|
1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This file contains C code routines that are called by the SQLite parser |
|
13 ** when syntax rules are reduced. The routines in this file handle the |
|
14 ** following kinds of SQL syntax: |
|
15 ** |
|
16 ** CREATE TABLE |
|
17 ** DROP TABLE |
|
18 ** CREATE INDEX |
|
19 ** DROP INDEX |
|
20 ** creating ID lists |
|
21 ** BEGIN TRANSACTION |
|
22 ** COMMIT |
|
23 ** ROLLBACK |
|
24 ** |
|
25 ** $Id: build.c,v 1.493 2008/08/04 04:39:49 danielk1977 Exp $ |
|
26 */ |
|
27 #include "sqliteInt.h" |
|
28 #include <ctype.h> |
|
29 |
|
30 /* |
|
31 ** This routine is called when a new SQL statement is beginning to |
|
32 ** be parsed. Initialize the pParse structure as needed. |
|
33 */ |
|
34 void sqlite3BeginParse(Parse *pParse, int explainFlag){ |
|
35 pParse->explain = explainFlag; |
|
36 pParse->nVar = 0; |
|
37 } |
|
38 |
|
39 #ifndef SQLITE_OMIT_SHARED_CACHE |
|
40 /* |
|
41 ** The TableLock structure is only used by the sqlite3TableLock() and |
|
42 ** codeTableLocks() functions. |
|
43 */ |
|
44 struct TableLock { |
|
45 int iDb; /* The database containing the table to be locked */ |
|
46 int iTab; /* The root page of the table to be locked */ |
|
47 u8 isWriteLock; /* True for write lock. False for a read lock */ |
|
48 const char *zName; /* Name of the table */ |
|
49 }; |
|
50 |
|
51 /* |
|
52 ** Record the fact that we want to lock a table at run-time. |
|
53 ** |
|
54 ** The table to be locked has root page iTab and is found in database iDb. |
|
55 ** A read or a write lock can be taken depending on isWritelock. |
|
56 ** |
|
57 ** This routine just records the fact that the lock is desired. The |
|
58 ** code to make the lock occur is generated by a later call to |
|
59 ** codeTableLocks() which occurs during sqlite3FinishCoding(). |
|
60 */ |
|
61 void sqlite3TableLock( |
|
62 Parse *pParse, /* Parsing context */ |
|
63 int iDb, /* Index of the database containing the table to lock */ |
|
64 int iTab, /* Root page number of the table to be locked */ |
|
65 u8 isWriteLock, /* True for a write lock */ |
|
66 const char *zName /* Name of the table to be locked */ |
|
67 ){ |
|
68 int i; |
|
69 int nBytes; |
|
70 TableLock *p; |
|
71 |
|
72 if( iDb<0 ){ |
|
73 return; |
|
74 } |
|
75 |
|
76 for(i=0; i<pParse->nTableLock; i++){ |
|
77 p = &pParse->aTableLock[i]; |
|
78 if( p->iDb==iDb && p->iTab==iTab ){ |
|
79 p->isWriteLock = (p->isWriteLock || isWriteLock); |
|
80 return; |
|
81 } |
|
82 } |
|
83 |
|
84 nBytes = sizeof(TableLock) * (pParse->nTableLock+1); |
|
85 pParse->aTableLock = |
|
86 sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes); |
|
87 if( pParse->aTableLock ){ |
|
88 p = &pParse->aTableLock[pParse->nTableLock++]; |
|
89 p->iDb = iDb; |
|
90 p->iTab = iTab; |
|
91 p->isWriteLock = isWriteLock; |
|
92 p->zName = zName; |
|
93 }else{ |
|
94 pParse->nTableLock = 0; |
|
95 pParse->db->mallocFailed = 1; |
|
96 } |
|
97 } |
|
98 |
|
99 /* |
|
100 ** Code an OP_TableLock instruction for each table locked by the |
|
101 ** statement (configured by calls to sqlite3TableLock()). |
|
102 */ |
|
103 static void codeTableLocks(Parse *pParse){ |
|
104 int i; |
|
105 Vdbe *pVdbe; |
|
106 |
|
107 if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){ |
|
108 return; |
|
109 } |
|
110 |
|
111 for(i=0; i<pParse->nTableLock; i++){ |
|
112 TableLock *p = &pParse->aTableLock[i]; |
|
113 int p1 = p->iDb; |
|
114 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock, |
|
115 p->zName, P4_STATIC); |
|
116 } |
|
117 } |
|
118 #else |
|
119 #define codeTableLocks(x) |
|
120 #endif |
|
121 |
|
122 /* |
|
123 ** This routine is called after a single SQL statement has been |
|
124 ** parsed and a VDBE program to execute that statement has been |
|
125 ** prepared. This routine puts the finishing touches on the |
|
126 ** VDBE program and resets the pParse structure for the next |
|
127 ** parse. |
|
128 ** |
|
129 ** Note that if an error occurred, it might be the case that |
|
130 ** no VDBE code was generated. |
|
131 */ |
|
132 void sqlite3FinishCoding(Parse *pParse){ |
|
133 sqlite3 *db; |
|
134 Vdbe *v; |
|
135 |
|
136 db = pParse->db; |
|
137 if( db->mallocFailed ) return; |
|
138 if( pParse->nested ) return; |
|
139 if( pParse->nErr ) return; |
|
140 |
|
141 /* Begin by generating some termination code at the end of the |
|
142 ** vdbe program |
|
143 */ |
|
144 v = sqlite3GetVdbe(pParse); |
|
145 if( v ){ |
|
146 sqlite3VdbeAddOp0(v, OP_Halt); |
|
147 |
|
148 /* The cookie mask contains one bit for each database file open. |
|
149 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are |
|
150 ** set for each database that is used. Generate code to start a |
|
151 ** transaction on each used database and to verify the schema cookie |
|
152 ** on each used database. |
|
153 */ |
|
154 if( pParse->cookieGoto>0 ){ |
|
155 u32 mask; |
|
156 int iDb; |
|
157 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1); |
|
158 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){ |
|
159 if( (mask & pParse->cookieMask)==0 ) continue; |
|
160 sqlite3VdbeUsesBtree(v, iDb); |
|
161 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0); |
|
162 sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]); |
|
163 } |
|
164 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
165 { |
|
166 int i; |
|
167 for(i=0; i<pParse->nVtabLock; i++){ |
|
168 char *vtab = (char *)pParse->apVtabLock[i]->pVtab; |
|
169 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); |
|
170 } |
|
171 pParse->nVtabLock = 0; |
|
172 } |
|
173 #endif |
|
174 |
|
175 /* Once all the cookies have been verified and transactions opened, |
|
176 ** obtain the required table-locks. This is a no-op unless the |
|
177 ** shared-cache feature is enabled. |
|
178 */ |
|
179 codeTableLocks(pParse); |
|
180 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto); |
|
181 } |
|
182 |
|
183 #ifndef SQLITE_OMIT_TRACE |
|
184 if( !db->init.busy ){ |
|
185 /* Change the P4 argument of the first opcode (which will always be |
|
186 ** an OP_Trace) to be the complete text of the current SQL statement. |
|
187 */ |
|
188 VdbeOp *pOp = sqlite3VdbeGetOp(v, 0); |
|
189 if( pOp && pOp->opcode==OP_Trace ){ |
|
190 sqlite3VdbeChangeP4(v, 0, pParse->zSql, pParse->zTail-pParse->zSql); |
|
191 } |
|
192 } |
|
193 #endif /* SQLITE_OMIT_TRACE */ |
|
194 } |
|
195 |
|
196 |
|
197 /* Get the VDBE program ready for execution |
|
198 */ |
|
199 if( v && pParse->nErr==0 && !db->mallocFailed ){ |
|
200 #ifdef SQLITE_DEBUG |
|
201 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0; |
|
202 sqlite3VdbeTrace(v, trace); |
|
203 #endif |
|
204 assert( pParse->disableColCache==0 ); /* Disables and re-enables match */ |
|
205 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3, |
|
206 pParse->nTab+3, pParse->explain); |
|
207 pParse->rc = SQLITE_DONE; |
|
208 pParse->colNamesSet = 0; |
|
209 }else if( pParse->rc==SQLITE_OK ){ |
|
210 pParse->rc = SQLITE_ERROR; |
|
211 } |
|
212 pParse->nTab = 0; |
|
213 pParse->nMem = 0; |
|
214 pParse->nSet = 0; |
|
215 pParse->nVar = 0; |
|
216 pParse->cookieMask = 0; |
|
217 pParse->cookieGoto = 0; |
|
218 } |
|
219 |
|
220 /* |
|
221 ** Run the parser and code generator recursively in order to generate |
|
222 ** code for the SQL statement given onto the end of the pParse context |
|
223 ** currently under construction. When the parser is run recursively |
|
224 ** this way, the final OP_Halt is not appended and other initialization |
|
225 ** and finalization steps are omitted because those are handling by the |
|
226 ** outermost parser. |
|
227 ** |
|
228 ** Not everything is nestable. This facility is designed to permit |
|
229 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use |
|
230 ** care if you decide to try to use this routine for some other purposes. |
|
231 */ |
|
232 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){ |
|
233 va_list ap; |
|
234 char *zSql; |
|
235 char *zErrMsg = 0; |
|
236 sqlite3 *db = pParse->db; |
|
237 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar)) |
|
238 char saveBuf[SAVE_SZ]; |
|
239 |
|
240 if( pParse->nErr ) return; |
|
241 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */ |
|
242 va_start(ap, zFormat); |
|
243 zSql = sqlite3VMPrintf(db, zFormat, ap); |
|
244 va_end(ap); |
|
245 if( zSql==0 ){ |
|
246 return; /* A malloc must have failed */ |
|
247 } |
|
248 pParse->nested++; |
|
249 memcpy(saveBuf, &pParse->nVar, SAVE_SZ); |
|
250 memset(&pParse->nVar, 0, SAVE_SZ); |
|
251 sqlite3RunParser(pParse, zSql, &zErrMsg); |
|
252 sqlite3DbFree(db, zErrMsg); |
|
253 sqlite3DbFree(db, zSql); |
|
254 memcpy(&pParse->nVar, saveBuf, SAVE_SZ); |
|
255 pParse->nested--; |
|
256 } |
|
257 |
|
258 /* |
|
259 ** Locate the in-memory structure that describes a particular database |
|
260 ** table given the name of that table and (optionally) the name of the |
|
261 ** database containing the table. Return NULL if not found. |
|
262 ** |
|
263 ** If zDatabase is 0, all databases are searched for the table and the |
|
264 ** first matching table is returned. (No checking for duplicate table |
|
265 ** names is done.) The search order is TEMP first, then MAIN, then any |
|
266 ** auxiliary databases added using the ATTACH command. |
|
267 ** |
|
268 ** See also sqlite3LocateTable(). |
|
269 */ |
|
270 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){ |
|
271 Table *p = 0; |
|
272 int i; |
|
273 int nName; |
|
274 assert( zName!=0 ); |
|
275 nName = sqlite3Strlen(db, zName) + 1; |
|
276 for(i=OMIT_TEMPDB; i<db->nDb; i++){ |
|
277 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ |
|
278 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue; |
|
279 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName); |
|
280 if( p ) break; |
|
281 } |
|
282 return p; |
|
283 } |
|
284 |
|
285 /* |
|
286 ** Locate the in-memory structure that describes a particular database |
|
287 ** table given the name of that table and (optionally) the name of the |
|
288 ** database containing the table. Return NULL if not found. Also leave an |
|
289 ** error message in pParse->zErrMsg. |
|
290 ** |
|
291 ** The difference between this routine and sqlite3FindTable() is that this |
|
292 ** routine leaves an error message in pParse->zErrMsg where |
|
293 ** sqlite3FindTable() does not. |
|
294 */ |
|
295 Table *sqlite3LocateTable( |
|
296 Parse *pParse, /* context in which to report errors */ |
|
297 int isView, /* True if looking for a VIEW rather than a TABLE */ |
|
298 const char *zName, /* Name of the table we are looking for */ |
|
299 const char *zDbase /* Name of the database. Might be NULL */ |
|
300 ){ |
|
301 Table *p; |
|
302 |
|
303 /* Read the database schema. If an error occurs, leave an error message |
|
304 ** and code in pParse and return NULL. */ |
|
305 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
|
306 return 0; |
|
307 } |
|
308 |
|
309 p = sqlite3FindTable(pParse->db, zName, zDbase); |
|
310 if( p==0 ){ |
|
311 const char *zMsg = isView ? "no such view" : "no such table"; |
|
312 if( zDbase ){ |
|
313 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); |
|
314 }else{ |
|
315 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); |
|
316 } |
|
317 pParse->checkSchema = 1; |
|
318 } |
|
319 return p; |
|
320 } |
|
321 |
|
322 /* |
|
323 ** Locate the in-memory structure that describes |
|
324 ** a particular index given the name of that index |
|
325 ** and the name of the database that contains the index. |
|
326 ** Return NULL if not found. |
|
327 ** |
|
328 ** If zDatabase is 0, all databases are searched for the |
|
329 ** table and the first matching index is returned. (No checking |
|
330 ** for duplicate index names is done.) The search order is |
|
331 ** TEMP first, then MAIN, then any auxiliary databases added |
|
332 ** using the ATTACH command. |
|
333 */ |
|
334 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){ |
|
335 Index *p = 0; |
|
336 int i; |
|
337 int nName = sqlite3Strlen(db, zName)+1; |
|
338 for(i=OMIT_TEMPDB; i<db->nDb; i++){ |
|
339 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */ |
|
340 Schema *pSchema = db->aDb[j].pSchema; |
|
341 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue; |
|
342 assert( pSchema || (j==1 && !db->aDb[1].pBt) ); |
|
343 if( pSchema ){ |
|
344 p = sqlite3HashFind(&pSchema->idxHash, zName, nName); |
|
345 } |
|
346 if( p ) break; |
|
347 } |
|
348 return p; |
|
349 } |
|
350 |
|
351 /* |
|
352 ** Reclaim the memory used by an index |
|
353 */ |
|
354 static void freeIndex(Index *p){ |
|
355 sqlite3 *db = p->pTable->db; |
|
356 sqlite3DbFree(db, p->zColAff); |
|
357 sqlite3DbFree(db, p); |
|
358 } |
|
359 |
|
360 /* |
|
361 ** Remove the given index from the index hash table, and free |
|
362 ** its memory structures. |
|
363 ** |
|
364 ** The index is removed from the database hash tables but |
|
365 ** it is not unlinked from the Table that it indexes. |
|
366 ** Unlinking from the Table must be done by the calling function. |
|
367 */ |
|
368 static void sqliteDeleteIndex(Index *p){ |
|
369 Index *pOld; |
|
370 const char *zName = p->zName; |
|
371 |
|
372 pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen(zName)+1, 0); |
|
373 assert( pOld==0 || pOld==p ); |
|
374 freeIndex(p); |
|
375 } |
|
376 |
|
377 /* |
|
378 ** For the index called zIdxName which is found in the database iDb, |
|
379 ** unlike that index from its Table then remove the index from |
|
380 ** the index hash table and free all memory structures associated |
|
381 ** with the index. |
|
382 */ |
|
383 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){ |
|
384 Index *pIndex; |
|
385 int len; |
|
386 Hash *pHash = &db->aDb[iDb].pSchema->idxHash; |
|
387 |
|
388 len = sqlite3Strlen(db, zIdxName); |
|
389 pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0); |
|
390 if( pIndex ){ |
|
391 if( pIndex->pTable->pIndex==pIndex ){ |
|
392 pIndex->pTable->pIndex = pIndex->pNext; |
|
393 }else{ |
|
394 Index *p; |
|
395 for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){} |
|
396 if( p && p->pNext==pIndex ){ |
|
397 p->pNext = pIndex->pNext; |
|
398 } |
|
399 } |
|
400 freeIndex(pIndex); |
|
401 } |
|
402 db->flags |= SQLITE_InternChanges; |
|
403 } |
|
404 |
|
405 /* |
|
406 ** Erase all schema information from the in-memory hash tables of |
|
407 ** a single database. This routine is called to reclaim memory |
|
408 ** before the database closes. It is also called during a rollback |
|
409 ** if there were schema changes during the transaction or if a |
|
410 ** schema-cookie mismatch occurs. |
|
411 ** |
|
412 ** If iDb<=0 then reset the internal schema tables for all database |
|
413 ** files. If iDb>=2 then reset the internal schema for only the |
|
414 ** single file indicated. |
|
415 */ |
|
416 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){ |
|
417 int i, j; |
|
418 assert( iDb>=0 && iDb<db->nDb ); |
|
419 |
|
420 if( iDb==0 ){ |
|
421 sqlite3BtreeEnterAll(db); |
|
422 } |
|
423 for(i=iDb; i<db->nDb; i++){ |
|
424 Db *pDb = &db->aDb[i]; |
|
425 if( pDb->pSchema ){ |
|
426 assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt))); |
|
427 sqlite3SchemaFree(pDb->pSchema); |
|
428 } |
|
429 if( iDb>0 ) return; |
|
430 } |
|
431 assert( iDb==0 ); |
|
432 db->flags &= ~SQLITE_InternChanges; |
|
433 sqlite3BtreeLeaveAll(db); |
|
434 |
|
435 /* If one or more of the auxiliary database files has been closed, |
|
436 ** then remove them from the auxiliary database list. We take the |
|
437 ** opportunity to do this here since we have just deleted all of the |
|
438 ** schema hash tables and therefore do not have to make any changes |
|
439 ** to any of those tables. |
|
440 */ |
|
441 for(i=0; i<db->nDb; i++){ |
|
442 struct Db *pDb = &db->aDb[i]; |
|
443 if( pDb->pBt==0 ){ |
|
444 if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux); |
|
445 pDb->pAux = 0; |
|
446 } |
|
447 } |
|
448 for(i=j=2; i<db->nDb; i++){ |
|
449 struct Db *pDb = &db->aDb[i]; |
|
450 if( pDb->pBt==0 ){ |
|
451 sqlite3DbFree(db, pDb->zName); |
|
452 pDb->zName = 0; |
|
453 continue; |
|
454 } |
|
455 if( j<i ){ |
|
456 db->aDb[j] = db->aDb[i]; |
|
457 } |
|
458 j++; |
|
459 } |
|
460 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j])); |
|
461 db->nDb = j; |
|
462 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){ |
|
463 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0])); |
|
464 sqlite3DbFree(db, db->aDb); |
|
