|
1 /* |
|
2 ** 2007 October 14 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This file contains the C functions that implement a memory |
|
13 ** allocation subsystem for use by SQLite. |
|
14 ** |
|
15 ** This version of the memory allocation subsystem omits all |
|
16 ** use of malloc(). The SQLite user supplies a block of memory |
|
17 ** before calling sqlite3_initialize() from which allocations |
|
18 ** are made and returned by the xMalloc() and xRealloc() |
|
19 ** implementations. Once sqlite3_initialize() has been called, |
|
20 ** the amount of memory available to SQLite is fixed and cannot |
|
21 ** be changed. |
|
22 ** |
|
23 ** This version of the memory allocation subsystem is included |
|
24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined. |
|
25 ** |
|
26 ** $Id: mem5.c,v 1.11 2008/07/16 12:25:32 drh Exp $ |
|
27 */ |
|
28 #include "sqliteInt.h" |
|
29 |
|
30 /* |
|
31 ** This version of the memory allocator is used only when |
|
32 ** SQLITE_POW2_MEMORY_SIZE is defined. |
|
33 */ |
|
34 #ifdef SQLITE_ENABLE_MEMSYS5 |
|
35 |
|
36 /* |
|
37 ** Log2 of the minimum size of an allocation. For example, if |
|
38 ** 4 then all allocations will be rounded up to at least 16 bytes. |
|
39 ** If 5 then all allocations will be rounded up to at least 32 bytes. |
|
40 */ |
|
41 #ifndef SQLITE_POW2_LOGMIN |
|
42 # define SQLITE_POW2_LOGMIN 6 |
|
43 #endif |
|
44 |
|
45 /* |
|
46 ** Log2 of the maximum size of an allocation. |
|
47 */ |
|
48 #ifndef SQLITE_POW2_LOGMAX |
|
49 # define SQLITE_POW2_LOGMAX 20 |
|
50 #endif |
|
51 #define POW2_MAX (((unsigned int)1)<<SQLITE_POW2_LOGMAX) |
|
52 |
|
53 /* |
|
54 ** Number of distinct allocation sizes. |
|
55 */ |
|
56 #define NSIZE (SQLITE_POW2_LOGMAX - SQLITE_POW2_LOGMIN + 1) |
|
57 |
|
58 /* |
|
59 ** A minimum allocation is an instance of the following structure. |
|
60 ** Larger allocations are an array of these structures where the |
|
61 ** size of the array is a power of 2. |
|
62 */ |
|
63 typedef struct Mem5Link Mem5Link; |
|
64 struct Mem5Link { |
|
65 int next; /* Index of next free chunk */ |
|
66 int prev; /* Index of previous free chunk */ |
|
67 }; |
|
68 |
|
69 /* |
|
70 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.nAtom). Since |
|
71 ** mem5.nAtom is always at least 8, this is not really a practical |
|
72 ** limitation. |
|
73 */ |
|
74 #define LOGMAX 30 |
|
75 |
|
76 /* |
|
77 ** Masks used for mem5.aCtrl[] elements. |
|
78 */ |
|
79 #define CTRL_LOGSIZE 0x1f /* Log2 Size of this block relative to POW2_MIN */ |
|
80 #define CTRL_FREE 0x20 /* True if not checked out */ |
|
81 |
|
82 /* |
|
83 ** All of the static variables used by this module are collected |
|
84 ** into a single structure named "mem5". This is to keep the |
|
85 ** static variables organized and to reduce namespace pollution |
|
86 ** when this module is combined with other in the amalgamation. |
|
87 */ |
|
88 static struct { |
|
89 /* |
|
90 ** The alarm callback and its arguments. The mem5.mutex lock will |
|
91 ** be held while the callback is running. Recursive calls into |
|
92 ** the memory subsystem are allowed, but no new callbacks will be |
|
93 ** issued. The alarmBusy variable is set to prevent recursive |
|
94 ** callbacks. |
|
95 */ |
|
96 sqlite3_int64 alarmThreshold; |
|
