer2 stop)
+        : base( object(start).ptr(), object(stop).ptr(), 0 )
+    {}
+    
+    template<typename Integer1, typename Integer2, typename Integer3>
+    slice( Integer1 start, Integer2 stop, Integer3 stride)
+        : base( object(start).ptr(), object(stop).ptr(), object(stride).ptr() )
+    {}
+        
+    // The following algorithm is intended to automate the process of 
+    // determining a slice range when you want to fully support negative
+    // indicies and non-singular step sizes.  Its functionallity is simmilar to 
+    // PySlice_GetIndicesEx() in the Python/C API, but tailored for C++ users.
+    // This template returns a slice::range struct that, when used in the 
+    // following iterative loop, will traverse a slice of the function's
+    // arguments.
+    // while (start != end) { 
+    //     do_foo(...); 
+    //     std::advance( start, step); 
+    // }
+    // do_foo(...); // repeat exactly once more.
+    
+    // Arguments: a [begin, end) pair of STL-conforming random-access iterators.
+        
+    // Return: slice::range, where start and stop define a _closed_ interval
+    // that covers at most [begin, end-1] of the provided arguments, and a step 
+    // that is non-zero.
+    
+    // Throws: error_already_set() if any of the indices are neither None nor 
+    //   integers, or the slice has a step value of zero.
+    // std::invalid_argument if the resulting range would be empty.  Normally, 
+    //   you should catch this exception and return an empty sequence of the
+    //   appropriate type.
+    
+    // Performance: constant time for random-access iterators.
+    
+    // Rationale: 
+    //   closed-interval: If an open interval were used, then for a non-singular
+    //     value for step, the required state for the end iterator could be 
+    //     beyond the one-past-the-end postion of the specified range.  While 
+    //     probably harmless, the behavior of STL-conforming iterators is 
+    //     undefined in this case.
+    //   exceptions on zero-length range: It is impossible to define a closed 
+    //     interval over an empty range, so some other form of error checking 
+    //     would have to be used by the user to prevent undefined behavior.  In
+    //     the case where the user fails to catch the exception, it will simply
+    //     be translated to Python by the default exception handling mechanisms.
+
+    template<typename RandomAccessIterator>
+    struct range
+    {
+        RandomAccessIterator start;
+        RandomAccessIterator stop;
+        typename iterator_difference<RandomAccessIterator>::type step;
+    };
+    
+    template<typename RandomAccessIterator>
+    slice::range<RandomAccessIterator>
+    get_indicies( const RandomAccessIterator& begin, 
+        const RandomAccessIterator& end) const
+    {
+        // This is based loosely on PySlice_GetIndicesEx(), but it has been 
+        // carefully crafted to ensure that these iterators never fall out of
+        // the range of the container.
+        slice::range<RandomAccessIterator> ret;
+        
+        typedef typename iterator_difference<RandomAccessIterator>::type difference_type;
+        difference_type max_dist = boost::detail::distance(begin, end);
+
+        object slice_start = this->start();
+        object slice_stop = this->stop();
+        object slice_step = this->step();
+        
+        // Extract the step.
+        if (slice_step == object()) {
+            ret.step = 1;
+        }
+        else {
+            ret.step = extract<long>( slice_step);
+            if (ret.step == 0) {
+                PyErr_SetString( PyExc_IndexError, "step size cannot be zero.");
+                throw_error_already_set();
+            }
+        }
+        
+        // Setup the start iterator.
+        if (slice_start == object()) {
+            if (ret.step < 0) {
+                ret.start = end;
+                --ret.start;
+            }
+            else
+                ret.start = begin;
+        }
+        else {
+            difference_type i = extract<long>( slice_start);
+            if (i >= max_dist && ret.step > 0)
+                    throw std::invalid_argument( "Zero-length slice");
+            if (i >= 0) {
+                ret.start = begin;
+                BOOST_USING_STD_MIN();
+                std::advance( ret.start, min BOOST_PREVENT_MACRO_SUBSTITUTION(i, max_dist-1));
+            }
+            else {
+                if (i < -max_dist && ret.step < 0)
+                    throw std::invalid_argument( "Zero-length slice");
+                ret.start = end;
+                // Advance start (towards begin) not farther than begin.