465 db->aDb = db->aDbStatic; |
|
466 } |
|
467 } |
|
468 |
|
469 /* |
|
470 ** This routine is called when a commit occurs. |
|
471 */ |
|
472 void sqlite3CommitInternalChanges(sqlite3 *db){ |
|
473 db->flags &= ~SQLITE_InternChanges; |
|
474 } |
|
475 |
|
476 /* |
|
477 ** Clear the column names from a table or view. |
|
478 */ |
|
479 static void sqliteResetColumnNames(Table *pTable){ |
|
480 int i; |
|
481 Column *pCol; |
|
482 sqlite3 *db = pTable->db; |
|
483 assert( pTable!=0 ); |
|
484 if( (pCol = pTable->aCol)!=0 ){ |
|
485 for(i=0; i<pTable->nCol; i++, pCol++){ |
|
486 sqlite3DbFree(db, pCol->zName); |
|
487 sqlite3ExprDelete(db, pCol->pDflt); |
|
488 sqlite3DbFree(db, pCol->zType); |
|
489 sqlite3DbFree(db, pCol->zColl); |
|
490 } |
|
491 sqlite3DbFree(db, pTable->aCol); |
|
492 } |
|
493 pTable->aCol = 0; |
|
494 pTable->nCol = 0; |
|
495 } |
|
496 |
|
497 /* |
|
498 ** Remove the memory data structures associated with the given |
|
499 ** Table. No changes are made to disk by this routine. |
|
500 ** |
|
501 ** This routine just deletes the data structure. It does not unlink |
|
502 ** the table data structure from the hash table. Nor does it remove |
|
503 ** foreign keys from the sqlite.aFKey hash table. But it does destroy |
|
504 ** memory structures of the indices and foreign keys associated with |
|
505 ** the table. |
|
506 */ |
|
507 void sqlite3DeleteTable(Table *pTable){ |
|
508 Index *pIndex, *pNext; |
|
509 FKey *pFKey, *pNextFKey; |
|
510 sqlite3 *db; |
|
511 |
|
512 if( pTable==0 ) return; |
|
513 db = pTable->db; |
|
514 |
|
515 /* Do not delete the table until the reference count reaches zero. */ |
|
516 pTable->nRef--; |
|
517 if( pTable->nRef>0 ){ |
|
518 return; |
|
519 } |
|
520 assert( pTable->nRef==0 ); |
|
521 |
|
522 /* Delete all indices associated with this table |
|
523 */ |
|
524 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){ |
|
525 pNext = pIndex->pNext; |
|
526 assert( pIndex->pSchema==pTable->pSchema ); |
|
527 sqliteDeleteIndex(pIndex); |
|
528 } |
|
529 |
|
530 #ifndef SQLITE_OMIT_FOREIGN_KEY |
|
531 /* Delete all foreign keys associated with this table. The keys |
|
532 ** should have already been unlinked from the pSchema->aFKey hash table |
|
533 */ |
|
534 for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){ |
|
535 pNextFKey = pFKey->pNextFrom; |
|
536 assert( sqlite3HashFind(&pTable->pSchema->aFKey, |
|
537 pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey ); |
|
538 sqlite3DbFree(db, pFKey); |
|
539 } |
|
540 #endif |
|
541 |
|
542 /* Delete the Table structure itself. |
|
543 */ |
|
544 sqliteResetColumnNames(pTable); |
|
545 sqlite3DbFree(db, pTable->zName); |
|
546 sqlite3DbFree(db, pTable->zColAff); |
|
547 sqlite3SelectDelete(db, pTable->pSelect); |
|
548 #ifndef SQLITE_OMIT_CHECK |
|
549 sqlite3ExprDelete(db, pTable->pCheck); |
|
550 #endif |
|
551 sqlite3VtabClear(pTable); |
|
552 sqlite3DbFree(db, pTable); |
|
553 } |
|
554 |
|
555 /* |
|
556 ** Unlink the given table from the hash tables and the delete the |
|
557 ** table structure with all its indices and foreign keys. |
|
558 */ |
|
559 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){ |
|
560 Table *p; |
|
561 FKey *pF1, *pF2; |
|
562 Db *pDb; |
|
563 |
|
564 assert( db!=0 ); |
|
565 assert( iDb>=0 && iDb<db->nDb ); |
|
566 assert( zTabName && zTabName[0] ); |
|
567 pDb = &db->aDb[iDb]; |
|
568 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0); |
|
569 if( p ){ |
|
570 #ifndef SQLITE_OMIT_FOREIGN_KEY |
|
571 for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){ |
|
572 int nTo = strlen(pF1->zTo) + 1; |
|
573 pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo); |
|
574 if( pF2==pF1 ){ |
|
575 sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo); |
|
576 }else{ |
|
577 while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; } |
|
578 if( pF2 ){ |
|
579 pF2->pNextTo = pF1->pNextTo; |
|
580 } |
|
581 } |
|
582 } |
|
583 #endif |
|
584 sqlite3DeleteTable(p); |
|
585 } |
|
586 db->flags |= SQLITE_InternChanges; |
|
587 } |
|
588 |
|
589 /* |
|
590 ** Given a token, return a string that consists of the text of that |
|
591 ** token with any quotations removed. Space to hold the returned string |
|
592 ** is obtained from sqliteMalloc() and must be freed by the calling |
|
593 ** function. |
|
594 ** |
|
595 ** Tokens are often just pointers into the original SQL text and so |
|
596 ** are not \000 terminated and are not persistent. The returned string |
|
597 ** is \000 terminated and is persistent. |
|
598 */ |
|
599 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){ |
|
600 char *zName; |
|
601 if( pName ){ |
|
602 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n); |
|
603 sqlite3Dequote(zName); |
|
604 }else{ |
|
605 zName = 0; |
|
606 } |
|
607 return zName; |
|
608 } |
|
609 |
|
610 /* |
|
611 ** Open the sqlite_master table stored in database number iDb for |
|
612 ** writing. The table is opened using cursor 0. |
|
613 */ |
|
614 void sqlite3OpenMasterTable(Parse *p, int iDb){ |
|
615 Vdbe *v = sqlite3GetVdbe(p); |
|
616 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb)); |
|
617 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5);/* sqlite_master has 5 columns */ |
|
618 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb); |
|
619 } |
|
620 |
|
621 /* |
|
622 ** The token *pName contains the name of a database (either "main" or |
|
623 ** "temp" or the name of an attached db). This routine returns the |
|
624 ** index of the named database in db->aDb[], or -1 if the named db |
|
625 ** does not exist. |
|
626 */ |
|
627 int sqlite3FindDb(sqlite3 *db, Token *pName){ |
|
628 int i = -1; /* Database number */ |
|
629 int n; /* Number of characters in the name */ |
|
630 Db *pDb; /* A database whose name space is being searched */ |
|
631 char *zName; /* Name we are searching for */ |
|
632 |
|
633 zName = sqlite3NameFromToken(db, pName); |
|
634 if( zName ){ |
|
635 n = strlen(zName); |
|
636 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){ |
|
637 if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && |
|
638 0==sqlite3StrICmp(pDb->zName, zName) ){ |
|
639 break; |
|
640 } |
|
641 } |
|
642 sqlite3DbFree(db, zName); |
|
643 } |
|
644 return i; |
|
645 } |
|
646 |
|
647 /* The table or view or trigger name is passed to this routine via tokens |
|
648 ** pName1 and pName2. If the table name was fully qualified, for example: |
|
649 ** |
|
650 ** CREATE TABLE xxx.yyy (...); |
|
651 ** |
|
652 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if |
|
653 ** the table name is not fully qualified, i.e.: |
|
654 ** |
|
655 ** CREATE TABLE yyy(...); |
|
656 ** |
|
657 ** Then pName1 is set to "yyy" and pName2 is "". |
|
658 ** |
|
659 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or |
|
660 ** pName2) that stores the unqualified table name. The index of the |
|
661 ** database "xxx" is returned. |
|
662 */ |
|
663 int sqlite3TwoPartName( |
|
664 Parse *pParse, /* Parsing and code generating context */ |
|
665 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */ |
|
666 Token *pName2, /* The "yyy" in the name "xxx.yyy" */ |
|
667 Token **pUnqual /* Write the unqualified object name here */ |
|
668 ){ |
|
669 int iDb; /* Database holding the object */ |
|
670 sqlite3 *db = pParse->db; |
|
671 |
|
672 if( pName2 && pName2->n>0 ){ |
|
673 assert( !db->init.busy ); |
|
674 *pUnqual = pName2; |
|
675 iDb = sqlite3FindDb(db, pName1); |
|
676 if( iDb<0 ){ |
|
677 sqlite3ErrorMsg(pParse, "unknown database %T", pName1); |
|
678 pParse->nErr++; |
|
679 return -1; |
|
680 } |
|
681 }else{ |
|
682 assert( db->init.iDb==0 || db->init.busy ); |
|
683 iDb = db->init.iDb; |
|
684 *pUnqual = pName1; |
|
685 } |
|
686 return iDb; |
|
687 } |
|
688 |
|
689 /* |
|
690 ** This routine is used to check if the UTF-8 string zName is a legal |
|
691 ** unqualified name for a new schema object (table, index, view or |
|
692 ** trigger). All names are legal except those that begin with the string |
|
693 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace |
|
694 ** is reserved for internal use. |
|
695 */ |
|
696 int sqlite3CheckObjectName(Parse *pParse, const char *zName){ |
|
697 if( !pParse->db->init.busy && pParse->nested==0 |
|
698 && (pParse->db->flags & SQLITE_WriteSchema)==0 |
|
699 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ |
|
700 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); |
|
701 return SQLITE_ERROR; |
|
702 } |
|
703 return SQLITE_OK; |
|
704 } |
|
705 |
|
706 /* |
|
707 ** Begin constructing a new table representation in memory. This is |
|
708 ** the first of several action routines that get called in response |
|
709 ** to a CREATE TABLE statement. In particular, this routine is called |
|
710 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp |
|
711 ** flag is true if the table should be stored in the auxiliary database |
|
712 ** file instead of in the main database file. This is normally the case |
|
713 ** when the "TEMP" or "TEMPORARY" keyword occurs in between |
|
714 ** CREATE and TABLE. |
|
715 ** |
|
716 ** The new table record is initialized and put in pParse->pNewTable. |
|
717 ** As more of the CREATE TABLE statement is parsed, additional action |
|
718 ** routines will be called to add more information to this record. |
|
719 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine |
|
720 ** is called to complete the construction of the new table record. |
|
721 */ |
|
722 void sqlite3StartTable( |
|
723 Parse *pParse, /* Parser context */ |
|
724 Token *pName1, /* First part of the name of the table or view */ |
|
725 Token *pName2, /* Second part of the name of the table or view */ |
|
726 int isTemp, /* True if this is a TEMP table */ |
|
727 int isView, /* True if this is a VIEW */ |
|
728 int isVirtual, /* True if this is a VIRTUAL table */ |
|
729 int noErr /* Do nothing if table already exists */ |
|
730 ){ |
|
731 Table *pTable; |
|
732 char *zName = 0; /* The name of the new table */ |
|
733 sqlite3 *db = pParse->db; |
|
734 Vdbe *v; |
|
735 int iDb; /* Database number to create the table in */ |
|
736 Token *pName; /* Unqualified name of the table to create */ |
|
737 |
|
738 /* The table or view name to create is passed to this routine via tokens |
|
739 ** pName1 and pName2. If the table name was fully qualified, for example: |
|
740 ** |
|
741 ** CREATE TABLE xxx.yyy (...); |
|
742 ** |
|
743 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if |
|
744 ** the table name is not fully qualified, i.e.: |
|
745 ** |
|
746 ** CREATE TABLE yyy(...); |
|
747 ** |
|
748 ** Then pName1 is set to "yyy" and pName2 is "". |
|
749 ** |
|
750 ** The call below sets the pName pointer to point at the token (pName1 or |
|
751 ** pName2) that stores the unqualified table name. The variable iDb is |
|
752 ** set to the index of the database that the table or view is to be |
|
753 ** created in. |
|
754 */ |
|
755 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
|
756 if( iDb<0 ) return; |
|
757 if( !OMIT_TEMPDB && isTemp && iDb>1 ){ |
|
758 /* If creating a temp table, the name may not be qualified */ |
|
759 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified"); |
|
760 return; |
|
761 } |
|
762 if( !OMIT_TEMPDB && isTemp ) iDb = 1; |
|
763 |
|
764 pParse->sNameToken = *pName; |
|
765 zName = sqlite3NameFromToken(db, pName); |
|
766 if( zName==0 ) return; |
|
767 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ |
|
768 goto begin_table_error; |
|
769 } |
|
770 if( db->init.iDb==1 ) isTemp = 1; |
|
771 #ifndef SQLITE_OMIT_AUTHORIZATION |
|
772 assert( (isTemp & 1)==isTemp ); |
|
773 { |
|
774 int code; |
|
775 char *zDb = db->aDb[iDb].zName; |
|
776 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){ |
|
777 goto begin_table_error; |
|
778 } |
|
779 if( isView ){ |
|
780 if( !OMIT_TEMPDB && isTemp ){ |
|
781 code = SQLITE_CREATE_TEMP_VIEW; |
|
782 }else{ |
|
783 code = SQLITE_CREATE_VIEW; |
|
784 } |
|
785 }else{ |
|
786 if( !OMIT_TEMPDB && isTemp ){ |
|
787 code = SQLITE_CREATE_TEMP_TABLE; |
|
788 }else{ |
|
789 code = SQLITE_CREATE_TABLE; |
|
790 } |
|
791 } |
|
792 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){ |
|
793 goto begin_table_error; |
|
794 } |
|
795 } |
|
796 #endif |
|
797 |
|
798 /* Make sure the new table name does not collide with an existing |
|
799 ** index or table name in the same database. Issue an error message if |
|
800 ** it does. The exception is if the statement being parsed was passed |
|
801 ** to an sqlite3_declare_vtab() call. In that case only the column names |
|
802 ** and types will be used, so there is no need to test for namespace |
|
803 ** collisions. |
|
804 */ |
|
805 if( !IN_DECLARE_VTAB ){ |
|
806 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
|
807 goto begin_table_error; |
|
808 } |
|
809 pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName); |
|
810 if( pTable ){ |
|
811 if( !noErr ){ |
|
812 sqlite3ErrorMsg(pParse, "table %T already exists", pName); |
|
813 } |
|
814 goto begin_table_error; |
|
815 } |
|
816 if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){ |
|
817 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName); |
|
818 goto begin_table_error; |
|
819 } |
|
820 } |
|
821 |
|
822 pTable = sqlite3DbMallocZero(db, sizeof(Table)); |
|
823 if( pTable==0 ){ |
|
824 db->mallocFailed = 1; |
|
825 pParse->rc = SQLITE_NOMEM; |
|
826 pParse->nErr++; |
|
827 goto begin_table_error; |
|
828 } |
|
829 pTable->zName = zName; |
|
830 pTable->iPKey = -1; |
|
831 pTable->pSchema = db->aDb[iDb].pSchema; |
|
832 pTable->nRef = 1; |
|
833 pTable->db = db; |
|
834 if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable); |
|
835 pParse->pNewTable = pTable; |
|
836 |
|
837 /* If this is the magic sqlite_sequence table used by autoincrement, |
|
838 ** then record a pointer to this table in the main database structure |
|
839 ** so that INSERT can find the table easily. |
|
840 */ |
|
841 #ifndef SQLITE_OMIT_AUTOINCREMENT |
|
842 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){ |
|
843 pTable->pSchema->pSeqTab = pTable; |
|
844 } |
|
845 #endif |
|
846 |
|
847 /* Begin generating the code that will insert the table record into |
|
848 ** the SQLITE_MASTER table. Note in particular that we must go ahead |
|
849 ** and allocate the record number for the table entry now. Before any |
|
850 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause |
|
851 ** indices to be created and the table record must come before the |
|
852 ** indices. Hence, the record number for the table must be allocated |
|
853 ** now. |
|
854 */ |
|
855 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){ |
|
856 int j1; |
|
857 int fileFormat; |
|
858 int reg1, reg2, reg3; |
|
859 sqlite3BeginWriteOperation(pParse, 0, iDb); |
|
860 |
|
861 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
862 if( isVirtual ){ |
|
863 sqlite3VdbeAddOp0(v, OP_VBegin); |
|
864 } |
|
865 #endif |
|
866 |
|
867 /* If the file format and encoding in the database have not been set, |
|
868 ** set them now. |
|
869 */ |
|
870 reg1 = pParse->regRowid = ++pParse->nMem; |
|
871 reg2 = pParse->regRoot = ++pParse->nMem; |
|
872 reg3 = ++pParse->nMem; |
|
873 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1); /* file_format */ |
|
874 sqlite3VdbeUsesBtree(v, iDb); |
|
875 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); |
|
876 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ? |
|
877 1 : SQLITE_MAX_FILE_FORMAT; |
|
878 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3); |
|
879 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3); |
|
880 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3); |
|
881 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3); |
|
882 sqlite3VdbeJumpHere(v, j1); |
|
883 |
|
884 /* This just creates a place-holder record in the sqlite_master table. |
|
885 ** The record created does not contain anything yet. It will be replaced |
|
886 ** by the real entry in code generated at sqlite3EndTable(). |
|
887 ** |
|
888 ** The rowid for the new entry is left on the top of the stack. |
|
889 ** The rowid value is needed by the code that sqlite3EndTable will |
|
890 ** generate. |
|
891 */ |
|
892 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) |
|
893 if( isView || isVirtual ){ |
|
894 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2); |
|
895 }else |
|
896 #endif |
|
897 { |
|
898 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2); |
|