97 void (*alarmCallback)(void*, sqlite3_int64,int); |
|
98 void *alarmArg; |
|
99 int alarmBusy; |
|
100 |
|
101 /* |
|
102 ** Mutex to control access to the memory allocation subsystem. |
|
103 */ |
|
104 sqlite3_mutex *mutex; |
|
105 |
|
106 /* |
|
107 ** Performance statistics |
|
108 */ |
|
109 u64 nAlloc; /* Total number of calls to malloc */ |
|
110 u64 totalAlloc; /* Total of all malloc calls - includes internal frag */ |
|
111 u64 totalExcess; /* Total internal fragmentation */ |
|
112 u32 currentOut; /* Current checkout, including internal fragmentation */ |
|
113 u32 currentCount; /* Current number of distinct checkouts */ |
|
114 u32 maxOut; /* Maximum instantaneous currentOut */ |
|
115 u32 maxCount; /* Maximum instantaneous currentCount */ |
|
116 u32 maxRequest; /* Largest allocation (exclusive of internal frag) */ |
|
117 |
|
118 /* |
|
119 ** Lists of free blocks of various sizes. |
|
120 */ |
|
121 int aiFreelist[LOGMAX+1]; |
|
122 |
|
123 /* |
|
124 ** Space for tracking which blocks are checked out and the size |
|
125 ** of each block. One byte per block. |
|
126 */ |
|
127 u8 *aCtrl; |
|
128 |
|
129 /* |
|
130 ** Memory available for allocation |
|
131 */ |
|
132 int nAtom; /* Smallest possible allocation in bytes */ |
|
133 int nBlock; /* Number of nAtom sized blocks in zPool */ |
|
134 u8 *zPool; |
|
135 } mem5; |
|
136 |
|
137 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.nAtom])) |
|
138 |
|
139 /* |
|
140 ** Unlink the chunk at mem5.aPool[i] from list it is currently |
|
141 ** on. It should be found on mem5.aiFreelist[iLogsize]. |
|
142 */ |
|
143 static void memsys5Unlink(int i, int iLogsize){ |
|
144 int next, prev; |
|
145 assert( i>=0 && i<mem5.nBlock ); |
|
146 assert( iLogsize>=0 && iLogsize<=LOGMAX ); |
|
147 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); |
|
148 |
|
149 next = MEM5LINK(i)->next; |
|
150 prev = MEM5LINK(i)->prev; |
|
151 if( prev<0 ){ |
|
152 mem5.aiFreelist[iLogsize] = next; |
|
153 }else{ |
|
154 MEM5LINK(prev)->next = next; |
|
155 } |
|
156 if( next>=0 ){ |
|
157 MEM5LINK(next)->prev = prev; |
|
158 } |
|
159 } |
|
160 |
|
161 /* |
|
162 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize |
|
163 ** free list. |
|
164 */ |
|
165 static void memsys5Link(int i, int iLogsize){ |
|
166 int x; |
|
167 assert( sqlite3_mutex_held(mem5.mutex) ); |
|
168 assert( i>=0 && i<mem5.nBlock ); |
|
169 assert( iLogsize>=0 && iLogsize<=LOGMAX ); |
|
170 assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); |
|
171 |
|
172 x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize]; |
|
173 MEM5LINK(i)->prev = -1; |
|
174 if( x>=0 ){ |
|
175 assert( x<mem5.nBlock ); |
|
176 MEM5LINK(x)->prev = i; |
|
177 } |
|
178 mem5.aiFreelist[iLogsize] = i; |
|
179 } |
|
180 |
|
181 /* |
|
182 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex |
|
183 ** will already be held (obtained by code in malloc.c) if |
|
184 ** sqlite3Config.bMemStat is true. |
|
185 */ |
|
186 static void memsys5Enter(void){ |
|
187 if( sqlite3Config.bMemstat==0 && mem5.mutex==0 ){ |
|
188 mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); |
|
189 } |
|
190 sqlite3_mutex_enter(mem5.mutex); |
|
191 } |
|
192 static void memsys5Leave(void){ |
|
193 sqlite3_mutex_leave(mem5.mutex); |
|
194 } |
|
195 |
|
196 /* |
|
197 ** Return the size of an outstanding allocation, in bytes. The |
