persistentstorage/sql/SQLite/mem5.c
changeset 0 08ec8eefde2f
equal deleted inserted replaced
-1:000000000000 0:08ec8eefde2f
       
     1 /*
       
     2 ** 2007 October 14
       
     3 **
       
     4 ** The author disclaims copyright to this source code.  In place of
       
     5 ** a legal notice, here is a blessing:
       
     6 **
       
     7 **    May you do good and not evil.
       
     8 **    May you find forgiveness for yourself and forgive others.
       
     9 **    May you share freely, never taking more than you give.
       
    10 **
       
    11 *************************************************************************
       
    12 ** This file contains the C functions that implement a memory
       
    13 ** allocation subsystem for use by SQLite. 
       
    14 **
       
    15 ** This version of the memory allocation subsystem omits all
       
    16 ** use of malloc(). The SQLite user supplies a block of memory
       
    17 ** before calling sqlite3_initialize() from which allocations
       
    18 ** are made and returned by the xMalloc() and xRealloc() 
       
    19 ** implementations. Once sqlite3_initialize() has been called,
       
    20 ** the amount of memory available to SQLite is fixed and cannot
       
    21 ** be changed.
       
    22 **
       
    23 ** This version of the memory allocation subsystem is included
       
    24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
       
    25 **
       
    26 ** $Id: mem5.c,v 1.11 2008/07/16 12:25:32 drh Exp $
       
    27 */
       
    28 #include "sqliteInt.h"
       
    29 
       
    30 /*
       
    31 ** This version of the memory allocator is used only when 
       
    32 ** SQLITE_POW2_MEMORY_SIZE is defined.
       
    33 */
       
    34 #ifdef SQLITE_ENABLE_MEMSYS5
       
    35 
       
    36 /*
       
    37 ** Log2 of the minimum size of an allocation.  For example, if
       
    38 ** 4 then all allocations will be rounded up to at least 16 bytes.
       
    39 ** If 5 then all allocations will be rounded up to at least 32 bytes.
       
    40 */
       
    41 #ifndef SQLITE_POW2_LOGMIN
       
    42 # define SQLITE_POW2_LOGMIN 6
       
    43 #endif
       
    44 
       
    45 /*
       
    46 ** Log2 of the maximum size of an allocation.
       
    47 */
       
    48 #ifndef SQLITE_POW2_LOGMAX
       
    49 # define SQLITE_POW2_LOGMAX 20
       
    50 #endif
       
    51 #define POW2_MAX (((unsigned int)1)<<SQLITE_POW2_LOGMAX)
       
    52 
       
    53 /*
       
    54 ** Number of distinct allocation sizes.
       
    55 */
       
    56 #define NSIZE (SQLITE_POW2_LOGMAX - SQLITE_POW2_LOGMIN + 1)
       
    57 
       
    58 /*
       
    59 ** A minimum allocation is an instance of the following structure.
       
    60 ** Larger allocations are an array of these structures where the
       
    61 ** size of the array is a power of 2.
       
    62 */
       
    63 typedef struct Mem5Link Mem5Link;
       
    64 struct Mem5Link {
       
    65   int next;       /* Index of next free chunk */
       
    66   int prev;       /* Index of previous free chunk */
       
    67 };
       
    68 
       
    69 /*
       
    70 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.nAtom). Since
       
    71 ** mem5.nAtom is always at least 8, this is not really a practical
       
    72 ** limitation.
       
    73 */
       
    74 #define LOGMAX 30
       
    75 
       
    76 /*
       
    77 ** Masks used for mem5.aCtrl[] elements.
       
    78 */
       
    79 #define CTRL_LOGSIZE  0x1f    /* Log2 Size of this block relative to POW2_MIN */
       
    80 #define CTRL_FREE     0x20    /* True if not checked out */
       
    81 
       
    82 /*
       
    83 ** All of the static variables used by this module are collected
       
    84 ** into a single structure named "mem5".  This is to keep the
       
    85 ** static variables organized and to reduce namespace pollution
       
    86 ** when this module is combined with other in the amalgamation.
       
    87 */
       
    88 static struct {
       
    89   /*
       
    90   ** The alarm callback and its arguments.  The mem5.mutex lock will
       
    91   ** be held while the callback is running.  Recursive calls into
       
    92   ** the memory subsystem are allowed, but no new callbacks will be
       
    93   ** issued.  The alarmBusy variable is set to prevent recursive
       
    94   ** callbacks.
       
    95   */
       
    96   sqlite3_int64 alarmThreshold;
       
    97   void (*alarmCallback)(void*, sqlite3_int64,int);
       
    98   void *alarmArg;
       
    99   int alarmBusy;
       
   100   
       
   101   /*
       
   102   ** Mutex to control access to the memory allocation subsystem.
       