899 } |
|
900 sqlite3OpenMasterTable(pParse, iDb); |
|
901 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1); |
|
902 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3); |
|
903 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1); |
|
904 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
|
905 sqlite3VdbeAddOp0(v, OP_Close); |
|
906 } |
|
907 |
|
908 /* Normal (non-error) return. */ |
|
909 return; |
|
910 |
|
911 /* If an error occurs, we jump here */ |
|
912 begin_table_error: |
|
913 sqlite3DbFree(db, zName); |
|
914 return; |
|
915 } |
|
916 |
|
917 /* |
|
918 ** This macro is used to compare two strings in a case-insensitive manner. |
|
919 ** It is slightly faster than calling sqlite3StrICmp() directly, but |
|
920 ** produces larger code. |
|
921 ** |
|
922 ** WARNING: This macro is not compatible with the strcmp() family. It |
|
923 ** returns true if the two strings are equal, otherwise false. |
|
924 */ |
|
925 #define STRICMP(x, y) (\ |
|
926 sqlite3UpperToLower[*(unsigned char *)(x)]== \ |
|
927 sqlite3UpperToLower[*(unsigned char *)(y)] \ |
|
928 && sqlite3StrICmp((x)+1,(y)+1)==0 ) |
|
929 |
|
930 /* |
|
931 ** Add a new column to the table currently being constructed. |
|
932 ** |
|
933 ** The parser calls this routine once for each column declaration |
|
934 ** in a CREATE TABLE statement. sqlite3StartTable() gets called |
|
935 ** first to get things going. Then this routine is called for each |
|
936 ** column. |
|
937 */ |
|
938 void sqlite3AddColumn(Parse *pParse, Token *pName){ |
|
939 Table *p; |
|
940 int i; |
|
941 char *z; |
|
942 Column *pCol; |
|
943 sqlite3 *db = pParse->db; |
|
944 if( (p = pParse->pNewTable)==0 ) return; |
|
945 #if SQLITE_MAX_COLUMN |
|
946 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){ |
|
947 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName); |
|
948 return; |
|
949 } |
|
950 #endif |
|
951 z = sqlite3NameFromToken(pParse->db, pName); |
|
952 if( z==0 ) return; |
|
953 for(i=0; i<p->nCol; i++){ |
|
954 if( STRICMP(z, p->aCol[i].zName) ){ |
|
955 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z); |
|
956 sqlite3DbFree(db, z); |
|
957 return; |
|
958 } |
|
959 } |
|
960 if( (p->nCol & 0x7)==0 ){ |
|
961 Column *aNew; |
|
962 aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0])); |
|
963 if( aNew==0 ){ |
|
964 sqlite3DbFree(db, z); |
|
965 return; |
|
966 } |
|
967 p->aCol = aNew; |
|
968 } |
|
969 pCol = &p->aCol[p->nCol]; |
|
970 memset(pCol, 0, sizeof(p->aCol[0])); |
|
971 pCol->zName = z; |
|
972 |
|
973 /* If there is no type specified, columns have the default affinity |
|
974 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will |
|
975 ** be called next to set pCol->affinity correctly. |
|
976 */ |
|
977 pCol->affinity = SQLITE_AFF_NONE; |
|
978 p->nCol++; |
|
979 } |
|
980 |
|
981 /* |
|
982 ** This routine is called by the parser while in the middle of |
|
983 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has |
|
984 ** been seen on a column. This routine sets the notNull flag on |
|
985 ** the column currently under construction. |
|
986 */ |
|
987 void sqlite3AddNotNull(Parse *pParse, int onError){ |
|
988 Table *p; |
|
989 int i; |
|
990 if( (p = pParse->pNewTable)==0 ) return; |
|
991 i = p->nCol-1; |
|
992 if( i>=0 ) p->aCol[i].notNull = onError; |
|
993 } |
|
994 |
|
995 /* |
|
996 ** Scan the column type name zType (length nType) and return the |
|
997 ** associated affinity type. |
|
998 ** |
|
999 ** This routine does a case-independent search of zType for the |
|
1000 ** substrings in the following table. If one of the substrings is |
|
1001 ** found, the corresponding affinity is returned. If zType contains |
|
1002 ** more than one of the substrings, entries toward the top of |
|
1003 ** the table take priority. For example, if zType is 'BLOBINT', |
|
1004 ** SQLITE_AFF_INTEGER is returned. |
|
1005 ** |
|
1006 ** Substring | Affinity |
|
1007 ** -------------------------------- |
|
1008 ** 'INT' | SQLITE_AFF_INTEGER |
|
1009 ** 'CHAR' | SQLITE_AFF_TEXT |
|
1010 ** 'CLOB' | SQLITE_AFF_TEXT |
|
1011 ** 'TEXT' | SQLITE_AFF_TEXT |
|
1012 ** 'BLOB' | SQLITE_AFF_NONE |
|
1013 ** 'REAL' | SQLITE_AFF_REAL |
|
1014 ** 'FLOA' | SQLITE_AFF_REAL |
|
1015 ** 'DOUB' | SQLITE_AFF_REAL |
|
1016 ** |
|
1017 ** If none of the substrings in the above table are found, |
|
1018 ** SQLITE_AFF_NUMERIC is returned. |
|
1019 */ |
|
1020 char sqlite3AffinityType(const Token *pType){ |
|
1021 u32 h = 0; |
|
1022 char aff = SQLITE_AFF_NUMERIC; |
|
1023 const unsigned char *zIn = pType->z; |
|
1024 const unsigned char *zEnd = &pType->z[pType->n]; |
|
1025 |
|
1026 while( zIn!=zEnd ){ |
|
1027 h = (h<<8) + sqlite3UpperToLower[*zIn]; |
|
1028 zIn++; |
|
1029 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */ |
|
1030 aff = SQLITE_AFF_TEXT; |
|
1031 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */ |
|
1032 aff = SQLITE_AFF_TEXT; |
|
1033 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */ |
|
1034 aff = SQLITE_AFF_TEXT; |
|
1035 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */ |
|
1036 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){ |
|
1037 aff = SQLITE_AFF_NONE; |
|
1038 #ifndef SQLITE_OMIT_FLOATING_POINT |
|
1039 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */ |
|
1040 && aff==SQLITE_AFF_NUMERIC ){ |
|
1041 aff = SQLITE_AFF_REAL; |
|
1042 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */ |
|
1043 && aff==SQLITE_AFF_NUMERIC ){ |
|
1044 aff = SQLITE_AFF_REAL; |
|
1045 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */ |
|
1046 && aff==SQLITE_AFF_NUMERIC ){ |
|
1047 aff = SQLITE_AFF_REAL; |
|
1048 #endif |
|
1049 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */ |
|
1050 aff = SQLITE_AFF_INTEGER; |
|
1051 break; |
|
1052 } |
|
1053 } |
|
1054 |
|
1055 return aff; |
|
1056 } |
|
1057 |
|
1058 /* |
|
1059 ** This routine is called by the parser while in the middle of |
|
1060 ** parsing a CREATE TABLE statement. The pFirst token is the first |
|
1061 ** token in the sequence of tokens that describe the type of the |
|
1062 ** column currently under construction. pLast is the last token |
|
1063 ** in the sequence. Use this information to construct a string |
|
1064 ** that contains the typename of the column and store that string |
|
1065 ** in zType. |
|
1066 */ |
|
1067 void sqlite3AddColumnType(Parse *pParse, Token *pType){ |
|
1068 Table *p; |
|
1069 int i; |
|
1070 Column *pCol; |
|
1071 sqlite3 *db; |
|
1072 |
|
1073 if( (p = pParse->pNewTable)==0 ) return; |
|
1074 i = p->nCol-1; |
|
1075 if( i<0 ) return; |
|
1076 pCol = &p->aCol[i]; |
|
1077 db = pParse->db; |
|
1078 sqlite3DbFree(db, pCol->zType); |
|
1079 pCol->zType = sqlite3NameFromToken(db, pType); |
|
1080 pCol->affinity = sqlite3AffinityType(pType); |
|
1081 } |
|
1082 |
|
1083 /* |
|
1084 ** The expression is the default value for the most recently added column |
|
1085 ** of the table currently under construction. |
|
1086 ** |
|
1087 ** Default value expressions must be constant. Raise an exception if this |
|
1088 ** is not the case. |
|
1089 ** |
|
1090 ** This routine is called by the parser while in the middle of |
|
1091 ** parsing a CREATE TABLE statement. |
|
1092 */ |
|
1093 void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){ |
|
1094 Table *p; |
|
1095 Column *pCol; |
|
1096 sqlite3 *db = pParse->db; |
|
1097 if( (p = pParse->pNewTable)!=0 ){ |
|
1098 pCol = &(p->aCol[p->nCol-1]); |
|
1099 if( !sqlite3ExprIsConstantOrFunction(pExpr) ){ |
|
1100 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant", |
|
1101 pCol->zName); |
|
1102 }else{ |
|
1103 Expr *pCopy; |
|
1104 sqlite3ExprDelete(db, pCol->pDflt); |
|
1105 pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr); |
|
1106 if( pCopy ){ |
|
1107 sqlite3TokenCopy(db, &pCopy->span, &pExpr->span); |
|
1108 } |
|
1109 } |
|
1110 } |
|
1111 sqlite3ExprDelete(db, pExpr); |
|
1112 } |
|
1113 |
|
1114 /* |
|
1115 ** Designate the PRIMARY KEY for the table. pList is a list of names |
|
1116 ** of columns that form the primary key. If pList is NULL, then the |
|
1117 ** most recently added column of the table is the primary key. |
|
1118 ** |
|
1119 ** A table can have at most one primary key. If the table already has |
|
1120 ** a primary key (and this is the second primary key) then create an |
|
1121 ** error. |
|
1122 ** |
|
1123 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER, |
|
1124 ** then we will try to use that column as the rowid. Set the Table.iPKey |
|
1125 ** field of the table under construction to be the index of the |
|
1126 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is |
|
1127 ** no INTEGER PRIMARY KEY. |
|
1128 ** |
|
1129 ** If the key is not an INTEGER PRIMARY KEY, then create a unique |
|
1130 ** index for the key. No index is created for INTEGER PRIMARY KEYs. |
|
1131 */ |
|
1132 void sqlite3AddPrimaryKey( |
|
1133 Parse *pParse, /* Parsing context */ |
|
1134 ExprList *pList, /* List of field names to be indexed */ |
|
1135 int onError, /* What to do with a uniqueness conflict */ |
|
1136 int autoInc, /* True if the AUTOINCREMENT keyword is present */ |
|
1137 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */ |
|
1138 ){ |
|
1139 Table *pTab = pParse->pNewTable; |
|
1140 char *zType = 0; |
|
1141 int iCol = -1, i; |
|
1142 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit; |
|
1143 if( pTab->hasPrimKey ){ |
|
1144 sqlite3ErrorMsg(pParse, |
|
1145 "table \"%s\" has more than one primary key", pTab->zName); |
|
1146 goto primary_key_exit; |
|
1147 } |
|
1148 pTab->hasPrimKey = 1; |
|
1149 if( pList==0 ){ |
|
1150 iCol = pTab->nCol - 1; |
|
1151 pTab->aCol[iCol].isPrimKey = 1; |
|
1152 }else{ |
|
1153 for(i=0; i<pList->nExpr; i++){ |
|
1154 for(iCol=0; iCol<pTab->nCol; iCol++){ |
|
1155 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){ |
|
1156 break; |
|
1157 } |
|
1158 } |
|
1159 if( iCol<pTab->nCol ){ |
|
1160 pTab->aCol[iCol].isPrimKey = 1; |
|
1161 } |
|
1162 } |
|
1163 if( pList->nExpr>1 ) iCol = -1; |
|
1164 } |
|
1165 if( iCol>=0 && iCol<pTab->nCol ){ |
|
1166 zType = pTab->aCol[iCol].zType; |
|
1167 } |
|
1168 if( zType && sqlite3StrICmp(zType, "INTEGER")==0 |
|
1169 && sortOrder==SQLITE_SO_ASC ){ |
|
1170 pTab->iPKey = iCol; |
|
1171 pTab->keyConf = onError; |
|
1172 pTab->autoInc = autoInc; |
|
1173 }else if( autoInc ){ |
|
1174 #ifndef SQLITE_OMIT_AUTOINCREMENT |
|
1175 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " |
|
1176 "INTEGER PRIMARY KEY"); |
|
1177 #endif |
|
1178 }else{ |
|
1179 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); |
|
1180 pList = 0; |
|
1181 } |
|
1182 |
|
1183 primary_key_exit: |
|
1184 sqlite3ExprListDelete(pParse->db, pList); |
|
1185 return; |
|
1186 } |
|
1187 |
|
1188 /* |
|
1189 ** Add a new CHECK constraint to the table currently under construction. |
|
1190 */ |
|
1191 void sqlite3AddCheckConstraint( |
|
1192 Parse *pParse, /* Parsing context */ |
|
1193 Expr *pCheckExpr /* The check expression */ |
|
1194 ){ |
|
1195 sqlite3 *db = pParse->db; |
|
1196 #ifndef SQLITE_OMIT_CHECK |
|
1197 Table *pTab = pParse->pNewTable; |
|
1198 if( pTab && !IN_DECLARE_VTAB ){ |
|
1199 /* The CHECK expression must be duplicated so that tokens refer |
|
1200 ** to malloced space and not the (ephemeral) text of the CREATE TABLE |
|
1201 ** statement */ |
|
1202 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, |
|
1203 sqlite3ExprDup(db, pCheckExpr)); |
|
1204 } |
|
1205 #endif |
|
1206 sqlite3ExprDelete(db, pCheckExpr); |
|
1207 } |
|
1208 |
|
1209 /* |
|
1210 ** Set the collation function of the most recently parsed table column |
|
1211 ** to the CollSeq given. |
|
1212 */ |
|
1213 void sqlite3AddCollateType(Parse *pParse, Token *pToken){ |
|
1214 Table *p; |
|
1215 int i; |
|
1216 char *zColl; /* Dequoted name of collation sequence */ |
|
1217 sqlite3 *db; |
|
1218 |
|
1219 if( (p = pParse->pNewTable)==0 ) return; |
|
1220 i = p->nCol-1; |
|
1221 db = pParse->db; |
|
1222 zColl = sqlite3NameFromToken(db, pToken); |
|
1223 if( !zColl ) return; |
|
1224 |
|
1225 if( sqlite3LocateCollSeq(pParse, zColl, -1) ){ |
|
1226 Index *pIdx; |
|
1227 p->aCol[i].zColl = zColl; |
|
1228 |
|
1229 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", |
|
1230 ** then an index may have been created on this column before the |
|
1231 ** collation type was added. Correct this if it is the case. |
|
1232 */ |
|
1233 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ |
|
1234 assert( pIdx->nColumn==1 ); |
|
1235 if( pIdx->aiColumn[0]==i ){ |
|
1236 pIdx->azColl[0] = p->aCol[i].zColl; |
|
1237 } |
|
1238 } |
|
1239 }else{ |
|
1240 sqlite3DbFree(db, zColl); |
|
1241 } |
|
1242 } |
|
1243 |
|
1244 /* |
|
1245 ** This function returns the collation sequence for database native text |
|
1246 ** encoding identified by the string zName, length nName. |
|
1247 ** |
|
1248 ** If the requested collation sequence is not available, or not available |
|
1249 ** in the database native encoding, the collation factory is invoked to |
|
1250 ** request it. If the collation factory does not supply such a sequence, |
|
1251 ** and the sequence is available in another text encoding, then that is |
|
1252 ** returned instead. |
|
1253 ** |
|
1254 ** If no versions of the requested collations sequence are available, or |
|
1255 ** another error occurs, NULL is returned and an error message written into |
|
1256 ** pParse. |
|
1257 ** |
|
1258 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine |
|
1259 ** invokes the collation factory if the named collation cannot be found |
|
1260 ** and generates an error message. |
|
1261 */ |
|
1262 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){ |
|
1263 sqlite3 *db = pParse->db; |
|
1264 u8 enc = ENC(db); |
|
1265 u8 initbusy = db->init.busy; |
|
1266 CollSeq *pColl; |
|
1267 |
|
1268 pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy); |
|
1269 if( !initbusy && (!pColl || !pColl->xCmp) ){ |
|
1270 pColl = sqlite3GetCollSeq(db, pColl, zName, nName); |
|
1271 if( !pColl ){ |
|
1272 if( nName<0 ){ |
|
1273 nName = sqlite3Strlen(db, zName); |
|
1274 } |
|
1275 sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName); |
|
1276 pColl = 0; |
|
1277 } |
|
1278 } |
|
1279 |
|
1280 return pColl; |
|
1281 } |
|
1282 |
|
1283 |
|
1284 /* |
|
1285 ** Generate code that will increment the schema cookie. |
|
1286 ** |
|
1287 ** The schema cookie is used to determine when the schema for the |
|
1288 ** database changes. After each schema change, the cookie value |
|
1289 ** changes. When a process first reads the schema it records the |
|
1290 ** cookie. Thereafter, whenever it goes to access the database, |
|
1291 ** it checks the cookie to make sure the schema has not changed |
|
1292 ** since it was last read. |
|
1293 ** |
|
1294 ** This plan is not completely bullet-proof. It is possible for |
|
1295 ** the schema to change multiple times and for the cookie to be |
|
1296 ** set back to prior value. But schema changes are infrequent |
|
1297 ** and the probability of hitting the same cookie value is only |
|
1298 ** 1 chance in 2^32. So we're safe enough. |
|
1299 */ |
|
1300 void sqlite3ChangeCookie(Parse *pParse, int iDb){ |
|
1301 int r1 = sqlite3GetTempReg(pParse); |
|
1302 sqlite3 *db = pParse->db; |
|
1303 Vdbe *v = pParse->pVdbe; |
|
1304 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1); |
|
1305 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1); |
|
1306 sqlite3ReleaseTempReg(pParse, r1); |
|
1307 } |
|
1308 |
|
1309 /* |
|
1310 ** Measure the number of characters needed to output the given |
|
1311 ** identifier. The number returned includes any quotes used |
|
1312 ** but does not include the null terminator. |
|
1313 ** |
|
1314 ** The estimate is conservative. It might be larger that what is |
|
1315 ** really needed. |
|
1316 */ |
|
1317 static int identLength(const char *z){ |
|
1318 int n; |
|
1319 for(n=0; *z; n++, z++){ |
|
1320 if( *z=='"' ){ n++; } |
|
1321 } |
|
1322 return n + 2; |
|
1323 } |
|
1324 |
|
1325 /* |
|
1326 ** Write an identifier onto the end of the given string. Add |
|
1327 ** quote characters as needed. |
|
1328 */ |
|
1329 static void identPut(char *z, int *pIdx, char *zSignedIdent){ |
|
1330 unsigned char *zIdent = (unsigned char*)zSignedIdent; |
|
1331 int i, j, needQuote; |
|
1332 i = *pIdx; |
|
1333 for(j=0; zIdent[j]; j++){ |
|
1334 if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break; |
|
1335 } |
|