|
198 ** size returned omits the 8-byte header overhead. This only |
|
199 ** works for chunks that are currently checked out. |
|
200 */ |
|
201 static int memsys5Size(void *p){ |
|
202 int iSize = 0; |
|
203 if( p ){ |
|
204 int i = ((u8 *)p-mem5.zPool)/mem5.nAtom; |
|
205 assert( i>=0 && i<mem5.nBlock ); |
|
206 iSize = mem5.nAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE)); |
|
207 } |
|
208 return iSize; |
|
209 } |
|
210 |
|
211 /* |
|
212 ** Find the first entry on the freelist iLogsize. Unlink that |
|
213 ** entry and return its index. |
|
214 */ |
|
215 static int memsys5UnlinkFirst(int iLogsize){ |
|
216 int i; |
|
217 int iFirst; |
|
218 |
|
219 assert( iLogsize>=0 && iLogsize<=LOGMAX ); |
|
220 i = iFirst = mem5.aiFreelist[iLogsize]; |
|
221 assert( iFirst>=0 ); |
|
222 while( i>0 ){ |
|
223 if( i<iFirst ) iFirst = i; |
|
224 i = MEM5LINK(i)->next; |
|
225 } |
|
226 memsys5Unlink(iFirst, iLogsize); |
|
227 return iFirst; |
|
228 } |
|
229 |
|
230 /* |
|
231 ** Return a block of memory of at least nBytes in size. |
|
232 ** Return NULL if unable. |
|
233 */ |
|
234 static void *memsys5MallocUnsafe(int nByte){ |
|
235 int i; /* Index of a mem5.aPool[] slot */ |
|
236 int iBin; /* Index into mem5.aiFreelist[] */ |
|
237 int iFullSz; /* Size of allocation rounded up to power of 2 */ |
|
238 int iLogsize; /* Log2 of iFullSz/POW2_MIN */ |
|
239 |
|
240 /* Keep track of the maximum allocation request. Even unfulfilled |
|
241 ** requests are counted */ |
|
242 if( nByte>mem5.maxRequest ){ |
|
243 mem5.maxRequest = nByte; |
|
244 } |
|
245 |
|
246 /* Round nByte up to the next valid power of two */ |
|
247 if( nByte>POW2_MAX ) return 0; |
|
248 for(iFullSz=mem5.nAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){} |
|
249 |
|
250 /* Make sure mem5.aiFreelist[iLogsize] contains at least one free |
|
251 ** block. If not, then split a block of the next larger power of |
|
252 ** two in order to create a new free block of size iLogsize. |
|
253 */ |
|
254 for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){} |
|
255 if( iBin>LOGMAX ) return 0; |
|
256 i = memsys5UnlinkFirst(iBin); |
|
257 while( iBin>iLogsize ){ |
|
258 int newSize; |
|
259 |
|
260 iBin--; |
|
261 newSize = 1 << iBin; |
|
262 mem5.aCtrl[i+newSize] = CTRL_FREE | iBin; |
|
263 memsys5Link(i+newSize, iBin); |
|
264 } |
|
265 mem5.aCtrl[i] = iLogsize; |
|
266 |
|
267 /* Update allocator performance statistics. */ |
|
268 mem5.nAlloc++; |
|
269 mem5.totalAlloc += iFullSz; |
|
270 mem5.totalExcess += iFullSz - nByte; |
|
271 mem5.currentCount++; |
|
272 mem5.currentOut += iFullSz; |
|
273 if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount; |
|
274 if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut; |
|
275 |
|
276 /* Return a pointer to the allocated memory. */ |
|
277 return (void*)&mem5.zPool[i*mem5.nAtom]; |
|
278 } |
|
279 |
|
280 /* |
|
281 ** Free an outstanding memory allocation. |
|
282 */ |
|
283 static void memsys5FreeUnsafe(void *pOld){ |
|
284 u32 size, iLogsize; |
|
285 int iBlock; |
|
286 |
|
287 /* Set iBlock to the index of the block pointed to by pOld in |
|
288 ** the array of mem5.nAtom byte blocks pointed to by mem5.zPool. |
|
289 */ |
|
290 iBlock = ((u8 *)pOld-mem5.zPool)/mem5.nAtom; |
|
291 |
|