   103   */
       
   104   sqlite3_mutex *mutex;
       
   105 
       
   106   /*
       
   107   ** Performance statistics
       
   108   */
       
   109   u64 nAlloc;         /* Total number of calls to malloc */
       
   110   u64 totalAlloc;     /* Total of all malloc calls - includes internal frag */
       
   111   u64 totalExcess;    /* Total internal fragmentation */
       
   112   u32 currentOut;     /* Current checkout, including internal fragmentation */
       
   113   u32 currentCount;   /* Current number of distinct checkouts */
       
   114   u32 maxOut;         /* Maximum instantaneous currentOut */
       
   115   u32 maxCount;       /* Maximum instantaneous currentCount */
       
   116   u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
       
   117   
       
   118   /*
       
   119   ** Lists of free blocks of various sizes.
       
   120   */
       
   121   int aiFreelist[LOGMAX+1];
       
   122 
       
   123   /*
       
   124   ** Space for tracking which blocks are checked out and the size
       
   125   ** of each block.  One byte per block.
       
   126   */
       
   127   u8 *aCtrl;
       
   128 
       
   129   /*
       
   130   ** Memory available for allocation
       
   131   */
       
   132   int nAtom;       /* Smallest possible allocation in bytes */
       
   133   int nBlock;      /* Number of nAtom sized blocks in zPool */
       
   134   u8 *zPool;
       
   135 } mem5;
       
   136 
       
   137 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.nAtom]))
       
   138 
       
   139 /*
       
   140 ** Unlink the chunk at mem5.aPool[i] from list it is currently
       
   141 ** on.  It should be found on mem5.aiFreelist[iLogsize].
       
   142 */
       
   143 static void memsys5Unlink(int i, int iLogsize){
       
   144   int next, prev;
       
   145   assert( i>=0 && i<mem5.nBlock );
       
   146   assert( iLogsize>=0 && iLogsize<=LOGMAX );
       
   147   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
       
   148 
       
   149   next = MEM5LINK(i)->next;
       
   150   prev = MEM5LINK(i)->prev;
       
   151   if( prev<0 ){
       
   152     mem5.aiFreelist[iLogsize] = next;
       
   153   }else{
       
   154     MEM5LINK(prev)->next = next;
       
   155   }
       
   156   if( next>=0 ){
       
   157     MEM5LINK(next)->prev = prev;
       
   158   }
       
   159 }
       
   160 
       
   161 /*
       
   162 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
       
   163 ** free list.
       
   164 */
       
   165 static void memsys5Link(int i, int iLogsize){
       
   166   int x;
       
   167   assert( sqlite3_mutex_held(mem5.mutex) );
       
   168   assert( i>=0 && i<mem5.nBlock );
       
   169   assert( iLogsize>=0 && iLogsize<=LOGMAX );
       
   170   assert( (mem5.aCtrl[i] & CTRL_LOGSIZE)==iLogsize );
       
   171 
       
   172   x = MEM5LINK(i)->next = mem5.aiFreelist[iLogsize];
       
   173   MEM5LINK(i)->prev = -1;
       
   174   if( x>=0 ){
       
   175     assert( x<mem5.nBlock );
       
   176     MEM5LINK(x)->prev = i;
       
   177   }
       
   178   mem5.aiFreelist[iLogsize] = i;
       
   179 }
       
   180 
       
   181 /*
       
   182 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
       
   183 ** will already be held (obtained by code in malloc.c) if
       
   184 ** sqlite3Config.bMemStat is true.
       
   185 */
       
   186 static void memsys5Enter(void){
       
   187   if( sqlite3Config.bMemstat==0 && mem5.mutex==0 ){
       
   188     mem5.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
       
   189   }
       
   190   sqlite3_mutex_enter(mem5.mutex);
       
   191 }
       
   192 static void memsys5Leave(void){
       
   193   sqlite3_mutex_leave(mem5.mutex);
       
   194 }
       
   195 
       
   196 /*
       
   197 ** Return the size of an outstanding allocation, in bytes.  The
       
   198 ** size returned omits the 8-byte header overhead.  This only
       
   199 ** works for chunks that are currently checked out.
       
   200 */
       
   201 static int memsys5Size(void *p){
       
   202   int iSize = 0;
       
   203   if( p ){
       
   204     int i = ((u8 *)p-mem5.zPool)/mem5.nAtom;
       
   205     assert( i>=0 && i<mem5.nBlock );
       
   206     iSize = mem5.nAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
       
   207   }
       
   208   return iSize;
       
   209 }
       
   210 
       
   211 /*
       
   212 ** Find the first entry on the freelist iLogsize.  Unlink that
       
   213 ** entry and return its index. 
       