1336 needQuote = zIdent[j]!=0 || isdigit(zIdent[0]) |
|
1337 || sqlite3KeywordCode(zIdent, j)!=TK_ID; |
|
1338 if( needQuote ) z[i++] = '"'; |
|
1339 for(j=0; zIdent[j]; j++){ |
|
1340 z[i++] = zIdent[j]; |
|
1341 if( zIdent[j]=='"' ) z[i++] = '"'; |
|
1342 } |
|
1343 if( needQuote ) z[i++] = '"'; |
|
1344 z[i] = 0; |
|
1345 *pIdx = i; |
|
1346 } |
|
1347 |
|
1348 /* |
|
1349 ** Generate a CREATE TABLE statement appropriate for the given |
|
1350 ** table. Memory to hold the text of the statement is obtained |
|
1351 ** from sqliteMalloc() and must be freed by the calling function. |
|
1352 */ |
|
1353 static char *createTableStmt(sqlite3 *db, Table *p, int isTemp){ |
|
1354 int i, k, n; |
|
1355 char *zStmt; |
|
1356 char *zSep, *zSep2, *zEnd, *z; |
|
1357 Column *pCol; |
|
1358 n = 0; |
|
1359 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){ |
|
1360 n += identLength(pCol->zName); |
|
1361 z = pCol->zType; |
|
1362 if( z ){ |
|
1363 n += (strlen(z) + 1); |
|
1364 } |
|
1365 } |
|
1366 n += identLength(p->zName); |
|
1367 if( n<50 ){ |
|
1368 zSep = ""; |
|
1369 zSep2 = ","; |
|
1370 zEnd = ")"; |
|
1371 }else{ |
|
1372 zSep = "\n "; |
|
1373 zSep2 = ",\n "; |
|
1374 zEnd = "\n)"; |
|
1375 } |
|
1376 n += 35 + 6*p->nCol; |
|
1377 zStmt = sqlite3Malloc( n ); |
|
1378 if( zStmt==0 ){ |
|
1379 db->mallocFailed = 1; |
|
1380 return 0; |
|
1381 } |
|
1382 sqlite3_snprintf(n, zStmt, |
|
1383 !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE "); |
|
1384 k = strlen(zStmt); |
|
1385 identPut(zStmt, &k, p->zName); |
|
1386 zStmt[k++] = '('; |
|
1387 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){ |
|
1388 sqlite3_snprintf(n-k, &zStmt[k], zSep); |
|
1389 k += strlen(&zStmt[k]); |
|
1390 zSep = zSep2; |
|
1391 identPut(zStmt, &k, pCol->zName); |
|
1392 if( (z = pCol->zType)!=0 ){ |
|
1393 zStmt[k++] = ' '; |
|
1394 assert( strlen(z)+k+1<=n ); |
|
1395 sqlite3_snprintf(n-k, &zStmt[k], "%s", z); |
|
1396 k += strlen(z); |
|
1397 } |
|
1398 } |
|
1399 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd); |
|
1400 return zStmt; |
|
1401 } |
|
1402 |
|
1403 /* |
|
1404 ** This routine is called to report the final ")" that terminates |
|
1405 ** a CREATE TABLE statement. |
|
1406 ** |
|
1407 ** The table structure that other action routines have been building |
|
1408 ** is added to the internal hash tables, assuming no errors have |
|
1409 ** occurred. |
|
1410 ** |
|
1411 ** An entry for the table is made in the master table on disk, unless |
|
1412 ** this is a temporary table or db->init.busy==1. When db->init.busy==1 |
|
1413 ** it means we are reading the sqlite_master table because we just |
|
1414 ** connected to the database or because the sqlite_master table has |
|
1415 ** recently changed, so the entry for this table already exists in |
|
1416 ** the sqlite_master table. We do not want to create it again. |
|
1417 ** |
|
1418 ** If the pSelect argument is not NULL, it means that this routine |
|
1419 ** was called to create a table generated from a |
|
1420 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of |
|
1421 ** the new table will match the result set of the SELECT. |
|
1422 */ |
|
1423 void sqlite3EndTable( |
|
1424 Parse *pParse, /* Parse context */ |
|
1425 Token *pCons, /* The ',' token after the last column defn. */ |
|
1426 Token *pEnd, /* The final ')' token in the CREATE TABLE */ |
|
1427 Select *pSelect /* Select from a "CREATE ... AS SELECT" */ |
|
1428 ){ |
|
1429 Table *p; |
|
1430 sqlite3 *db = pParse->db; |
|
1431 int iDb; |
|
1432 |
|
1433 if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) { |
|
1434 return; |
|
1435 } |
|
1436 p = pParse->pNewTable; |
|
1437 if( p==0 ) return; |
|
1438 |
|
1439 assert( !db->init.busy || !pSelect ); |
|
1440 |
|
1441 iDb = sqlite3SchemaToIndex(db, p->pSchema); |
|
1442 |
|
1443 #ifndef SQLITE_OMIT_CHECK |
|
1444 /* Resolve names in all CHECK constraint expressions. |
|
1445 */ |
|
1446 if( p->pCheck ){ |
|
1447 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ |
|
1448 NameContext sNC; /* Name context for pParse->pNewTable */ |
|
1449 |
|
1450 memset(&sNC, 0, sizeof(sNC)); |
|
1451 memset(&sSrc, 0, sizeof(sSrc)); |
|
1452 sSrc.nSrc = 1; |
|
1453 sSrc.a[0].zName = p->zName; |
|
1454 sSrc.a[0].pTab = p; |
|
1455 sSrc.a[0].iCursor = -1; |
|
1456 sNC.pParse = pParse; |
|
1457 sNC.pSrcList = &sSrc; |
|
1458 sNC.isCheck = 1; |
|
1459 if( sqlite3ExprResolveNames(&sNC, p->pCheck) ){ |
|
1460 return; |
|
1461 } |
|
1462 } |
|
1463 #endif /* !defined(SQLITE_OMIT_CHECK) */ |
|
1464 |
|
1465 /* If the db->init.busy is 1 it means we are reading the SQL off the |
|
1466 ** "sqlite_master" or "sqlite_temp_master" table on the disk. |
|
1467 ** So do not write to the disk again. Extract the root page number |
|
1468 ** for the table from the db->init.newTnum field. (The page number |
|
1469 ** should have been put there by the sqliteOpenCb routine.) |
|
1470 */ |
|
1471 if( db->init.busy ){ |
|
1472 p->tnum = db->init.newTnum; |
|
1473 } |
|
1474 |
|
1475 /* If not initializing, then create a record for the new table |
|
1476 ** in the SQLITE_MASTER table of the database. The record number |
|
1477 ** for the new table entry should already be on the stack. |
|
1478 ** |
|
1479 ** If this is a TEMPORARY table, write the entry into the auxiliary |
|
1480 ** file instead of into the main database file. |
|
1481 */ |
|
1482 if( !db->init.busy ){ |
|
1483 int n; |
|
1484 Vdbe *v; |
|
1485 char *zType; /* "view" or "table" */ |
|
1486 char *zType2; /* "VIEW" or "TABLE" */ |
|
1487 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */ |
|
1488 |
|
1489 v = sqlite3GetVdbe(pParse); |
|
1490 if( v==0 ) return; |
|
1491 |
|
1492 sqlite3VdbeAddOp1(v, OP_Close, 0); |
|
1493 |
|
1494 /* Create the rootpage for the new table and push it onto the stack. |
|
1495 ** A view has no rootpage, so just push a zero onto the stack for |
|
1496 ** views. Initialize zType at the same time. |
|
1497 */ |
|
1498 if( p->pSelect==0 ){ |
|
1499 /* A regular table */ |
|
1500 zType = "table"; |
|
1501 zType2 = "TABLE"; |
|
1502 #ifndef SQLITE_OMIT_VIEW |
|
1503 }else{ |
|
1504 /* A view */ |
|
1505 zType = "view"; |
|
1506 zType2 = "VIEW"; |
|
1507 #endif |
|
1508 } |
|
1509 |
|
1510 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT |
|
1511 ** statement to populate the new table. The root-page number for the |
|
1512 ** new table is on the top of the vdbe stack. |
|
1513 ** |
|
1514 ** Once the SELECT has been coded by sqlite3Select(), it is in a |
|
1515 ** suitable state to query for the column names and types to be used |
|
1516 ** by the new table. |
|
1517 ** |
|
1518 ** A shared-cache write-lock is not required to write to the new table, |
|
1519 ** as a schema-lock must have already been obtained to create it. Since |
|
1520 ** a schema-lock excludes all other database users, the write-lock would |
|
1521 ** be redundant. |
|
1522 */ |
|
1523 if( pSelect ){ |
|
1524 SelectDest dest; |
|
1525 Table *pSelTab; |
|
1526 |
|
1527 assert(pParse->nTab==0); |
|
1528 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb); |
|
1529 sqlite3VdbeChangeP5(v, 1); |
|
1530 pParse->nTab = 2; |
|
1531 sqlite3SelectDestInit(&dest, SRT_Table, 1); |
|
1532 sqlite3Select(pParse, pSelect, &dest, 0, 0, 0); |
|
1533 sqlite3VdbeAddOp1(v, OP_Close, 1); |
|
1534 if( pParse->nErr==0 ){ |
|
1535 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSelect); |
|
1536 if( pSelTab==0 ) return; |
|
1537 assert( p->aCol==0 ); |
|
1538 p->nCol = pSelTab->nCol; |
|
1539 p->aCol = pSelTab->aCol; |
|
1540 pSelTab->nCol = 0; |
|
1541 pSelTab->aCol = 0; |
|
1542 sqlite3DeleteTable(pSelTab); |
|
1543 } |
|
1544 } |
|
1545 |
|
1546 /* Compute the complete text of the CREATE statement */ |
|
1547 if( pSelect ){ |
|
1548 zStmt = createTableStmt(db, p, p->pSchema==db->aDb[1].pSchema); |
|
1549 }else{ |
|
1550 n = pEnd->z - pParse->sNameToken.z + 1; |
|
1551 zStmt = sqlite3MPrintf(db, |
|
1552 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z |
|
1553 ); |
|
1554 } |
|
1555 |
|
1556 /* A slot for the record has already been allocated in the |
|
1557 ** SQLITE_MASTER table. We just need to update that slot with all |
|
1558 ** the information we've collected. The rowid for the preallocated |
|
1559 ** slot is the 2nd item on the stack. The top of the stack is the |
|
1560 ** root page for the new table (or a 0 if this is a view). |
|
1561 */ |
|
1562 sqlite3NestedParse(pParse, |
|
1563 "UPDATE %Q.%s " |
|
1564 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q " |
|
1565 "WHERE rowid=#%d", |
|
1566 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), |
|
1567 zType, |
|
1568 p->zName, |
|
1569 p->zName, |
|
1570 pParse->regRoot, |
|
1571 zStmt, |
|
1572 pParse->regRowid |
|
1573 ); |
|
1574 sqlite3DbFree(db, zStmt); |
|
1575 sqlite3ChangeCookie(pParse, iDb); |
|
1576 |
|
1577 #ifndef SQLITE_OMIT_AUTOINCREMENT |
|
1578 /* Check to see if we need to create an sqlite_sequence table for |
|
1579 ** keeping track of autoincrement keys. |
|
1580 */ |
|
1581 if( p->autoInc ){ |
|
1582 Db *pDb = &db->aDb[iDb]; |
|
1583 if( pDb->pSchema->pSeqTab==0 ){ |
|
1584 sqlite3NestedParse(pParse, |
|
1585 "CREATE TABLE %Q.sqlite_sequence(name,seq)", |
|
1586 pDb->zName |
|
1587 ); |
|
1588 } |
|
1589 } |
|
1590 #endif |
|
1591 |
|
1592 /* Reparse everything to update our internal data structures */ |
|
1593 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, |
|
1594 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC); |
|
1595 } |
|
1596 |
|
1597 |
|
1598 /* Add the table to the in-memory representation of the database. |
|
1599 */ |
|
1600 if( db->init.busy && pParse->nErr==0 ){ |
|
1601 Table *pOld; |
|
1602 FKey *pFKey; |
|
1603 Schema *pSchema = p->pSchema; |
|
1604 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p); |
|
1605 if( pOld ){ |
|
1606 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */ |
|
1607 db->mallocFailed = 1; |
|
1608 return; |
|
1609 } |
|
1610 #ifndef SQLITE_OMIT_FOREIGN_KEY |
|
1611 for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){ |
|
1612 void *data; |
|
1613 int nTo = strlen(pFKey->zTo) + 1; |
|
1614 pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo); |
|
1615 data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey); |
|
1616 if( data==(void *)pFKey ){ |
|
1617 db->mallocFailed = 1; |
|
1618 } |
|
1619 } |
|
1620 #endif |
|
1621 pParse->pNewTable = 0; |
|
1622 db->nTable++; |
|
1623 db->flags |= SQLITE_InternChanges; |
|
1624 |
|
1625 #ifndef SQLITE_OMIT_ALTERTABLE |
|
1626 if( !p->pSelect ){ |
|
1627 const char *zName = (const char *)pParse->sNameToken.z; |
|
1628 int nName; |
|
1629 assert( !pSelect && pCons && pEnd ); |
|
1630 if( pCons->z==0 ){ |
|
1631 pCons = pEnd; |
|
1632 } |
|
1633 nName = (const char *)pCons->z - zName; |
|
1634 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName); |
|
1635 } |
|
1636 #endif |
|
1637 } |
|
1638 } |
|
1639 |
|
1640 #ifndef SQLITE_OMIT_VIEW |
|
1641 /* |
|
1642 ** The parser calls this routine in order to create a new VIEW |
|
1643 */ |
|
1644 void sqlite3CreateView( |
|
1645 Parse *pParse, /* The parsing context */ |
|
1646 Token *pBegin, /* The CREATE token that begins the statement */ |
|
1647 Token *pName1, /* The token that holds the name of the view */ |
|
1648 Token *pName2, /* The token that holds the name of the view */ |
|
1649 Select *pSelect, /* A SELECT statement that will become the new view */ |
|
1650 int isTemp, /* TRUE for a TEMPORARY view */ |
|
1651 int noErr /* Suppress error messages if VIEW already exists */ |
|
1652 ){ |
|
1653 Table *p; |
|
1654 int n; |
|
1655 const unsigned char *z; |
|
1656 Token sEnd; |
|
1657 DbFixer sFix; |
|
1658 Token *pName; |
|
1659 int iDb; |
|
1660 sqlite3 *db = pParse->db; |
|
1661 |
|
1662 if( pParse->nVar>0 ){ |
|
1663 sqlite3ErrorMsg(pParse, "parameters are not allowed in views"); |
|
1664 sqlite3SelectDelete(db, pSelect); |
|
1665 return; |
|
1666 } |
|
1667 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr); |
|
1668 p = pParse->pNewTable; |
|
1669 if( p==0 || pParse->nErr ){ |
|
1670 sqlite3SelectDelete(db, pSelect); |
|
1671 return; |
|
1672 } |
|
1673 sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
|
1674 iDb = sqlite3SchemaToIndex(db, p->pSchema); |
|
1675 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName) |
|
1676 && sqlite3FixSelect(&sFix, pSelect) |
|
1677 ){ |
|
1678 sqlite3SelectDelete(db, pSelect); |
|
1679 return; |
|
1680 } |
|
1681 |
|
1682 /* Make a copy of the entire SELECT statement that defines the view. |
|
1683 ** This will force all the Expr.token.z values to be dynamically |
|
1684 ** allocated rather than point to the input string - which means that |
|
1685 ** they will persist after the current sqlite3_exec() call returns. |
|
1686 */ |
|
1687 p->pSelect = sqlite3SelectDup(db, pSelect); |
|
1688 sqlite3SelectDelete(db, pSelect); |
|
1689 if( db->mallocFailed ){ |
|
1690 return; |
|
1691 } |
|
1692 if( !db->init.busy ){ |
|
1693 sqlite3ViewGetColumnNames(pParse, p); |
|
1694 } |
|
1695 |
|
1696 /* Locate the end of the CREATE VIEW statement. Make sEnd point to |
|
1697 ** the end. |
|
1698 */ |
|
1699 sEnd = pParse->sLastToken; |
|
1700 if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){ |
|
1701 sEnd.z += sEnd.n; |
|
1702 } |
|
1703 sEnd.n = 0; |
|
1704 n = sEnd.z - pBegin->z; |
|
1705 z = (const unsigned char*)pBegin->z; |
|
1706 while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; } |
|
1707 sEnd.z = &z[n-1]; |
|
1708 sEnd.n = 1; |
|
1709 |
|
1710 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */ |
|
1711 sqlite3EndTable(pParse, 0, &sEnd, 0); |
|
1712 return; |
|
1713 } |
|
1714 #endif /* SQLITE_OMIT_VIEW */ |
|
1715 |
|
1716 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) |
|
1717 /* |
|
1718 ** The Table structure pTable is really a VIEW. Fill in the names of |
|
1719 ** the columns of the view in the pTable structure. Return the number |
|
1720 ** of errors. If an error is seen leave an error message in pParse->zErrMsg. |
|
1721 */ |
|
1722 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){ |
|
1723 Table *pSelTab; /* A fake table from which we get the result set */ |
|
1724 Select *pSel; /* Copy of the SELECT that implements the view */ |
|
1725 int nErr = 0; /* Number of errors encountered */ |
|
1726 int n; /* Temporarily holds the number of cursors assigned */ |
|
1727 sqlite3 *db = pParse->db; /* Database connection for malloc errors */ |
|
1728 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); |
|
1729 |
|
1730 assert( pTable ); |
|
1731 |
|
1732 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
1733 if( sqlite3VtabCallConnect(pParse, pTable) ){ |
|
1734 return SQLITE_ERROR; |
|
1735 } |
|
1736 if( IsVirtual(pTable) ) return 0; |
|
1737 #endif |
|
1738 |
|
1739 #ifndef SQLITE_OMIT_VIEW |
|
1740 /* A positive nCol means the columns names for this view are |
|
1741 ** already known. |
|
1742 */ |
|
1743 if( pTable->nCol>0 ) return 0; |
|
1744 |
|
1745 /* A negative nCol is a special marker meaning that we are currently |
|
1746 ** trying to compute the column names. If we enter this routine with |
|
1747 ** a negative nCol, it means two or more views form a loop, like this: |
|
1748 ** |
|
1749 ** CREATE VIEW one AS SELECT * FROM two; |
|
1750 ** CREATE VIEW two AS SELECT * FROM one; |
|
1751 ** |
|
1752 ** Actually, this error is caught previously and so the following test |
|
1753 ** should always fail. But we will leave it in place just to be safe. |
|
1754 */ |
|
1755 if( pTable->nCol<0 ){ |
|
1756 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName); |
|
1757 return 1; |
|
1758 } |
|
1759 assert( pTable->nCol>=0 ); |
|
1760 |
|
1761 /* If we get this far, it means we need to compute the table names. |
|
1762 ** Note that the call to sqlite3ResultSetOfSelect() will expand any |
|
1763 ** "*" elements in the results set of the view and will assign cursors |
|
1764 ** to the elements of the FROM clause. But we do not want these changes |
|
1765 ** to be permanent. So the computation is done on a copy of the SELECT |
|
1766 ** statement that defines the view. |
|
1767 */ |
|
1768 assert( pTable->pSelect ); |
|
1769 pSel = sqlite3SelectDup(db, pTable->pSelect); |
|
1770 if( pSel ){ |
|
1771 n = pParse->nTab; |
|
1772 sqlite3SrcListAssignCursors(pParse, pSel->pSrc); |
|
1773 pTable->nCol = -1; |
|
1774 #ifndef SQLITE_OMIT_AUTHORIZATION |
|
1775 xAuth = db->xAuth; |
|
1776 db->xAuth = 0; |
|
1777 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel); |