292 /* Check that the pointer pOld points to a valid, non-free block. */ |
|
293 assert( iBlock>=0 && iBlock<mem5.nBlock ); |
|
294 assert( ((u8 *)pOld-mem5.zPool)%mem5.nAtom==0 ); |
|
295 assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 ); |
|
296 |
|
297 iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE; |
|
298 size = 1<<iLogsize; |
|
299 assert( iBlock+size-1<mem5.nBlock ); |
|
300 |
|
301 mem5.aCtrl[iBlock] |= CTRL_FREE; |
|
302 mem5.aCtrl[iBlock+size-1] |= CTRL_FREE; |
|
303 assert( mem5.currentCount>0 ); |
|
304 assert( mem5.currentOut>=0 ); |
|
305 mem5.currentCount--; |
|
306 mem5.currentOut -= size*mem5.nAtom; |
|
307 assert( mem5.currentOut>0 || mem5.currentCount==0 ); |
|
308 assert( mem5.currentCount>0 || mem5.currentOut==0 ); |
|
309 |
|
310 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; |
|
311 while( iLogsize<LOGMAX ){ |
|
312 int iBuddy; |
|
313 if( (iBlock>>iLogsize) & 1 ){ |
|
314 iBuddy = iBlock - size; |
|
315 }else{ |
|
316 iBuddy = iBlock + size; |
|
317 } |
|
318 assert( iBuddy>=0 ); |
|
319 if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break; |
|
320 if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; |
|
321 memsys5Unlink(iBuddy, iLogsize); |
|
322 iLogsize++; |
|
323 if( iBuddy<iBlock ){ |
|
324 mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize; |
|
325 mem5.aCtrl[iBlock] = 0; |
|
326 iBlock = iBuddy; |
|
327 }else{ |
|
328 mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize; |
|
329 mem5.aCtrl[iBuddy] = 0; |
|
330 } |
|
331 size *= 2; |
|
332 } |
|
333 memsys5Link(iBlock, iLogsize); |
|
334 } |
|
335 |
|
336 /* |
|
337 ** Allocate nBytes of memory |
|
338 */ |
|
339 static void *memsys5Malloc(int nBytes){ |
|
340 sqlite3_int64 *p = 0; |
|
341 if( nBytes>0 ){ |
|
342 memsys5Enter(); |
|
343 p = memsys5MallocUnsafe(nBytes); |
|
344 memsys5Leave(); |
|
345 } |
|
346 return (void*)p; |
|
347 } |
|
348 |
|
349 /* |
|
350 ** Free memory. |
|
351 */ |
|
352 static void memsys5Free(void *pPrior){ |
|
353 if( pPrior==0 ){ |
|
354 assert(0); |
|
355 return; |
|
356 } |
|
357 memsys5Enter(); |
|
358 memsys5FreeUnsafe(pPrior); |
|
359 memsys5Leave(); |
|
360 } |
|
361 |
|
362 /* |
|
363 ** Change the size of an existing memory allocation |
|
364 */ |
|
365 static void *memsys5Realloc(void *pPrior, int nBytes){ |
|
366 int nOld; |
|
367 void *p; |
|
368 if( pPrior==0 ){ |
|
369 return memsys5Malloc(nBytes); |
|
370 } |
|
371 if( nBytes<=0 ){ |
|
372 memsys5Free(pPrior); |
|
373 return 0; |
|
374 } |
|
375 nOld = memsys5Size(pPrior); |
|
376 if( nBytes<=nOld ){ |
|
377 return pPrior; |
|
378 } |
|
379 memsys5Enter(); |
|
380 p = memsys5MallocUnsafe(nBytes); |
|
381 if( p ){ |
|
382 memcpy(p, pPrior, nOld); |
|
383 memsys5FreeUnsafe(pPrior); |
|
384 } |
|
385 memsys5Leave(); |
|
386 return p; |
|
387 } |
|
388 |
|
389 /* |
|
390 ** Round up a request size to the next valid allocation size. |
|
391 */ |
|
392 static int memsys5Roundup(int n){ |
|
393 int iFullSz; |
|
394 for(iFullSz=mem5.nAtom; iFullSz<n; iFullSz *= 2); |
|
395 return iFullSz; |
|
396 } |
|
397 |
|
398 static int memsys5Log(int iValue){ |
|
399 int iLog; |
|
400 for(iLog=0; (1<<iLog)<iValue; iLog++); |
|
401 return iLog; |
|
402 } |
|
403 |
|
404 /* |
|
405 ** Initialize this module. |
|
406 */ |
|
407 static int memsys5Init(void *NotUsed){ |
|