+                std::advance( ret.start, (-i < max_dist) ? i : -max_dist );
+            }
+        }
+        
+        // Set up the stop iterator.  This one is a little trickier since slices
+        // define a [) range, and we are returning a [] range.
+        if (slice_stop == object()) {
+            if (ret.step < 0) {
+                ret.stop = begin;
+            }
+            else {
+                ret.stop = end;
+                std::advance( ret.stop, -1);
+            }
+        }
+        else {
+            difference_type i = extract<long>(slice_stop);
+            // First, branch on which direction we are going with this.
+            if (ret.step < 0) {
+                if (i+1 >= max_dist || i == -1)
+                    throw std::invalid_argument( "Zero-length slice");
+                
+                if (i >= 0) {
+                    ret.stop = begin;
+                    std::advance( ret.stop, i+1);
+                }
+                else { // i is negative, but more negative than -1.
+                    ret.stop = end;
+                    std::advance( ret.stop, (-i < max_dist) ? i : -max_dist);
+                }
+            }
+            else { // stepping forward
+                if (i == 0 || -i >= max_dist)
+                    throw std::invalid_argument( "Zero-length slice");
+                
+                if (i > 0) {
+                    ret.stop = begin;
+                    std::advance( ret.stop, (std::min)( i-1, max_dist-1));
+                }
+                else { // i is negative, but not more negative than -max_dist
+                    ret.stop = end;
+                    std::advance( ret.stop, i-1);
+                }
+            }
+        }
+        
+        // Now the fun part, handling the possibilites surrounding step.
+        // At this point, step has been initialized, ret.stop, and ret.step
+        // represent the widest possible range that could be traveled
+        // (inclusive), and final_dist is the maximum distance covered by the
+        // slice.
+        typename iterator_difference<RandomAccessIterator>::type final_dist = 
+            boost::detail::distance( ret.start, ret.stop);
+        
+        // First case, if both ret.start and ret.stop are equal, then step
+        // is irrelevant and we can return here.
+        if (final_dist == 0)
+            return ret;
+        
+        // Second, if there is a sign mismatch, than the resulting range and 
+        // step size conflict: std::advance( ret.start, ret.step) goes away from
+        // ret.stop.
+        if ((final_dist > 0) != (ret.step > 0))
+            throw std::invalid_argument( "Zero-length slice.");
+        
+        // Finally, if the last step puts us past the end, we move ret.stop
+        // towards ret.start in the amount of the remainder.
+        // I don't remember all of the oolies surrounding negative modulii,
+        // so I am handling each of these cases separately.
+        if (final_dist < 0) {
+            difference_type remainder = -final_dist % -ret.step;
+            std::advance( ret.stop, remainder);
+        }
+        else {
+            difference_type remainder = final_dist % ret.step;
+            std::advance( ret.stop, -remainder);
+        }
+        
+        return ret;
+    }
+        
+ public:
+    // This declaration, in conjunction with the specialization of 
+    // object_manager_traits<> below, allows C++ functions accepting slice 
+    // arguments to be called from from Python.  These constructors should never
+    // be used in client code.
+    BOOST_PYTHON_FORWARD_OBJECT_CONSTRUCTORS(slice, detail::slice_base)
+};
+
+
+namespace converter {
+
+template<>
+struct object_manager_traits<slice>
+    : pytype_object_manager_traits<&PySlice_Type, slice>
+{
+};
+    
+} // !namesapce converter
+
+} } // !namespace ::boost::python
+
+
+#endif // !defined BOOST_PYTHON_SLICE_JDB20040105_HPP