|
1778 db->xAuth = xAuth; |
|
1779 #else |
|
1780 pSelTab = sqlite3ResultSetOfSelect(pParse, 0, pSel); |
|
1781 #endif |
|
1782 pParse->nTab = n; |
|
1783 if( pSelTab ){ |
|
1784 assert( pTable->aCol==0 ); |
|
1785 pTable->nCol = pSelTab->nCol; |
|
1786 pTable->aCol = pSelTab->aCol; |
|
1787 pSelTab->nCol = 0; |
|
1788 pSelTab->aCol = 0; |
|
1789 sqlite3DeleteTable(pSelTab); |
|
1790 pTable->pSchema->flags |= DB_UnresetViews; |
|
1791 }else{ |
|
1792 pTable->nCol = 0; |
|
1793 nErr++; |
|
1794 } |
|
1795 sqlite3SelectDelete(db, pSel); |
|
1796 } else { |
|
1797 nErr++; |
|
1798 } |
|
1799 #endif /* SQLITE_OMIT_VIEW */ |
|
1800 return nErr; |
|
1801 } |
|
1802 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */ |
|
1803 |
|
1804 #ifndef SQLITE_OMIT_VIEW |
|
1805 /* |
|
1806 ** Clear the column names from every VIEW in database idx. |
|
1807 */ |
|
1808 static void sqliteViewResetAll(sqlite3 *db, int idx){ |
|
1809 HashElem *i; |
|
1810 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return; |
|
1811 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){ |
|
1812 Table *pTab = sqliteHashData(i); |
|
1813 if( pTab->pSelect ){ |
|
1814 sqliteResetColumnNames(pTab); |
|
1815 } |
|
1816 } |
|
1817 DbClearProperty(db, idx, DB_UnresetViews); |
|
1818 } |
|
1819 #else |
|
1820 # define sqliteViewResetAll(A,B) |
|
1821 #endif /* SQLITE_OMIT_VIEW */ |
|
1822 |
|
1823 /* |
|
1824 ** This function is called by the VDBE to adjust the internal schema |
|
1825 ** used by SQLite when the btree layer moves a table root page. The |
|
1826 ** root-page of a table or index in database iDb has changed from iFrom |
|
1827 ** to iTo. |
|
1828 ** |
|
1829 ** Ticket #1728: The symbol table might still contain information |
|
1830 ** on tables and/or indices that are the process of being deleted. |
|
1831 ** If you are unlucky, one of those deleted indices or tables might |
|
1832 ** have the same rootpage number as the real table or index that is |
|
1833 ** being moved. So we cannot stop searching after the first match |
|
1834 ** because the first match might be for one of the deleted indices |
|
1835 ** or tables and not the table/index that is actually being moved. |
|
1836 ** We must continue looping until all tables and indices with |
|
1837 ** rootpage==iFrom have been converted to have a rootpage of iTo |
|
1838 ** in order to be certain that we got the right one. |
|
1839 */ |
|
1840 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
1841 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){ |
|
1842 HashElem *pElem; |
|
1843 Hash *pHash; |
|
1844 |
|
1845 pHash = &pDb->pSchema->tblHash; |
|
1846 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ |
|
1847 Table *pTab = sqliteHashData(pElem); |
|
1848 if( pTab->tnum==iFrom ){ |
|
1849 pTab->tnum = iTo; |
|
1850 } |
|
1851 } |
|
1852 pHash = &pDb->pSchema->idxHash; |
|
1853 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){ |
|
1854 Index *pIdx = sqliteHashData(pElem); |
|
1855 if( pIdx->tnum==iFrom ){ |
|
1856 pIdx->tnum = iTo; |
|
1857 } |
|
1858 } |
|
1859 } |
|
1860 #endif |
|
1861 |
|
1862 /* |
|
1863 ** Write code to erase the table with root-page iTable from database iDb. |
|
1864 ** Also write code to modify the sqlite_master table and internal schema |
|
1865 ** if a root-page of another table is moved by the btree-layer whilst |
|
1866 ** erasing iTable (this can happen with an auto-vacuum database). |
|
1867 */ |
|
1868 static void destroyRootPage(Parse *pParse, int iTable, int iDb){ |
|
1869 Vdbe *v = sqlite3GetVdbe(pParse); |
|
1870 int r1 = sqlite3GetTempReg(pParse); |
|
1871 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); |
|
1872 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
1873 /* OP_Destroy stores an in integer r1. If this integer |
|
1874 ** is non-zero, then it is the root page number of a table moved to |
|
1875 ** location iTable. The following code modifies the sqlite_master table to |
|
1876 ** reflect this. |
|
1877 ** |
|
1878 ** The "#%d" in the SQL is a special constant that means whatever value |
|
1879 ** is on the top of the stack. See sqlite3RegisterExpr(). |
|
1880 */ |
|
1881 sqlite3NestedParse(pParse, |
|
1882 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d", |
|
1883 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1); |
|
1884 #endif |
|
1885 sqlite3ReleaseTempReg(pParse, r1); |
|
1886 } |
|
1887 |
|
1888 /* |
|
1889 ** Write VDBE code to erase table pTab and all associated indices on disk. |
|
1890 ** Code to update the sqlite_master tables and internal schema definitions |
|
1891 ** in case a root-page belonging to another table is moved by the btree layer |
|
1892 ** is also added (this can happen with an auto-vacuum database). |
|
1893 */ |
|
1894 static void destroyTable(Parse *pParse, Table *pTab){ |
|
1895 #ifdef SQLITE_OMIT_AUTOVACUUM |
|
1896 Index *pIdx; |
|
1897 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
|
1898 destroyRootPage(pParse, pTab->tnum, iDb); |
|
1899 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
|
1900 destroyRootPage(pParse, pIdx->tnum, iDb); |
|
1901 } |
|
1902 #else |
|
1903 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM |
|
1904 ** is not defined), then it is important to call OP_Destroy on the |
|
1905 ** table and index root-pages in order, starting with the numerically |
|
1906 ** largest root-page number. This guarantees that none of the root-pages |
|
1907 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the |
|
1908 ** following were coded: |
|
1909 ** |
|
1910 ** OP_Destroy 4 0 |
|
1911 ** ... |
|
1912 ** OP_Destroy 5 0 |
|
1913 ** |
|
1914 ** and root page 5 happened to be the largest root-page number in the |
|
1915 ** database, then root page 5 would be moved to page 4 by the |
|
1916 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit |
|
1917 ** a free-list page. |
|
1918 */ |
|
1919 int iTab = pTab->tnum; |
|
1920 int iDestroyed = 0; |
|
1921 |
|
1922 while( 1 ){ |
|
1923 Index *pIdx; |
|
1924 int iLargest = 0; |
|
1925 |
|
1926 if( iDestroyed==0 || iTab<iDestroyed ){ |
|
1927 iLargest = iTab; |
|
1928 } |
|
1929 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
|
1930 int iIdx = pIdx->tnum; |
|
1931 assert( pIdx->pSchema==pTab->pSchema ); |
|
1932 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){ |
|
1933 iLargest = iIdx; |
|
1934 } |
|
1935 } |
|
1936 if( iLargest==0 ){ |
|
1937 return; |
|
1938 }else{ |
|
1939 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
|
1940 destroyRootPage(pParse, iLargest, iDb); |
|
1941 iDestroyed = iLargest; |
|
1942 } |
|
1943 } |
|
1944 #endif |
|
1945 } |
|
1946 |
|
1947 /* |
|
1948 ** This routine is called to do the work of a DROP TABLE statement. |
|
1949 ** pName is the name of the table to be dropped. |
|
1950 */ |
|
1951 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){ |
|
1952 Table *pTab; |
|
1953 Vdbe *v; |
|
1954 sqlite3 *db = pParse->db; |
|
1955 int iDb; |
|
1956 |
|
1957 if( pParse->nErr || db->mallocFailed ){ |
|
1958 goto exit_drop_table; |
|
1959 } |
|
1960 assert( pName->nSrc==1 ); |
|
1961 pTab = sqlite3LocateTable(pParse, isView, |
|
1962 pName->a[0].zName, pName->a[0].zDatabase); |
|
1963 |
|
1964 if( pTab==0 ){ |
|
1965 if( noErr ){ |
|
1966 sqlite3ErrorClear(pParse); |
|
1967 } |
|
1968 goto exit_drop_table; |
|
1969 } |
|
1970 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
|
1971 assert( iDb>=0 && iDb<db->nDb ); |
|
1972 |
|
1973 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure |
|
1974 ** it is initialized. |
|
1975 */ |
|
1976 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){ |
|
1977 goto exit_drop_table; |
|
1978 } |
|
1979 #ifndef SQLITE_OMIT_AUTHORIZATION |
|
1980 { |
|
1981 int code; |
|
1982 const char *zTab = SCHEMA_TABLE(iDb); |
|
1983 const char *zDb = db->aDb[iDb].zName; |
|
1984 const char *zArg2 = 0; |
|
1985 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){ |
|
1986 goto exit_drop_table; |
|
1987 } |
|
1988 if( isView ){ |
|
1989 if( !OMIT_TEMPDB && iDb==1 ){ |
|
1990 code = SQLITE_DROP_TEMP_VIEW; |
|
1991 }else{ |
|
1992 code = SQLITE_DROP_VIEW; |
|
1993 } |
|
1994 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
1995 }else if( IsVirtual(pTab) ){ |
|
1996 code = SQLITE_DROP_VTABLE; |
|
1997 zArg2 = pTab->pMod->zName; |
|
1998 #endif |
|
1999 }else{ |
|
2000 if( !OMIT_TEMPDB && iDb==1 ){ |
|
2001 code = SQLITE_DROP_TEMP_TABLE; |
|
2002 }else{ |
|
2003 code = SQLITE_DROP_TABLE; |
|
2004 } |
|
2005 } |
|
2006 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){ |
|
2007 goto exit_drop_table; |
|
2008 } |
|
2009 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){ |
|
2010 goto exit_drop_table; |
|
2011 } |
|
2012 } |
|
2013 #endif |
|
2014 if( pTab->readOnly || pTab==db->aDb[iDb].pSchema->pSeqTab ){ |
|
2015 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName); |
|
2016 goto exit_drop_table; |
|
2017 } |
|
2018 |
|
2019 #ifndef SQLITE_OMIT_VIEW |
|
2020 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used |
|
2021 ** on a table. |
|
2022 */ |
|
2023 if( isView && pTab->pSelect==0 ){ |
|
2024 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName); |
|
2025 goto exit_drop_table; |
|
2026 } |
|
2027 if( !isView && pTab->pSelect ){ |
|
2028 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName); |
|
2029 goto exit_drop_table; |
|
2030 } |
|
2031 #endif |
|
2032 |
|
2033 /* Generate code to remove the table from the master table |
|
2034 ** on disk. |
|
2035 */ |
|
2036 v = sqlite3GetVdbe(pParse); |
|
2037 if( v ){ |
|
2038 Trigger *pTrigger; |
|
2039 Db *pDb = &db->aDb[iDb]; |
|
2040 sqlite3BeginWriteOperation(pParse, 1, iDb); |
|
2041 |
|
2042 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
2043 if( IsVirtual(pTab) ){ |
|
2044 Vdbe *v = sqlite3GetVdbe(pParse); |
|
2045 if( v ){ |
|
2046 sqlite3VdbeAddOp0(v, OP_VBegin); |
|
2047 } |
|
2048 } |
|
2049 #endif |
|
2050 |
|
2051 /* Drop all triggers associated with the table being dropped. Code |
|
2052 ** is generated to remove entries from sqlite_master and/or |
|
2053 ** sqlite_temp_master if required. |
|
2054 */ |
|
2055 pTrigger = pTab->pTrigger; |
|
2056 while( pTrigger ){ |
|
2057 assert( pTrigger->pSchema==pTab->pSchema || |
|
2058 pTrigger->pSchema==db->aDb[1].pSchema ); |
|
2059 sqlite3DropTriggerPtr(pParse, pTrigger); |
|
2060 pTrigger = pTrigger->pNext; |
|
2061 } |
|
2062 |
|
2063 #ifndef SQLITE_OMIT_AUTOINCREMENT |
|
2064 /* Remove any entries of the sqlite_sequence table associated with |
|
2065 ** the table being dropped. This is done before the table is dropped |
|
2066 ** at the btree level, in case the sqlite_sequence table needs to |
|
2067 ** move as a result of the drop (can happen in auto-vacuum mode). |
|
2068 */ |
|
2069 if( pTab->autoInc ){ |
|
2070 sqlite3NestedParse(pParse, |
|
2071 "DELETE FROM %s.sqlite_sequence WHERE name=%Q", |
|
2072 pDb->zName, pTab->zName |
|
2073 ); |
|
2074 } |
|
2075 #endif |
|
2076 |
|
2077 /* Drop all SQLITE_MASTER table and index entries that refer to the |
|
2078 ** table. The program name loops through the master table and deletes |
|
2079 ** every row that refers to a table of the same name as the one being |
|
2080 ** dropped. Triggers are handled seperately because a trigger can be |
|
2081 ** created in the temp database that refers to a table in another |
|
2082 ** database. |
|
2083 */ |
|
2084 sqlite3NestedParse(pParse, |
|
2085 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'", |
|
2086 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName); |
|
2087 |
|
2088 /* Drop any statistics from the sqlite_stat1 table, if it exists */ |
|
2089 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ |
|
2090 sqlite3NestedParse(pParse, |
|
2091 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName |
|
2092 ); |
|
2093 } |
|
2094 |
|
2095 if( !isView && !IsVirtual(pTab) ){ |
|
2096 destroyTable(pParse, pTab); |
|
2097 } |
|
2098 |
|
2099 /* Remove the table entry from SQLite's internal schema and modify |
|
2100 ** the schema cookie. |
|
2101 */ |
|
2102 if( IsVirtual(pTab) ){ |
|
2103 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0); |
|
2104 } |
|
2105 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0); |
|
2106 sqlite3ChangeCookie(pParse, iDb); |
|
2107 } |
|
2108 sqliteViewResetAll(db, iDb); |
|
2109 |
|
2110 exit_drop_table: |
|
2111 sqlite3SrcListDelete(db, pName); |
|
2112 } |
|
2113 |
|
2114 /* |
|
2115 ** This routine is called to create a new foreign key on the table |
|
2116 ** currently under construction. pFromCol determines which columns |
|
2117 ** in the current table point to the foreign key. If pFromCol==0 then |
|
2118 ** connect the key to the last column inserted. pTo is the name of |
|
2119 ** the table referred to. pToCol is a list of tables in the other |
|
2120 ** pTo table that the foreign key points to. flags contains all |
|
2121 ** information about the conflict resolution algorithms specified |
|
2122 ** in the ON DELETE, ON UPDATE and ON INSERT clauses. |
|
2123 ** |
|
2124 ** An FKey structure is created and added to the table currently |
|
2125 ** under construction in the pParse->pNewTable field. The new FKey |
|
2126 ** is not linked into db->aFKey at this point - that does not happen |
|
2127 ** until sqlite3EndTable(). |
|
2128 ** |
|
2129 ** The foreign key is set for IMMEDIATE processing. A subsequent call |
|
2130 ** to sqlite3DeferForeignKey() might change this to DEFERRED. |
|
2131 */ |
|
2132 void sqlite3CreateForeignKey( |
|
2133 Parse *pParse, /* Parsing context */ |
|
2134 ExprList *pFromCol, /* Columns in this table that point to other table */ |
|
2135 Token *pTo, /* Name of the other table */ |
|
2136 ExprList *pToCol, /* Columns in the other table */ |
|
2137 int flags /* Conflict resolution algorithms. */ |
|
2138 ){ |
|
2139 #ifndef SQLITE_OMIT_FOREIGN_KEY |
|
2140 FKey *pFKey = 0; |
|
2141 Table *p = pParse->pNewTable; |
|
2142 int nByte; |
|
2143 int i; |
|
2144 int nCol; |
|
2145 char *z; |
|
2146 sqlite3 *db; |
|
2147 |
|
2148 assert( pTo!=0 ); |
|
2149 db = pParse->db; |
|
2150 if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end; |
|
2151 if( pFromCol==0 ){ |
|
2152 int iCol = p->nCol-1; |
|
2153 if( iCol<0 ) goto fk_end; |
|
2154 if( pToCol && pToCol->nExpr!=1 ){ |
|
2155 sqlite3ErrorMsg(pParse, "foreign key on %s" |
|
2156 " should reference only one column of table %T", |
|
2157 p->aCol[iCol].zName, pTo); |
|
2158 goto fk_end; |
|
2159 } |
|
2160 nCol = 1; |
|
2161 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){ |
|
2162 sqlite3ErrorMsg(pParse, |
|
2163 "number of columns in foreign key does not match the number of " |
|
2164 "columns in the referenced table"); |
|
2165 goto fk_end; |
|
2166 }else{ |
|
2167 nCol = pFromCol->nExpr; |
|
2168 } |
|
2169 nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1; |
|
2170 if( pToCol ){ |
|
2171 for(i=0; i<pToCol->nExpr; i++){ |
|
2172 nByte += strlen(pToCol->a[i].zName) + 1; |
|
2173 } |
|
2174 } |
|
2175 pFKey = sqlite3DbMallocZero(db, nByte ); |
|
2176 if( pFKey==0 ){ |
|
2177 goto fk_end; |
|
2178 } |
|
2179 pFKey->pFrom = p; |
|
2180 pFKey->pNextFrom = p->pFKey; |
|
2181 z = (char*)&pFKey[1]; |
|
2182 pFKey->aCol = (struct sColMap*)z; |
|
2183 z += sizeof(struct sColMap)*nCol; |
|
2184 pFKey->zTo = z; |
|
2185 memcpy(z, pTo->z, pTo->n); |
|
2186 z[pTo->n] = 0; |
|
2187 z += pTo->n+1; |
|
2188 pFKey->pNextTo = 0; |
|
2189 pFKey->nCol = nCol; |
|
2190 if( pFromCol==0 ){ |
|
2191 pFKey->aCol[0].iFrom = p->nCol-1; |
|
2192 }else{ |
|
2193 for(i=0; i<nCol; i++){ |
|
2194 int j; |
|
2195 for(j=0; j<p->nCol; j++){ |
|
2196 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){ |
|
2197 pFKey->aCol[i].iFrom = j; |
|
2198 break; |
|
2199 } |
|
2200 } |
|
2201 if( j>=p->nCol ){ |
|
2202 sqlite3ErrorMsg(pParse, |
|
2203 "unknown column \"%s\" in foreign key definition", |
|
2204 pFromCol->a[i].zName); |
|
2205 goto fk_end; |
|
2206 } |
|
2207 } |
|
2208 } |
|
2209 if( pToCol ){ |
|
2210 for(i=0; i<nCol; i++){ |
|
2211 int n = strlen(pToCol->a[i].zName); |
|
2212 pFKey->aCol[i].zCol = z; |
|
2213 memcpy(z, pToCol->a[i].zName, n); |
|
2214 z[n] = 0; |
|
2215 z += n+1; |
|
2216 } |
|
2217 } |
|
2218 pFKey->isDeferred = 0; |
|
2219 pFKey->deleteConf = flags & 0xff; |
|
2220 pFKey->updateConf = (flags >> 8 ) & 0xff; |
|
2221 pFKey->insertConf = (flags >> 16 ) & 0xff; |
|
2222 |
|
2223 /* Link the foreign key to the table as the last step. |
|
2224 */ |
|
2225 p->pFKey = pFKey; |
|
2226 pFKey = 0; |