   214 */
       
   215 static int memsys5UnlinkFirst(int iLogsize){
       
   216   int i;
       
   217   int iFirst;
       
   218 
       
   219   assert( iLogsize>=0 && iLogsize<=LOGMAX );
       
   220   i = iFirst = mem5.aiFreelist[iLogsize];
       
   221   assert( iFirst>=0 );
       
   222   while( i>0 ){
       
   223     if( i<iFirst ) iFirst = i;
       
   224     i = MEM5LINK(i)->next;
       
   225   }
       
   226   memsys5Unlink(iFirst, iLogsize);
       
   227   return iFirst;
       
   228 }
       
   229 
       
   230 /*
       
   231 ** Return a block of memory of at least nBytes in size.
       
   232 ** Return NULL if unable.
       
   233 */
       
   234 static void *memsys5MallocUnsafe(int nByte){
       
   235   int i;           /* Index of a mem5.aPool[] slot */
       
   236   int iBin;        /* Index into mem5.aiFreelist[] */
       
   237   int iFullSz;     /* Size of allocation rounded up to power of 2 */
       
   238   int iLogsize;    /* Log2 of iFullSz/POW2_MIN */
       
   239 
       
   240   /* Keep track of the maximum allocation request.  Even unfulfilled
       
   241   ** requests are counted */
       
   242   if( nByte>mem5.maxRequest ){
       
   243     mem5.maxRequest = nByte;
       
   244   }
       
   245 
       
   246   /* Round nByte up to the next valid power of two */
       
   247   if( nByte>POW2_MAX ) return 0;
       
   248   for(iFullSz=mem5.nAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}
       
   249 
       
   250   /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
       
   251   ** block.  If not, then split a block of the next larger power of
       
   252   ** two in order to create a new free block of size iLogsize.
       
   253   */
       
   254   for(iBin=iLogsize; mem5.aiFreelist[iBin]<0 && iBin<=LOGMAX; iBin++){}
       
   255   if( iBin>LOGMAX ) return 0;
       
   256   i = memsys5UnlinkFirst(iBin);
       
   257   while( iBin>iLogsize ){
       
   258     int newSize;
       
   259 
       
   260     iBin--;
       
   261     newSize = 1 << iBin;
       
   262     mem5.aCtrl[i+newSize] = CTRL_FREE | iBin;
       
   263     memsys5Link(i+newSize, iBin);
       
   264   }
       
   265   mem5.aCtrl[i] = iLogsize;
       
   266 
       
   267   /* Update allocator performance statistics. */
       
   268   mem5.nAlloc++;
       
   269   mem5.totalAlloc += iFullSz;
       
   270   mem5.totalExcess += iFullSz - nByte;
       
   271   mem5.currentCount++;
       
   272   mem5.currentOut += iFullSz;
       
   273   if( mem5.maxCount<mem5.currentCount ) mem5.maxCount = mem5.currentCount;
       
   274   if( mem5.maxOut<mem5.currentOut ) mem5.maxOut = mem5.currentOut;
       
   275 
       
   276   /* Return a pointer to the allocated memory. */
       
   277   return (void*)&mem5.zPool[i*mem5.nAtom];
       
   278 }
       
   279 
       
   280 /*
       
   281 ** Free an outstanding memory allocation.
       
   282 */
       
   283 static void memsys5FreeUnsafe(void *pOld){
       
   284   u32 size, iLogsize;
       
   285   int iBlock;             
       
   286 
       
   287   /* Set iBlock to the index of the block pointed to by pOld in 
       
   288   ** the array of mem5.nAtom byte blocks pointed to by mem5.zPool.
       
   289   */
       
   290   iBlock = ((u8 *)pOld-mem5.zPool)/mem5.nAtom;
       
   291 
       
   292   /* Check that the pointer pOld points to a valid, non-free block. */
       
   293   assert( iBlock>=0 && iBlock<mem5.nBlock );
       
   294   assert( ((u8 *)pOld-mem5.zPool)%mem5.nAtom==0 );
       
   295   assert( (mem5.aCtrl[iBlock] & CTRL_FREE)==0 );
       
   296 
       
   297   iLogsize = mem5.aCtrl[iBlock] & CTRL_LOGSIZE;
       
   298   size = 1<<iLogsize;
       
   299   assert( iBlock+size-1<mem5.nBlock );
       
   300 
       
   301   mem5.aCtrl[iBlock] |= CTRL_FREE;
       