408 int ii; |
|
409 int nByte = sqlite3Config.nHeap; |
|
410 u8 *zByte = (u8 *)sqlite3Config.pHeap; |
|
411 int nMinLog; /* Log of minimum allocation size in bytes*/ |
|
412 int iOffset; |
|
413 |
|
414 if( !zByte ){ |
|
415 return SQLITE_ERROR; |
|
416 } |
|
417 |
|
418 nMinLog = memsys5Log(sqlite3Config.mnReq); |
|
419 mem5.nAtom = (1<<nMinLog); |
|
420 while( sizeof(Mem5Link)>mem5.nAtom ){ |
|
421 mem5.nAtom = mem5.nAtom << 1; |
|
422 } |
|
423 |
|
424 mem5.nBlock = (nByte / (mem5.nAtom+sizeof(u8))); |
|
425 mem5.zPool = zByte; |
|
426 mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.nAtom]; |
|
427 |
|
428 for(ii=0; ii<=LOGMAX; ii++){ |
|
429 mem5.aiFreelist[ii] = -1; |
|
430 } |
|
431 |
|
432 iOffset = 0; |
|
433 for(ii=LOGMAX; ii>=0; ii--){ |
|
434 int nAlloc = (1<<ii); |
|
435 if( (iOffset+nAlloc)<=mem5.nBlock ){ |
|
436 mem5.aCtrl[iOffset] = ii | CTRL_FREE; |
|
437 memsys5Link(iOffset, ii); |
|
438 iOffset += nAlloc; |
|
439 } |
|
440 assert((iOffset+nAlloc)>mem5.nBlock); |
|
441 } |
|
442 |
|
443 return SQLITE_OK; |
|
444 } |
|
445 |
|
446 /* |
|
447 ** Deinitialize this module. |
|
448 */ |
|
449 static void memsys5Shutdown(void *NotUsed){ |
|
450 return; |
|
451 } |
|
452 |
|
453 /* |
|
454 ** Open the file indicated and write a log of all unfreed memory |
|
455 ** allocations into that log. |
|
456 */ |
|
457 void sqlite3Memsys5Dump(const char *zFilename){ |
|
458 #ifdef SQLITE_DEBUG |
|
459 FILE *out; |
|
460 int i, j, n; |
|
461 int nMinLog; |
|
462 |
|
463 if( zFilename==0 || zFilename[0]==0 ){ |
|
464 out = stdout; |
|
465 }else{ |
|
466 out = fopen(zFilename, "w"); |
|
467 if( out==0 ){ |
|
468 fprintf(stderr, "** Unable to output memory debug output log: %s **\n", |
|
469 zFilename); |
|
470 return; |
|
471 } |
|
472 } |
|
473 memsys5Enter(); |
|
474 nMinLog = memsys5Log(mem5.nAtom); |
|
475 for(i=0; i<=LOGMAX && i+nMinLog<32; i++){ |
|
476 for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){} |
|
477 fprintf(out, "freelist items of size %d: %d\n", mem5.nAtom << i, n); |
|
478 } |
|
479 fprintf(out, "mem5.nAlloc = %llu\n", mem5.nAlloc); |
|
480 fprintf(out, "mem5.totalAlloc = %llu\n", mem5.totalAlloc); |
|
481 fprintf(out, "mem5.totalExcess = %llu\n", mem5.totalExcess); |
|
482 fprintf(out, "mem5.currentOut = %u\n", mem5.currentOut); |
|
483 fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount); |
|
484 fprintf(out, "mem5.maxOut = %u\n", mem5.maxOut); |
|
485 fprintf(out, "mem5.maxCount = %u\n", mem5.maxCount); |
|
486 fprintf(out, "mem5.maxRequest = %u\n", mem5.maxRequest); |
|
487 memsys5Leave(); |
|
488 if( out==stdout ){ |
|
489 fflush(stdout); |
|
490 }else{ |
|
491 fclose(out); |
|
492 } |
|
493 #endif |
|
494 } |
|
495 |
|
496 /* |
|
497 ** This routine is the only routine in this file with external |
|
498 ** linkage. It returns a pointer to a static sqlite3_mem_methods |
|
499 ** struct populated with the memsys5 methods. |
|
500 */ |
|
501 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){ |
|
502 static const sqlite3_mem_methods memsys5Methods = { |
|
503 memsys5Malloc, |
|
504 memsys5Free, |
|
505 memsys5Realloc, |
|
506 memsys5Size, |
|
507 memsys5Roundup, |
|
508 memsys5Init, |
|
509 memsys5Shutdown, |
|
510 0 |
|
511 }; |
|
512 return &memsys5Methods; |
|
513 } |
|
514 |
|
515 #endif /* SQLITE_ENABLE_MEMSYS5 */ |