|
2227 |
|
2228 fk_end: |
|
2229 sqlite3DbFree(db, pFKey); |
|
2230 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */ |
|
2231 sqlite3ExprListDelete(db, pFromCol); |
|
2232 sqlite3ExprListDelete(db, pToCol); |
|
2233 } |
|
2234 |
|
2235 /* |
|
2236 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED |
|
2237 ** clause is seen as part of a foreign key definition. The isDeferred |
|
2238 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE. |
|
2239 ** The behavior of the most recently created foreign key is adjusted |
|
2240 ** accordingly. |
|
2241 */ |
|
2242 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){ |
|
2243 #ifndef SQLITE_OMIT_FOREIGN_KEY |
|
2244 Table *pTab; |
|
2245 FKey *pFKey; |
|
2246 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return; |
|
2247 pFKey->isDeferred = isDeferred; |
|
2248 #endif |
|
2249 } |
|
2250 |
|
2251 /* |
|
2252 ** Generate code that will erase and refill index *pIdx. This is |
|
2253 ** used to initialize a newly created index or to recompute the |
|
2254 ** content of an index in response to a REINDEX command. |
|
2255 ** |
|
2256 ** if memRootPage is not negative, it means that the index is newly |
|
2257 ** created. The register specified by memRootPage contains the |
|
2258 ** root page number of the index. If memRootPage is negative, then |
|
2259 ** the index already exists and must be cleared before being refilled and |
|
2260 ** the root page number of the index is taken from pIndex->tnum. |
|
2261 */ |
|
2262 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){ |
|
2263 Table *pTab = pIndex->pTable; /* The table that is indexed */ |
|
2264 int iTab = pParse->nTab; /* Btree cursor used for pTab */ |
|
2265 int iIdx = pParse->nTab+1; /* Btree cursor used for pIndex */ |
|
2266 int addr1; /* Address of top of loop */ |
|
2267 int tnum; /* Root page of index */ |
|
2268 Vdbe *v; /* Generate code into this virtual machine */ |
|
2269 KeyInfo *pKey; /* KeyInfo for index */ |
|
2270 int regIdxKey; /* Registers containing the index key */ |
|
2271 int regRecord; /* Register holding assemblied index record */ |
|
2272 sqlite3 *db = pParse->db; /* The database connection */ |
|
2273 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); |
|
2274 |
|
2275 #ifndef SQLITE_OMIT_AUTHORIZATION |
|
2276 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0, |
|
2277 db->aDb[iDb].zName ) ){ |
|
2278 return; |
|
2279 } |
|
2280 #endif |
|
2281 |
|
2282 /* Require a write-lock on the table to perform this operation */ |
|
2283 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName); |
|
2284 |
|
2285 v = sqlite3GetVdbe(pParse); |
|
2286 if( v==0 ) return; |
|
2287 if( memRootPage>=0 ){ |
|
2288 tnum = memRootPage; |
|
2289 }else{ |
|
2290 tnum = pIndex->tnum; |
|
2291 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb); |
|
2292 } |
|
2293 pKey = sqlite3IndexKeyinfo(pParse, pIndex); |
|
2294 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, |
|
2295 (char *)pKey, P4_KEYINFO_HANDOFF); |
|
2296 if( memRootPage>=0 ){ |
|
2297 sqlite3VdbeChangeP5(v, 1); |
|
2298 } |
|
2299 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); |
|
2300 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); |
|
2301 regRecord = sqlite3GetTempReg(pParse); |
|
2302 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); |
|
2303 if( pIndex->onError!=OE_None ){ |
|
2304 int j1, j2; |
|
2305 int regRowid; |
|
2306 |
|
2307 regRowid = regIdxKey + pIndex->nColumn; |
|
2308 j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn); |
|
2309 j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, |
|
2310 0, regRowid, SQLITE_INT_TO_PTR(regRecord), P4_INT32); |
|
2311 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0, |
|
2312 "indexed columns are not unique", P4_STATIC); |
|
2313 sqlite3VdbeJumpHere(v, j1); |
|
2314 sqlite3VdbeJumpHere(v, j2); |
|
2315 } |
|
2316 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord); |
|
2317 sqlite3ReleaseTempReg(pParse, regRecord); |
|
2318 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); |
|
2319 sqlite3VdbeJumpHere(v, addr1); |
|
2320 sqlite3VdbeAddOp1(v, OP_Close, iTab); |
|
2321 sqlite3VdbeAddOp1(v, OP_Close, iIdx); |
|
2322 } |
|
2323 |
|
2324 /* |
|
2325 ** Create a new index for an SQL table. pName1.pName2 is the name of the index |
|
2326 ** and pTblList is the name of the table that is to be indexed. Both will |
|
2327 ** be NULL for a primary key or an index that is created to satisfy a |
|
2328 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable |
|
2329 ** as the table to be indexed. pParse->pNewTable is a table that is |
|
2330 ** currently being constructed by a CREATE TABLE statement. |
|
2331 ** |
|
2332 ** pList is a list of columns to be indexed. pList will be NULL if this |
|
2333 ** is a primary key or unique-constraint on the most recent column added |
|
2334 ** to the table currently under construction. |
|
2335 */ |
|
2336 void sqlite3CreateIndex( |
|
2337 Parse *pParse, /* All information about this parse */ |
|
2338 Token *pName1, /* First part of index name. May be NULL */ |
|
2339 Token *pName2, /* Second part of index name. May be NULL */ |
|
2340 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ |
|
2341 ExprList *pList, /* A list of columns to be indexed */ |
|
2342 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ |
|
2343 Token *pStart, /* The CREATE token that begins this statement */ |
|
2344 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ |
|
2345 int sortOrder, /* Sort order of primary key when pList==NULL */ |
|
2346 int ifNotExist /* Omit error if index already exists */ |
|
2347 ){ |
|
2348 Table *pTab = 0; /* Table to be indexed */ |
|
2349 Index *pIndex = 0; /* The index to be created */ |
|
2350 char *zName = 0; /* Name of the index */ |
|
2351 int nName; /* Number of characters in zName */ |
|
2352 int i, j; |
|
2353 Token nullId; /* Fake token for an empty ID list */ |
|
2354 DbFixer sFix; /* For assigning database names to pTable */ |
|
2355 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */ |
|
2356 sqlite3 *db = pParse->db; |
|
2357 Db *pDb; /* The specific table containing the indexed database */ |
|
2358 int iDb; /* Index of the database that is being written */ |
|
2359 Token *pName = 0; /* Unqualified name of the index to create */ |
|
2360 struct ExprList_item *pListItem; /* For looping over pList */ |
|
2361 int nCol; |
|
2362 int nExtra = 0; |
|
2363 char *zExtra; |
|
2364 |
|
2365 if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){ |
|
2366 goto exit_create_index; |
|
2367 } |
|
2368 |
|
2369 /* |
|
2370 ** Find the table that is to be indexed. Return early if not found. |
|
2371 */ |
|
2372 if( pTblName!=0 ){ |
|
2373 |
|
2374 /* Use the two-part index name to determine the database |
|
2375 ** to search for the table. 'Fix' the table name to this db |
|
2376 ** before looking up the table. |
|
2377 */ |
|
2378 assert( pName1 && pName2 ); |
|
2379 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName); |
|
2380 if( iDb<0 ) goto exit_create_index; |
|
2381 |
|
2382 #ifndef SQLITE_OMIT_TEMPDB |
|
2383 /* If the index name was unqualified, check if the the table |
|
2384 ** is a temp table. If so, set the database to 1. Do not do this |
|
2385 ** if initialising a database schema. |
|
2386 */ |
|
2387 if( !db->init.busy ){ |
|
2388 pTab = sqlite3SrcListLookup(pParse, pTblName); |
|
2389 if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){ |
|
2390 iDb = 1; |
|
2391 } |
|
2392 } |
|
2393 #endif |
|
2394 |
|
2395 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) && |
|
2396 sqlite3FixSrcList(&sFix, pTblName) |
|
2397 ){ |
|
2398 /* Because the parser constructs pTblName from a single identifier, |
|
2399 ** sqlite3FixSrcList can never fail. */ |
|
2400 assert(0); |
|
2401 } |
|
2402 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, |
|
2403 pTblName->a[0].zDatabase); |
|
2404 if( !pTab ) goto exit_create_index; |
|
2405 assert( db->aDb[iDb].pSchema==pTab->pSchema ); |
|
2406 }else{ |
|
2407 assert( pName==0 ); |
|
2408 pTab = pParse->pNewTable; |
|
2409 if( !pTab ) goto exit_create_index; |
|
2410 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
|
2411 } |
|
2412 pDb = &db->aDb[iDb]; |
|
2413 |
|
2414 if( pTab==0 || pParse->nErr ) goto exit_create_index; |
|
2415 if( pTab->readOnly ){ |
|
2416 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName); |
|
2417 goto exit_create_index; |
|
2418 } |
|
2419 #ifndef SQLITE_OMIT_VIEW |
|
2420 if( pTab->pSelect ){ |
|
2421 sqlite3ErrorMsg(pParse, "views may not be indexed"); |
|
2422 goto exit_create_index; |
|
2423 } |
|
2424 #endif |
|
2425 #ifndef SQLITE_OMIT_VIRTUALTABLE |
|
2426 if( IsVirtual(pTab) ){ |
|
2427 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed"); |
|
2428 goto exit_create_index; |
|
2429 } |
|
2430 #endif |
|
2431 |
|
2432 /* |
|
2433 ** Find the name of the index. Make sure there is not already another |
|
2434 ** index or table with the same name. |
|
2435 ** |
|
2436 ** Exception: If we are reading the names of permanent indices from the |
|
2437 ** sqlite_master table (because some other process changed the schema) and |
|
2438 ** one of the index names collides with the name of a temporary table or |
|
2439 ** index, then we will continue to process this index. |
|
2440 ** |
|
2441 ** If pName==0 it means that we are |
|
2442 ** dealing with a primary key or UNIQUE constraint. We have to invent our |
|
2443 ** own name. |
|
2444 */ |
|
2445 if( pName ){ |
|
2446 zName = sqlite3NameFromToken(db, pName); |
|
2447 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; |
|
2448 if( zName==0 ) goto exit_create_index; |
|
2449 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){ |
|
2450 goto exit_create_index; |
|
2451 } |
|
2452 if( !db->init.busy ){ |
|
2453 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index; |
|
2454 if( sqlite3FindTable(db, zName, 0)!=0 ){ |
|
2455 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName); |
|
2456 goto exit_create_index; |
|
2457 } |
|
2458 } |
|
2459 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){ |
|
2460 if( !ifNotExist ){ |
|
2461 sqlite3ErrorMsg(pParse, "index %s already exists", zName); |
|
2462 } |
|
2463 goto exit_create_index; |
|
2464 } |
|
2465 }else{ |
|
2466 int n; |
|
2467 Index *pLoop; |
|
2468 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){} |
|
2469 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n); |
|
2470 if( zName==0 ){ |
|
2471 goto exit_create_index; |
|
2472 } |
|
2473 } |
|
2474 |
|
2475 /* Check for authorization to create an index. |
|
2476 */ |
|
2477 #ifndef SQLITE_OMIT_AUTHORIZATION |
|
2478 { |
|
2479 const char *zDb = pDb->zName; |
|
2480 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){ |
|
2481 goto exit_create_index; |
|
2482 } |
|
2483 i = SQLITE_CREATE_INDEX; |
|
2484 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX; |
|
2485 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){ |
|
2486 goto exit_create_index; |
|
2487 } |
|
2488 } |
|
2489 #endif |
|
2490 |
|
2491 /* If pList==0, it means this routine was called to make a primary |
|
2492 ** key out of the last column added to the table under construction. |
|
2493 ** So create a fake list to simulate this. |
|
2494 */ |
|
2495 if( pList==0 ){ |
|
2496 nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName; |
|
2497 nullId.n = strlen((char*)nullId.z); |
|
2498 pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId); |
|
2499 if( pList==0 ) goto exit_create_index; |
|
2500 pList->a[0].sortOrder = sortOrder; |
|
2501 } |
|
2502 |
|
2503 /* Figure out how many bytes of space are required to store explicitly |
|
2504 ** specified collation sequence names. |
|
2505 */ |
|
2506 for(i=0; i<pList->nExpr; i++){ |
|
2507 Expr *pExpr = pList->a[i].pExpr; |
|
2508 if( pExpr ){ |
|
2509 nExtra += (1 + strlen(pExpr->pColl->zName)); |
|
2510 } |
|
2511 } |
|
2512 |
|
2513 /* |
|
2514 ** Allocate the index structure. |
|
2515 */ |
|
2516 nName = strlen(zName); |
|
2517 nCol = pList->nExpr; |
|
2518 pIndex = sqlite3DbMallocZero(db, |
|
2519 sizeof(Index) + /* Index structure */ |
|
2520 sizeof(int)*nCol + /* Index.aiColumn */ |
|
2521 sizeof(int)*(nCol+1) + /* Index.aiRowEst */ |
|
2522 sizeof(char *)*nCol + /* Index.azColl */ |
|
2523 sizeof(u8)*nCol + /* Index.aSortOrder */ |
|
2524 nName + 1 + /* Index.zName */ |
|
2525 nExtra /* Collation sequence names */ |
|
2526 ); |
|
2527 if( db->mallocFailed ){ |
|
2528 goto exit_create_index; |
|
2529 } |
|
2530 pIndex->azColl = (char**)(&pIndex[1]); |
|
2531 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]); |
|
2532 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]); |
|
2533 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]); |
|
2534 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); |
|
2535 zExtra = (char *)(&pIndex->zName[nName+1]); |
|
2536 memcpy(pIndex->zName, zName, nName+1); |
|
2537 pIndex->pTable = pTab; |
|
2538 pIndex->nColumn = pList->nExpr; |
|
2539 pIndex->onError = onError; |
|
2540 pIndex->autoIndex = pName==0; |
|
2541 pIndex->pSchema = db->aDb[iDb].pSchema; |
|
2542 |
|
2543 /* Check to see if we should honor DESC requests on index columns |
|
2544 */ |
|
2545 if( pDb->pSchema->file_format>=4 ){ |
|
2546 sortOrderMask = -1; /* Honor DESC */ |
|
2547 }else{ |
|
2548 sortOrderMask = 0; /* Ignore DESC */ |
|
2549 } |
|
2550 |
|
2551 /* Scan the names of the columns of the table to be indexed and |
|
2552 ** load the column indices into the Index structure. Report an error |
|
2553 ** if any column is not found. |
|
2554 */ |
|
2555 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ |
|
2556 const char *zColName = pListItem->zName; |
|
2557 Column *pTabCol; |
|
2558 int requestedSortOrder; |
|
2559 char *zColl; /* Collation sequence name */ |
|
2560 |
|
2561 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){ |
|
2562 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break; |
|
2563 } |
|
2564 if( j>=pTab->nCol ){ |
|
2565 sqlite3ErrorMsg(pParse, "table %s has no column named %s", |
|
2566 pTab->zName, zColName); |
|
2567 goto exit_create_index; |
|
2568 } |
|
2569 /* TODO: Add a test to make sure that the same column is not named |
|
2570 ** more than once within the same index. Only the first instance of |
|
2571 ** the column will ever be used by the optimizer. Note that using the |
|
2572 ** same column more than once cannot be an error because that would |
|
2573 ** break backwards compatibility - it needs to be a warning. |
|
2574 */ |
|
2575 pIndex->aiColumn[i] = j; |
|
2576 if( pListItem->pExpr ){ |
|
2577 assert( pListItem->pExpr->pColl ); |
|
2578 zColl = zExtra; |
|
2579 sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName); |
|
2580 zExtra += (strlen(zColl) + 1); |
|
2581 }else{ |
|
2582 zColl = pTab->aCol[j].zColl; |
|
2583 if( !zColl ){ |
|
2584 zColl = db->pDfltColl->zName; |
|
2585 } |
|
2586 } |
|
2587 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){ |
|
2588 goto exit_create_index; |
|
2589 } |
|
2590 pIndex->azColl[i] = zColl; |
|
2591 requestedSortOrder = pListItem->sortOrder & sortOrderMask; |
|
2592 pIndex->aSortOrder[i] = requestedSortOrder; |
|
2593 } |
|
2594 sqlite3DefaultRowEst(pIndex); |
|
2595 |
|
2596 if( pTab==pParse->pNewTable ){ |
|
2597 /* This routine has been called to create an automatic index as a |
|
2598 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or |
|
2599 ** a PRIMARY KEY or UNIQUE clause following the column definitions. |
|
2600 ** i.e. one of: |
|
2601 ** |
|
2602 ** CREATE TABLE t(x PRIMARY KEY, y); |
|
2603 ** CREATE TABLE t(x, y, UNIQUE(x, y)); |
|
2604 ** |
|
2605 ** Either way, check to see if the table already has such an index. If |
|
2606 ** so, don't bother creating this one. This only applies to |
|
2607 ** automatically created indices. Users can do as they wish with |
|
2608 ** explicit indices. |
|
2609 */ |
|
2610 Index *pIdx; |
|
2611 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
|
2612 int k; |
|
2613 assert( pIdx->onError!=OE_None ); |
|
2614 assert( pIdx->autoIndex ); |
|
2615 assert( pIndex->onError!=OE_None ); |
|
2616 |
|
2617 if( pIdx->nColumn!=pIndex->nColumn ) continue; |
|
2618 for(k=0; k<pIdx->nColumn; k++){ |
|
2619 const char *z1 = pIdx->azColl[k]; |
|
2620 const char *z2 = pIndex->azColl[k]; |
|
2621 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break; |
|
2622 if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break; |
|