   302   mem5.aCtrl[iBlock+size-1] |= CTRL_FREE;
       
   303   assert( mem5.currentCount>0 );
       
   304   assert( mem5.currentOut>=0 );
       
   305   mem5.currentCount--;
       
   306   mem5.currentOut -= size*mem5.nAtom;
       
   307   assert( mem5.currentOut>0 || mem5.currentCount==0 );
       
   308   assert( mem5.currentCount>0 || mem5.currentOut==0 );
       
   309 
       
   310   mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
       
   311   while( iLogsize<LOGMAX ){
       
   312     int iBuddy;
       
   313     if( (iBlock>>iLogsize) & 1 ){
       
   314       iBuddy = iBlock - size;
       
   315     }else{
       
   316       iBuddy = iBlock + size;
       
   317     }
       
   318     assert( iBuddy>=0 );
       
   319     if( (iBuddy+(1<<iLogsize))>mem5.nBlock ) break;
       
   320     if( mem5.aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break;
       
   321     memsys5Unlink(iBuddy, iLogsize);
       
   322     iLogsize++;
       
   323     if( iBuddy<iBlock ){
       
   324       mem5.aCtrl[iBuddy] = CTRL_FREE | iLogsize;
       
   325       mem5.aCtrl[iBlock] = 0;
       
   326       iBlock = iBuddy;
       
   327     }else{
       
   328       mem5.aCtrl[iBlock] = CTRL_FREE | iLogsize;
       
   329       mem5.aCtrl[iBuddy] = 0;
       
   330     }
       
   331     size *= 2;
       
   332   }
       
   333   memsys5Link(iBlock, iLogsize);
       
   334 }
       
   335 
       
   336 /*
       
   337 ** Allocate nBytes of memory
       
   338 */
       
   339 static void *memsys5Malloc(int nBytes){
       
   340   sqlite3_int64 *p = 0;
       
   341   if( nBytes>0 ){
       
   342     memsys5Enter();
       
   343     p = memsys5MallocUnsafe(nBytes);
       
   344     memsys5Leave();
       
   345   }
       
   346   return (void*)p; 
       
   347 }
       
   348 
       
   349 /*
       
   350 ** Free memory.
       
   351 */
       
   352 static void memsys5Free(void *pPrior){
       
   353   if( pPrior==0 ){
       
   354 assert(0);
       
   355     return;
       
   356   }
       
   357   memsys5Enter();
       
   358   memsys5FreeUnsafe(pPrior);
       
   359   memsys5Leave();  
       
   360 }
       
   361 
       
   362 /*
       
   363 ** Change the size of an existing memory allocation
       
   364 */
       
   365 static void *memsys5Realloc(void *pPrior, int nBytes){
       
   366   int nOld;
       
   367   void *p;
       
   368   if( pPrior==0 ){
       
   369     return memsys5Malloc(nBytes);
       
   370   }
       
   371   if( nBytes<=0 ){
       
   372     memsys5Free(pPrior);
       
   373     return 0;
       
   374   }
       
   375   nOld = memsys5Size(pPrior);
       
   376   if( nBytes<=nOld ){
       
   377     return pPrior;
       
   378   }
       
   379   memsys5Enter();
       
   380   p = memsys5MallocUnsafe(nBytes);
       
   381   if( p ){
       
   382     memcpy(p, pPrior, nOld);
       
   383     memsys5FreeUnsafe(pPrior);
       
   384   }
       
   385   memsys5Leave();
       
   386   return p;
       
   387 }
       
   388 
       
   389 /*
       
   390 ** Round up a request size to the next valid allocation size.
       
   391 */
       
   392 static int memsys5Roundup(int n){
       
   393   int iFullSz;
       
   394   for(iFullSz=mem5.nAtom; iFullSz<n; iFullSz *= 2);
       
   395   return iFullSz;
       
   396 }
       
   397 
       
   398 static int memsys5Log(int iValue){
       
   399   int iLog;
       
   400   for(iLog=0; (1<<iLog)<iValue; iLog++);
       
   401   return iLog;
       
   402 }
       
   403 
       
   404 /*
       
   405 ** Initialize this module.
       