2623 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break; |
|
2624 } |
|
2625 if( k==pIdx->nColumn ){ |
|
2626 if( pIdx->onError!=pIndex->onError ){ |
|
2627 /* This constraint creates the same index as a previous |
|
2628 ** constraint specified somewhere in the CREATE TABLE statement. |
|
2629 ** However the ON CONFLICT clauses are different. If both this |
|
2630 ** constraint and the previous equivalent constraint have explicit |
|
2631 ** ON CONFLICT clauses this is an error. Otherwise, use the |
|
2632 ** explicitly specified behaviour for the index. |
|
2633 */ |
|
2634 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){ |
|
2635 sqlite3ErrorMsg(pParse, |
|
2636 "conflicting ON CONFLICT clauses specified", 0); |
|
2637 } |
|
2638 if( pIdx->onError==OE_Default ){ |
|
2639 pIdx->onError = pIndex->onError; |
|
2640 } |
|
2641 } |
|
2642 goto exit_create_index; |
|
2643 } |
|
2644 } |
|
2645 } |
|
2646 |
|
2647 /* Link the new Index structure to its table and to the other |
|
2648 ** in-memory database structures. |
|
2649 */ |
|
2650 if( db->init.busy ){ |
|
2651 Index *p; |
|
2652 p = sqlite3HashInsert(&pIndex->pSchema->idxHash, |
|
2653 pIndex->zName, strlen(pIndex->zName)+1, pIndex); |
|
2654 if( p ){ |
|
2655 assert( p==pIndex ); /* Malloc must have failed */ |
|
2656 db->mallocFailed = 1; |
|
2657 goto exit_create_index; |
|
2658 } |
|
2659 db->flags |= SQLITE_InternChanges; |
|
2660 if( pTblName!=0 ){ |
|
2661 pIndex->tnum = db->init.newTnum; |
|
2662 } |
|
2663 } |
|
2664 |
|
2665 /* If the db->init.busy is 0 then create the index on disk. This |
|
2666 ** involves writing the index into the master table and filling in the |
|
2667 ** index with the current table contents. |
|
2668 ** |
|
2669 ** The db->init.busy is 0 when the user first enters a CREATE INDEX |
|
2670 ** command. db->init.busy is 1 when a database is opened and |
|
2671 ** CREATE INDEX statements are read out of the master table. In |
|
2672 ** the latter case the index already exists on disk, which is why |
|
2673 ** we don't want to recreate it. |
|
2674 ** |
|
2675 ** If pTblName==0 it means this index is generated as a primary key |
|
2676 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table |
|
2677 ** has just been created, it contains no data and the index initialization |
|
2678 ** step can be skipped. |
|
2679 */ |
|
2680 else if( db->init.busy==0 ){ |
|
2681 Vdbe *v; |
|
2682 char *zStmt; |
|
2683 int iMem = ++pParse->nMem; |
|
2684 |
|
2685 v = sqlite3GetVdbe(pParse); |
|
2686 if( v==0 ) goto exit_create_index; |
|
2687 |
|
2688 |
|
2689 /* Create the rootpage for the index |
|
2690 */ |
|
2691 sqlite3BeginWriteOperation(pParse, 1, iDb); |
|
2692 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); |
|
2693 |
|
2694 /* Gather the complete text of the CREATE INDEX statement into |
|
2695 ** the zStmt variable |
|
2696 */ |
|
2697 if( pStart && pEnd ){ |
|
2698 /* A named index with an explicit CREATE INDEX statement */ |
|
2699 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", |
|
2700 onError==OE_None ? "" : " UNIQUE", |
|
2701 pEnd->z - pName->z + 1, |
|
2702 pName->z); |
|
2703 }else{ |
|
2704 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ |
|
2705 /* zStmt = sqlite3MPrintf(""); */ |
|
2706 zStmt = 0; |
|
2707 } |
|
2708 |
|
2709 /* Add an entry in sqlite_master for this index |
|
2710 */ |
|
2711 sqlite3NestedParse(pParse, |
|
2712 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);", |
|
2713 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), |
|
2714 pIndex->zName, |
|
2715 pTab->zName, |
|
2716 iMem, |
|
2717 zStmt |
|
2718 ); |
|
2719 sqlite3DbFree(db, zStmt); |
|
2720 |
|
2721 /* Fill the index with data and reparse the schema. Code an OP_Expire |
|
2722 ** to invalidate all pre-compiled statements. |
|
2723 */ |
|
2724 if( pTblName ){ |
|
2725 sqlite3RefillIndex(pParse, pIndex, iMem); |
|
2726 sqlite3ChangeCookie(pParse, iDb); |
|
2727 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0, |
|
2728 sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC); |
|
2729 sqlite3VdbeAddOp1(v, OP_Expire, 0); |
|
2730 } |
|
2731 } |
|
2732 |
|
2733 /* When adding an index to the list of indices for a table, make |
|
2734 ** sure all indices labeled OE_Replace come after all those labeled |
|
2735 ** OE_Ignore. This is necessary for the correct operation of UPDATE |
|
2736 ** and INSERT. |
|
2737 */ |
|
2738 if( db->init.busy || pTblName==0 ){ |
|
2739 if( onError!=OE_Replace || pTab->pIndex==0 |
|
2740 || pTab->pIndex->onError==OE_Replace){ |
|
2741 pIndex->pNext = pTab->pIndex; |
|
2742 pTab->pIndex = pIndex; |
|
2743 }else{ |
|
2744 Index *pOther = pTab->pIndex; |
|
2745 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){ |
|
2746 pOther = pOther->pNext; |
|
2747 } |
|
2748 pIndex->pNext = pOther->pNext; |
|
2749 pOther->pNext = pIndex; |
|
2750 } |
|
2751 pIndex = 0; |
|
2752 } |
|
2753 |
|
2754 /* Clean up before exiting */ |
|
2755 exit_create_index: |
|
2756 if( pIndex ){ |
|
2757 sqlite3_free(pIndex->zColAff); |
|
2758 sqlite3DbFree(db, pIndex); |
|
2759 } |
|
2760 sqlite3ExprListDelete(db, pList); |
|
2761 sqlite3SrcListDelete(db, pTblName); |
|
2762 sqlite3DbFree(db, zName); |
|
2763 return; |
|
2764 } |
|
2765 |
|
2766 /* |
|
2767 ** Generate code to make sure the file format number is at least minFormat. |
|
2768 ** The generated code will increase the file format number if necessary. |
|
2769 */ |
|
2770 void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){ |
|
2771 Vdbe *v; |
|
2772 v = sqlite3GetVdbe(pParse); |
|
2773 if( v ){ |
|
2774 int r1 = sqlite3GetTempReg(pParse); |
|
2775 int r2 = sqlite3GetTempReg(pParse); |
|
2776 int j1; |
|
2777 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1); |
|
2778 sqlite3VdbeUsesBtree(v, iDb); |
|
2779 sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2); |
|
2780 j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1); |
|
2781 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2); |
|
2782 sqlite3VdbeJumpHere(v, j1); |
|
2783 sqlite3ReleaseTempReg(pParse, r1); |
|
2784 sqlite3ReleaseTempReg(pParse, r2); |
|
2785 } |
|
2786 } |
|
2787 |
|
2788 /* |
|
2789 ** Fill the Index.aiRowEst[] array with default information - information |
|
2790 ** to be used when we have not run the ANALYZE command. |
|
2791 ** |
|
2792 ** aiRowEst[0] is suppose to contain the number of elements in the index. |
|
2793 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the |
|
2794 ** number of rows in the table that match any particular value of the |
|
2795 ** first column of the index. aiRowEst[2] is an estimate of the number |
|
2796 ** of rows that match any particular combiniation of the first 2 columns |
|
2797 ** of the index. And so forth. It must always be the case that |
|
2798 * |
|
2799 ** aiRowEst[N]<=aiRowEst[N-1] |
|
2800 ** aiRowEst[N]>=1 |
|
2801 ** |
|
2802 ** Apart from that, we have little to go on besides intuition as to |
|
2803 ** how aiRowEst[] should be initialized. The numbers generated here |
|
2804 ** are based on typical values found in actual indices. |
|
2805 */ |
|
2806 void sqlite3DefaultRowEst(Index *pIdx){ |
|
2807 unsigned *a = pIdx->aiRowEst; |
|
2808 int i; |
|
2809 assert( a!=0 ); |
|
2810 a[0] = 1000000; |
|
2811 for(i=pIdx->nColumn; i>=5; i--){ |
|
2812 a[i] = 5; |
|
2813 } |
|
2814 while( i>=1 ){ |
|
2815 a[i] = 11 - i; |
|
2816 i--; |
|
2817 } |
|
2818 if( pIdx->onError!=OE_None ){ |
|
2819 a[pIdx->nColumn] = 1; |
|
2820 } |
|
2821 } |
|
2822 |
|
2823 /* |
|
2824 ** This routine will drop an existing named index. This routine |
|
2825 ** implements the DROP INDEX statement. |
|
2826 */ |
|
2827 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){ |
|
2828 Index *pIndex; |
|
2829 Vdbe *v; |
|
2830 sqlite3 *db = pParse->db; |
|
2831 int iDb; |
|
2832 |
|
2833 if( pParse->nErr || db->mallocFailed ){ |
|
2834 goto exit_drop_index; |
|
2835 } |
|
2836 assert( pName->nSrc==1 ); |
|
2837 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
|
2838 goto exit_drop_index; |
|
2839 } |
|
2840 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase); |
|
2841 if( pIndex==0 ){ |
|
2842 if( !ifExists ){ |
|
2843 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0); |
|
2844 } |
|
2845 pParse->checkSchema = 1; |
|
2846 goto exit_drop_index; |
|
2847 } |
|
2848 if( pIndex->autoIndex ){ |
|
2849 sqlite3ErrorMsg(pParse, "index associated with UNIQUE " |
|
2850 "or PRIMARY KEY constraint cannot be dropped", 0); |
|
2851 goto exit_drop_index; |
|
2852 } |
|
2853 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); |
|
2854 #ifndef SQLITE_OMIT_AUTHORIZATION |
|
2855 { |
|
2856 int code = SQLITE_DROP_INDEX; |
|
2857 Table *pTab = pIndex->pTable; |
|
2858 const char *zDb = db->aDb[iDb].zName; |
|
2859 const char *zTab = SCHEMA_TABLE(iDb); |
|
2860 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){ |
|
2861 goto exit_drop_index; |
|
2862 } |
|
2863 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX; |
|
2864 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){ |
|
2865 goto exit_drop_index; |
|
2866 } |
|
2867 } |
|
2868 #endif |
|
2869 |
|
2870 /* Generate code to remove the index and from the master table */ |
|
2871 v = sqlite3GetVdbe(pParse); |
|
2872 if( v ){ |
|
2873 sqlite3BeginWriteOperation(pParse, 1, iDb); |
|
2874 sqlite3NestedParse(pParse, |
|
2875 "DELETE FROM %Q.%s WHERE name=%Q", |
|
2876 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), |
|
2877 pIndex->zName |
|
2878 ); |
|
2879 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){ |
|
2880 sqlite3NestedParse(pParse, |
|
2881 "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q", |
|
2882 db->aDb[iDb].zName, pIndex->zName |
|
2883 ); |
|
2884 } |
|
2885 sqlite3ChangeCookie(pParse, iDb); |
|
2886 destroyRootPage(pParse, pIndex->tnum, iDb); |
|
2887 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0); |
|
2888 } |
|
2889 |
|
2890 exit_drop_index: |
|
2891 sqlite3SrcListDelete(db, pName); |
|
2892 } |
|
2893 |
|
2894 /* |
|
2895 ** pArray is a pointer to an array of objects. Each object in the |
|
2896 ** array is szEntry bytes in size. This routine allocates a new |
|
2897 ** object on the end of the array. |
|
2898 ** |
|
2899 ** *pnEntry is the number of entries already in use. *pnAlloc is |
|
2900 ** the previously allocated size of the array. initSize is the |
|
2901 ** suggested initial array size allocation. |
|
2902 ** |
|
2903 ** The index of the new entry is returned in *pIdx. |
|
2904 ** |
|
2905 ** This routine returns a pointer to the array of objects. This |
|
2906 ** might be the same as the pArray parameter or it might be a different |
|
2907 ** pointer if the array was resized. |
|
2908 */ |
|
2909 void *sqlite3ArrayAllocate( |
|
2910 sqlite3 *db, /* Connection to notify of malloc failures */ |
|
2911 void *pArray, /* Array of objects. Might be reallocated */ |
|
2912 int szEntry, /* Size of each object in the array */ |
|
2913 int initSize, /* Suggested initial allocation, in elements */ |
|
2914 int *pnEntry, /* Number of objects currently in use */ |
|
2915 int *pnAlloc, /* Current size of the allocation, in elements */ |
|
2916 int *pIdx /* Write the index of a new slot here */ |
|
2917 ){ |
|
2918 char *z; |
|
2919 if( *pnEntry >= *pnAlloc ){ |
|
2920 void *pNew; |
|
2921 int newSize; |
|
2922 newSize = (*pnAlloc)*2 + initSize; |
|
2923 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry); |
|
2924 if( pNew==0 ){ |
|
2925 *pIdx = -1; |
|
2926 return pArray; |
|
2927 } |
|
2928 *pnAlloc = newSize; |
|
2929 pArray = pNew; |
|
2930 } |
|
2931 z = (char*)pArray; |
|
2932 memset(&z[*pnEntry * szEntry], 0, szEntry); |
|
2933 *pIdx = *pnEntry; |
|
2934 ++*pnEntry; |
|
2935 return pArray; |
|
2936 } |
|
2937 |
|
2938 /* |
|
2939 ** Append a new element to the given IdList. Create a new IdList if |
|
2940 ** need be. |
|
2941 ** |
|
2942 ** A new IdList is returned, or NULL if malloc() fails. |
|
2943 */ |
|
2944 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){ |
|
2945 int i; |
|
2946 if( pList==0 ){ |
|
2947 pList = sqlite3DbMallocZero(db, sizeof(IdList) ); |
|
2948 if( pList==0 ) return 0; |
|
2949 pList->nAlloc = 0; |
|
2950 } |
|
2951 pList->a = sqlite3ArrayAllocate( |
|
2952 db, |
|
2953 pList->a, |
|
2954 sizeof(pList->a[0]), |
|
2955 5, |
|
2956 &pList->nId, |
|
2957 &pList->nAlloc, |
|
2958 &i |
|
2959 ); |
|
2960 if( i<0 ){ |
|
2961 sqlite3IdListDelete(db, pList); |
|
2962 return 0; |
|
2963 } |
|
2964 pList->a[i].zName = sqlite3NameFromToken(db, pToken); |
|
2965 return pList; |
|
2966 } |
|
2967 |
|
2968 /* |
|
2969 ** Delete an IdList. |
|
2970 */ |
|
2971 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){ |
|
2972 int i; |
|
2973 if( pList==0 ) return; |
|
2974 for(i=0; i<pList->nId; i++){ |
|
2975 sqlite3DbFree(db, pList->a[i].zName); |
|
2976 } |
|
2977 sqlite3DbFree(db, pList->a); |
|
2978 sqlite3DbFree(db, pList); |
|
2979 } |
|
2980 |
|
2981 /* |
|
2982 ** Return the index in pList of the identifier named zId. Return -1 |
|
2983 ** if not found. |
|
2984 */ |
|
2985 int sqlite3IdListIndex(IdList *pList, const char *zName){ |
|
2986 int i; |
|
2987 if( pList==0 ) return -1; |
|
2988 for(i=0; i<pList->nId; i++){ |
|
2989 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i; |
|
2990 } |
|
2991 return -1; |
|
2992 } |
|
2993 |
|
2994 /* |
|
2995 ** Append a new table name to the given SrcList. Create a new SrcList if |
|
2996 ** need be. A new entry is created in the SrcList even if pToken is NULL. |
|
2997 ** |
|
2998 ** A new SrcList is returned, or NULL if malloc() fails. |
|
2999 ** |
|
3000 ** If pDatabase is not null, it means that the table has an optional |
|
3001 ** database name prefix. Like this: "database.table". The pDatabase |
|
3002 ** points to the table name and the pTable points to the database name. |
|
3003 ** The SrcList.a[].zName field is filled with the table name which might |
|
3004 ** come from pTable (if pDatabase is NULL) or from pDatabase. |
|
3005 ** SrcList.a[].zDatabase is filled with the database name from pTable, |
|
3006 ** or with NULL if no database is specified. |
|
3007 ** |
|
3008 ** In other words, if call like this: |
|
3009 ** |
|
3010 ** sqlite3SrcListAppend(D,A,B,0); |
|
3011 ** |
|
3012 ** Then B is a table name and the database name is unspecified. If called |
|
3013 ** like this: |
|
3014 ** |
|
3015 ** sqlite3SrcListAppend(D,A,B,C); |
|
3016 ** |
|
3017 ** Then C is the table name and B is the database name. |
|
3018 */ |
|
3019 SrcList *sqlite3SrcListAppend( |
|
3020 sqlite3 *db, /* Connection to notify of malloc failures */ |
|
3021 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */ |
|
3022 Token *pTable, /* Table to append */ |
|
3023 Token *pDatabase /* Database of the table */ |
|
3024 ){ |
|
3025 struct SrcList_item *pItem; |
|
3026 if( pList==0 ){ |
|
3027 pList = sqlite3DbMallocZero(db, sizeof(SrcList) ); |
|
3028 if( pList==0 ) return 0; |
|
3029 pList->nAlloc = 1; |
|
3030 } |
|
3031 if( pList->nSrc>=pList->nAlloc ){ |
|
3032 SrcList *pNew; |
|
3033 pList->nAlloc *= 2; |
|
3034 pNew = sqlite3DbRealloc(db, pList, |
|
3035 sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) ); |
|
3036 if( pNew==0 ){ |
|
3037 sqlite3SrcListDelete(db, pList); |
|
3038 return 0; |
|
3039 } |
|
3040 pList = pNew; |
|
3041 } |
|
3042 pItem = &pList->a[pList->nSrc]; |
|
3043 memset(pItem, 0, sizeof(pList->a[0])); |
|
3044 if( pDatabase && pDatabase->z==0 ){ |
|
3045 pDatabase = 0; |
|
3046 } |
|
3047 if( pDatabase && pTable ){ |
|
3048 Token *pTemp = pDatabase; |
|
3049 pDatabase = pTable; |
|
3050 pTable = pTemp; |
|
3051 } |
|
3052 pItem->zName = sqlite3NameFromToken(db, pTable); |
|
3053 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase); |
|
3054 pItem->iCursor = -1; |
|
3055 pItem->isPopulated = 0; |
|
3056 pList->nSrc++; |
|
3057 return pList; |
|
3058 } |
|
3059 |
|
3060 /* |
|
3061 ** Assign cursors to all tables in a SrcList |
|
3062 */ |
|
3063 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){ |
|
3064 int i; |
|
3065 struct SrcList_item *pItem; |
|
3066 assert(pList || pParse->db->mallocFailed ); |
|
3067 if( pList ){ |
|
3068 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){ |
|
3069 if( pItem->iCursor>=0 ) break; |
|
3070 pItem->iCursor = pParse->nTab++; |
|
3071 if( pItem->pSelect ){ |
|
3072 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc); |
|
3073 } |
|
3074 } |
|
3075 } |
|
3076 } |
|
3077 |
|
3078 /* |
|
3079 ** Delete an entire SrcList including all its substructure. |