   406 */
       
   407 static int memsys5Init(void *NotUsed){
       
   408   int ii;
       
   409   int nByte = sqlite3Config.nHeap;
       
   410   u8 *zByte = (u8 *)sqlite3Config.pHeap;
       
   411   int nMinLog;                 /* Log of minimum allocation size in bytes*/
       
   412   int iOffset;
       
   413 
       
   414   if( !zByte ){
       
   415     return SQLITE_ERROR;
       
   416   }
       
   417 
       
   418   nMinLog = memsys5Log(sqlite3Config.mnReq);
       
   419   mem5.nAtom = (1<<nMinLog);
       
   420   while( sizeof(Mem5Link)>mem5.nAtom ){
       
   421     mem5.nAtom = mem5.nAtom << 1;
       
   422   }
       
   423 
       
   424   mem5.nBlock = (nByte / (mem5.nAtom+sizeof(u8)));
       
   425   mem5.zPool = zByte;
       
   426   mem5.aCtrl = (u8 *)&mem5.zPool[mem5.nBlock*mem5.nAtom];
       
   427 
       
   428   for(ii=0; ii<=LOGMAX; ii++){
       
   429     mem5.aiFreelist[ii] = -1;
       
   430   }
       
   431 
       
   432   iOffset = 0;
       
   433   for(ii=LOGMAX; ii>=0; ii--){
       
   434     int nAlloc = (1<<ii);
       
   435     if( (iOffset+nAlloc)<=mem5.nBlock ){
       
   436       mem5.aCtrl[iOffset] = ii | CTRL_FREE;
       
   437       memsys5Link(iOffset, ii);
       
   438       iOffset += nAlloc;
       
   439     }
       
   440     assert((iOffset+nAlloc)>mem5.nBlock);
       
   441   }
       
   442 
       
   443   return SQLITE_OK;
       
   444 }
       
   445 
       
   446 /*
       
   447 ** Deinitialize this module.
       
   448 */
       
   449 static void memsys5Shutdown(void *NotUsed){
       
   450   return;
       
   451 }
       
   452 
       
   453 /*
       
   454 ** Open the file indicated and write a log of all unfreed memory 
       
   455 ** allocations into that log.
       
   456 */
       
   457 void sqlite3Memsys5Dump(const char *zFilename){
       
   458 #ifdef SQLITE_DEBUG
       
   459   FILE *out;
       
   460   int i, j, n;
       
   461   int nMinLog;
       
   462 
       
   463   if( zFilename==0 || zFilename[0]==0 ){
       
   464     out = stdout;
       
   465   }else{
       
   466     out = fopen(zFilename, "w");
       
   467     if( out==0 ){
       
   468       fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
       
   469                       zFilename);
       
   470       return;
       
   471     }
       
   472   }
       
   473   memsys5Enter();
       
   474   nMinLog = memsys5Log(mem5.nAtom);
       
   475   for(i=0; i<=LOGMAX && i+nMinLog<32; i++){
       
   476     for(n=0, j=mem5.aiFreelist[i]; j>=0; j = MEM5LINK(j)->next, n++){}
       
   477     fprintf(out, "freelist items of size %d: %d\n", mem5.nAtom << i, n);
       
   478   }
       
   479   fprintf(out, "mem5.nAlloc       = %llu\n", mem5.nAlloc);
       
   480   fprintf(out, "mem5.totalAlloc   = %llu\n", mem5.totalAlloc);
       
   481   fprintf(out, "mem5.totalExcess  = %llu\n", mem5.totalExcess);
       
   482   fprintf(out, "mem5.currentOut   = %u\n", mem5.currentOut);
       
   483   fprintf(out, "mem5.currentCount = %u\n", mem5.currentCount);
       
   484   fprintf(out, "mem5.maxOut       = %u\n", mem5.maxOut);
       
   485   fprintf(out, "mem5.maxCount     = %u\n", mem5.maxCount);
       
   486   fprintf(out, "mem5.maxRequest   = %u\n", mem5.maxRequest);
       
   487   memsys5Leave();
       
   488   if( out==stdout ){
       
   489     fflush(stdout);
       
   490   }else{
       
   491     fclose(out);
       
   492   }
       
   493 #endif
       
   494 }
       
   495 
       
   496 /*
       
   497 ** This routine is the only routine in this file with external 
       
   498 ** linkage. It returns a pointer to a static sqlite3_mem_methods
       
   499 ** struct populated with the memsys5 methods.
       
   500 */
       
   501 const sqlite3_mem_methods *sqlite3MemGetMemsys5(void){
       
   502   static const sqlite3_mem_methods memsys5Methods = {
       
   503      memsys5Malloc,
       
   504      memsys5Free,
       
   505      memsys5Realloc,
       
   506      memsys5Size,
       
   507      memsys5Roundup,
       
   508      memsys5Init,
       
   509      memsys5Shutdown,
       
   510      0
       
   511   };
       
   512   return &memsys5Methods;
       
   513 }
       
   514 
       
   515 #endif /* SQLITE_ENABLE_MEMSYS5 */