|
3080 */ |
|
3081 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){ |
|
3082 int i; |
|
3083 struct SrcList_item *pItem; |
|
3084 if( pList==0 ) return; |
|
3085 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){ |
|
3086 sqlite3DbFree(db, pItem->zDatabase); |
|
3087 sqlite3DbFree(db, pItem->zName); |
|
3088 sqlite3DbFree(db, pItem->zAlias); |
|
3089 sqlite3DeleteTable(pItem->pTab); |
|
3090 sqlite3SelectDelete(db, pItem->pSelect); |
|
3091 sqlite3ExprDelete(db, pItem->pOn); |
|
3092 sqlite3IdListDelete(db, pItem->pUsing); |
|
3093 } |
|
3094 sqlite3DbFree(db, pList); |
|
3095 } |
|
3096 |
|
3097 /* |
|
3098 ** This routine is called by the parser to add a new term to the |
|
3099 ** end of a growing FROM clause. The "p" parameter is the part of |
|
3100 ** the FROM clause that has already been constructed. "p" is NULL |
|
3101 ** if this is the first term of the FROM clause. pTable and pDatabase |
|
3102 ** are the name of the table and database named in the FROM clause term. |
|
3103 ** pDatabase is NULL if the database name qualifier is missing - the |
|
3104 ** usual case. If the term has a alias, then pAlias points to the |
|
3105 ** alias token. If the term is a subquery, then pSubquery is the |
|
3106 ** SELECT statement that the subquery encodes. The pTable and |
|
3107 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing |
|
3108 ** parameters are the content of the ON and USING clauses. |
|
3109 ** |
|
3110 ** Return a new SrcList which encodes is the FROM with the new |
|
3111 ** term added. |
|
3112 */ |
|
3113 SrcList *sqlite3SrcListAppendFromTerm( |
|
3114 Parse *pParse, /* Parsing context */ |
|
3115 SrcList *p, /* The left part of the FROM clause already seen */ |
|
3116 Token *pTable, /* Name of the table to add to the FROM clause */ |
|
3117 Token *pDatabase, /* Name of the database containing pTable */ |
|
3118 Token *pAlias, /* The right-hand side of the AS subexpression */ |
|
3119 Select *pSubquery, /* A subquery used in place of a table name */ |
|
3120 Expr *pOn, /* The ON clause of a join */ |
|
3121 IdList *pUsing /* The USING clause of a join */ |
|
3122 ){ |
|
3123 struct SrcList_item *pItem; |
|
3124 sqlite3 *db = pParse->db; |
|
3125 p = sqlite3SrcListAppend(db, p, pTable, pDatabase); |
|
3126 if( p==0 || p->nSrc==0 ){ |
|
3127 sqlite3ExprDelete(db, pOn); |
|
3128 sqlite3IdListDelete(db, pUsing); |
|
3129 sqlite3SelectDelete(db, pSubquery); |
|
3130 return p; |
|
3131 } |
|
3132 pItem = &p->a[p->nSrc-1]; |
|
3133 if( pAlias && pAlias->n ){ |
|
3134 pItem->zAlias = sqlite3NameFromToken(db, pAlias); |
|
3135 } |
|
3136 pItem->pSelect = pSubquery; |
|
3137 pItem->pOn = pOn; |
|
3138 pItem->pUsing = pUsing; |
|
3139 return p; |
|
3140 } |
|
3141 |
|
3142 /* |
|
3143 ** When building up a FROM clause in the parser, the join operator |
|
3144 ** is initially attached to the left operand. But the code generator |
|
3145 ** expects the join operator to be on the right operand. This routine |
|
3146 ** Shifts all join operators from left to right for an entire FROM |
|
3147 ** clause. |
|
3148 ** |
|
3149 ** Example: Suppose the join is like this: |
|
3150 ** |
|
3151 ** A natural cross join B |
|
3152 ** |
|
3153 ** The operator is "natural cross join". The A and B operands are stored |
|
3154 ** in p->a[0] and p->a[1], respectively. The parser initially stores the |
|
3155 ** operator with A. This routine shifts that operator over to B. |
|
3156 */ |
|
3157 void sqlite3SrcListShiftJoinType(SrcList *p){ |
|
3158 if( p && p->a ){ |
|
3159 int i; |
|
3160 for(i=p->nSrc-1; i>0; i--){ |
|
3161 p->a[i].jointype = p->a[i-1].jointype; |
|
3162 } |
|
3163 p->a[0].jointype = 0; |
|
3164 } |
|
3165 } |
|
3166 |
|
3167 /* |
|
3168 ** Begin a transaction |
|
3169 */ |
|
3170 void sqlite3BeginTransaction(Parse *pParse, int type){ |
|
3171 sqlite3 *db; |
|
3172 Vdbe *v; |
|
3173 int i; |
|
3174 |
|
3175 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; |
|
3176 if( pParse->nErr || db->mallocFailed ) return; |
|
3177 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return; |
|
3178 |
|
3179 v = sqlite3GetVdbe(pParse); |
|
3180 if( !v ) return; |
|
3181 if( type!=TK_DEFERRED ){ |
|
3182 for(i=0; i<db->nDb; i++){ |
|
3183 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1); |
|
3184 sqlite3VdbeUsesBtree(v, i); |
|
3185 } |
|
3186 } |
|
3187 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0); |
|
3188 } |
|
3189 |
|
3190 /* |
|
3191 ** Commit a transaction |
|
3192 */ |
|
3193 void sqlite3CommitTransaction(Parse *pParse){ |
|
3194 sqlite3 *db; |
|
3195 Vdbe *v; |
|
3196 |
|
3197 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; |
|
3198 if( pParse->nErr || db->mallocFailed ) return; |
|
3199 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return; |
|
3200 |
|
3201 v = sqlite3GetVdbe(pParse); |
|
3202 if( v ){ |
|
3203 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0); |
|
3204 } |
|
3205 } |
|
3206 |
|
3207 /* |
|
3208 ** Rollback a transaction |
|
3209 */ |
|
3210 void sqlite3RollbackTransaction(Parse *pParse){ |
|
3211 sqlite3 *db; |
|
3212 Vdbe *v; |
|
3213 |
|
3214 if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return; |
|
3215 if( pParse->nErr || db->mallocFailed ) return; |
|
3216 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return; |
|
3217 |
|
3218 v = sqlite3GetVdbe(pParse); |
|
3219 if( v ){ |
|
3220 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1); |
|
3221 } |
|
3222 } |
|
3223 |
|
3224 /* |
|
3225 ** Make sure the TEMP database is open and available for use. Return |
|
3226 ** the number of errors. Leave any error messages in the pParse structure. |
|
3227 */ |
|
3228 int sqlite3OpenTempDatabase(Parse *pParse){ |
|
3229 sqlite3 *db = pParse->db; |
|
3230 if( db->aDb[1].pBt==0 && !pParse->explain ){ |
|
3231 int rc; |
|
3232 static const int flags = |
|
3233 SQLITE_OPEN_READWRITE | |
|
3234 SQLITE_OPEN_CREATE | |
|
3235 SQLITE_OPEN_EXCLUSIVE | |
|
3236 SQLITE_OPEN_DELETEONCLOSE | |
|
3237 SQLITE_OPEN_TEMP_DB; |
|
3238 |
|
3239 rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags, |
|
3240 &db->aDb[1].pBt); |
|
3241 if( rc!=SQLITE_OK ){ |
|
3242 sqlite3ErrorMsg(pParse, "unable to open a temporary database " |
|
3243 "file for storing temporary tables"); |
|
3244 pParse->rc = rc; |
|
3245 return 1; |
|
3246 } |
|
3247 assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit ); |
|
3248 assert( db->aDb[1].pSchema ); |
|
3249 sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt), |
|
3250 db->dfltJournalMode); |
|
3251 } |
|
3252 return 0; |
|
3253 } |
|
3254 |
|
3255 /* |
|
3256 ** Generate VDBE code that will verify the schema cookie and start |
|
3257 ** a read-transaction for all named database files. |
|
3258 ** |
|
3259 ** It is important that all schema cookies be verified and all |
|
3260 ** read transactions be started before anything else happens in |
|
3261 ** the VDBE program. But this routine can be called after much other |
|
3262 ** code has been generated. So here is what we do: |
|
3263 ** |
|
3264 ** The first time this routine is called, we code an OP_Goto that |
|
3265 ** will jump to a subroutine at the end of the program. Then we |
|
3266 ** record every database that needs its schema verified in the |
|
3267 ** pParse->cookieMask field. Later, after all other code has been |
|
3268 ** generated, the subroutine that does the cookie verifications and |
|
3269 ** starts the transactions will be coded and the OP_Goto P2 value |
|
3270 ** will be made to point to that subroutine. The generation of the |
|
3271 ** cookie verification subroutine code happens in sqlite3FinishCoding(). |
|
3272 ** |
|
3273 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the |
|
3274 ** schema on any databases. This can be used to position the OP_Goto |
|
3275 ** early in the code, before we know if any database tables will be used. |
|
3276 */ |
|
3277 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){ |
|
3278 sqlite3 *db; |
|
3279 Vdbe *v; |
|
3280 int mask; |
|
3281 |
|
3282 v = sqlite3GetVdbe(pParse); |
|
3283 if( v==0 ) return; /* This only happens if there was a prior error */ |
|
3284 db = pParse->db; |
|
3285 if( pParse->cookieGoto==0 ){ |
|
3286 pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1; |
|
3287 } |
|
3288 if( iDb>=0 ){ |
|
3289 assert( iDb<db->nDb ); |
|
3290 assert( db->aDb[iDb].pBt!=0 || iDb==1 ); |
|
3291 assert( iDb<SQLITE_MAX_ATTACHED+2 ); |
|
3292 mask = 1<<iDb; |
|
3293 if( (pParse->cookieMask & mask)==0 ){ |
|
3294 pParse->cookieMask |= mask; |
|
3295 pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie; |
|
3296 if( !OMIT_TEMPDB && iDb==1 ){ |
|
3297 sqlite3OpenTempDatabase(pParse); |
|
3298 } |
|
3299 } |
|
3300 } |
|
3301 } |
|
3302 |
|
3303 /* |
|
3304 ** Generate VDBE code that prepares for doing an operation that |
|
3305 ** might change the database. |
|
3306 ** |
|
3307 ** This routine starts a new transaction if we are not already within |
|
3308 ** a transaction. If we are already within a transaction, then a checkpoint |
|
3309 ** is set if the setStatement parameter is true. A checkpoint should |
|
3310 ** be set for operations that might fail (due to a constraint) part of |
|
3311 ** the way through and which will need to undo some writes without having to |
|
3312 ** rollback the whole transaction. For operations where all constraints |
|
3313 ** can be checked before any changes are made to the database, it is never |
|
3314 ** necessary to undo a write and the checkpoint should not be set. |
|
3315 ** |
|
3316 ** Only database iDb and the temp database are made writable by this call. |
|
3317 ** If iDb==0, then the main and temp databases are made writable. If |
|
3318 ** iDb==1 then only the temp database is made writable. If iDb>1 then the |
|
3319 ** specified auxiliary database and the temp database are made writable. |
|
3320 */ |
|
3321 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){ |
|
3322 Vdbe *v = sqlite3GetVdbe(pParse); |
|
3323 if( v==0 ) return; |
|
3324 sqlite3CodeVerifySchema(pParse, iDb); |
|
3325 pParse->writeMask |= 1<<iDb; |
|
3326 if( setStatement && pParse->nested==0 ){ |
|
3327 sqlite3VdbeAddOp1(v, OP_Statement, iDb); |
|
3328 } |
|
3329 if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){ |
|
3330 sqlite3BeginWriteOperation(pParse, setStatement, 1); |
|
3331 } |
|
3332 } |
|
3333 |
|
3334 /* |
|
3335 ** Check to see if pIndex uses the collating sequence pColl. Return |
|
3336 ** true if it does and false if it does not. |
|
3337 */ |
|
3338 #ifndef SQLITE_OMIT_REINDEX |
|
3339 static int collationMatch(const char *zColl, Index *pIndex){ |
|
3340 int i; |
|
3341 for(i=0; i<pIndex->nColumn; i++){ |
|
3342 const char *z = pIndex->azColl[i]; |
|
3343 if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){ |
|
3344 return 1; |
|
3345 } |
|
3346 } |
|
3347 return 0; |
|
3348 } |
|
3349 #endif |
|
3350 |
|
3351 /* |
|
3352 ** Recompute all indices of pTab that use the collating sequence pColl. |
|
3353 ** If pColl==0 then recompute all indices of pTab. |
|
3354 */ |
|
3355 #ifndef SQLITE_OMIT_REINDEX |
|
3356 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){ |
|
3357 Index *pIndex; /* An index associated with pTab */ |
|
3358 |
|
3359 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ |
|
3360 if( zColl==0 || collationMatch(zColl, pIndex) ){ |
|
3361 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
|
3362 sqlite3BeginWriteOperation(pParse, 0, iDb); |
|
3363 sqlite3RefillIndex(pParse, pIndex, -1); |
|
3364 } |
|
3365 } |
|
3366 } |
|
3367 #endif |
|
3368 |
|
3369 /* |
|
3370 ** Recompute all indices of all tables in all databases where the |
|
3371 ** indices use the collating sequence pColl. If pColl==0 then recompute |
|
3372 ** all indices everywhere. |
|
3373 */ |
|
3374 #ifndef SQLITE_OMIT_REINDEX |
|
3375 static void reindexDatabases(Parse *pParse, char const *zColl){ |
|
3376 Db *pDb; /* A single database */ |
|
3377 int iDb; /* The database index number */ |
|
3378 sqlite3 *db = pParse->db; /* The database connection */ |
|
3379 HashElem *k; /* For looping over tables in pDb */ |
|
3380 Table *pTab; /* A table in the database */ |
|
3381 |
|
3382 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){ |
|
3383 assert( pDb!=0 ); |
|
3384 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){ |
|
3385 pTab = (Table*)sqliteHashData(k); |
|
3386 reindexTable(pParse, pTab, zColl); |
|
3387 } |
|
3388 } |
|
3389 } |
|
3390 #endif |
|
3391 |
|
3392 /* |
|
3393 ** Generate code for the REINDEX command. |
|
3394 ** |
|
3395 ** REINDEX -- 1 |
|
3396 ** REINDEX <collation> -- 2 |
|
3397 ** REINDEX ?<database>.?<tablename> -- 3 |
|
3398 ** REINDEX ?<database>.?<indexname> -- 4 |
|
3399 ** |
|
3400 ** Form 1 causes all indices in all attached databases to be rebuilt. |
|
3401 ** Form 2 rebuilds all indices in all databases that use the named |
|
3402 ** collating function. Forms 3 and 4 rebuild the named index or all |
|
3403 ** indices associated with the named table. |
|
3404 */ |
|
3405 #ifndef SQLITE_OMIT_REINDEX |
|
3406 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){ |
|
3407 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */ |
|
3408 char *z; /* Name of a table or index */ |
|
3409 const char *zDb; /* Name of the database */ |
|
3410 Table *pTab; /* A table in the database */ |
|
3411 Index *pIndex; /* An index associated with pTab */ |
|
3412 int iDb; /* The database index number */ |
|
3413 sqlite3 *db = pParse->db; /* The database connection */ |
|
3414 Token *pObjName; /* Name of the table or index to be reindexed */ |
|
3415 |
|
3416 /* Read the database schema. If an error occurs, leave an error message |
|
3417 ** and code in pParse and return NULL. */ |
|
3418 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
|
3419 return; |
|
3420 } |
|
3421 |
|
3422 if( pName1==0 || pName1->z==0 ){ |
|
3423 reindexDatabases(pParse, 0); |
|
3424 return; |
|
3425 }else if( pName2==0 || pName2->z==0 ){ |
|
3426 char *zColl; |
|
3427 assert( pName1->z ); |
|
3428 zColl = sqlite3NameFromToken(pParse->db, pName1); |
|
3429 if( !zColl ) return; |
|
3430 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0); |
|
3431 if( pColl ){ |
|
3432 if( zColl ){ |
|
3433 reindexDatabases(pParse, zColl); |
|
3434 sqlite3DbFree(db, zColl); |
|
3435 } |
|
3436 return; |
|
3437 } |
|
3438 sqlite3DbFree(db, zColl); |
|
3439 } |
|
3440 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName); |
|
3441 if( iDb<0 ) return; |
|
3442 z = sqlite3NameFromToken(db, pObjName); |
|
3443 if( z==0 ) return; |
|
3444 zDb = db->aDb[iDb].zName; |
|
3445 pTab = sqlite3FindTable(db, z, zDb); |
|
3446 if( pTab ){ |
|
3447 reindexTable(pParse, pTab, 0); |
|
3448 sqlite3DbFree(db, z); |
|
3449 return; |
|
3450 } |
|
3451 pIndex = sqlite3FindIndex(db, z, zDb); |
|
3452 sqlite3DbFree(db, z); |
|
3453 if( pIndex ){ |
|
3454 sqlite3BeginWriteOperation(pParse, 0, iDb); |
|
3455 sqlite3RefillIndex(pParse, pIndex, -1); |
|
3456 return; |
|
3457 } |
|
3458 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed"); |
|
3459 } |
|
3460 #endif |
|
3461 |
|
3462 /* |
|
3463 ** Return a dynamicly allocated KeyInfo structure that can be used |
|
3464 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx. |
|
3465 ** |
|
3466 ** If successful, a pointer to the new structure is returned. In this case |
|
3467 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned |
|
3468 ** pointer. If an error occurs (out of memory or missing collation |
|
3469 ** sequence), NULL is returned and the state of pParse updated to reflect |
|
3470 ** the error. |
|
3471 */ |
|
3472 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ |
|
3473 int i; |
|
3474 int nCol = pIdx->nColumn; |
|
3475 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; |
|
3476 sqlite3 *db = pParse->db; |
|
3477 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes); |
|
3478 |
|
3479 if( pKey ){ |
|
3480 pKey->db = pParse->db; |
|
3481 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); |
|
3482 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); |
|
3483 for(i=0; i<nCol; i++){ |
|
3484 char *zColl = pIdx->azColl[i]; |
|
3485 assert( zColl ); |
|
3486 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1); |
|
3487 pKey->aSortOrder[i] = pIdx->aSortOrder[i]; |
|
3488 } |
|
3489 pKey->nField = nCol; |
|
3490 } |
|
3491 |
|
3492 if( pParse->nErr ){ |
|
3493 sqlite3DbFree(db, pKey); |
|
3494 pKey = 0; |
|
3495 } |
|
3496 return pKey; |
|
3497 } |