|
1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This file contains C code routines that are called by the parser |
|
13 ** to handle SELECT statements in SQLite. |
|
14 ** |
|
15 ** $Id: select.c,v 1.463 2008/08/04 03:51:24 danielk1977 Exp $ |
|
16 */ |
|
17 #include "sqliteInt.h" |
|
18 |
|
19 |
|
20 /* |
|
21 ** Delete all the content of a Select structure but do not deallocate |
|
22 ** the select structure itself. |
|
23 */ |
|
24 static void clearSelect(sqlite3 *db, Select *p){ |
|
25 sqlite3ExprListDelete(db, p->pEList); |
|
26 sqlite3SrcListDelete(db, p->pSrc); |
|
27 sqlite3ExprDelete(db, p->pWhere); |
|
28 sqlite3ExprListDelete(db, p->pGroupBy); |
|
29 sqlite3ExprDelete(db, p->pHaving); |
|
30 sqlite3ExprListDelete(db, p->pOrderBy); |
|
31 sqlite3SelectDelete(db, p->pPrior); |
|
32 sqlite3ExprDelete(db, p->pLimit); |
|
33 sqlite3ExprDelete(db, p->pOffset); |
|
34 } |
|
35 |
|
36 /* |
|
37 ** Initialize a SelectDest structure. |
|
38 */ |
|
39 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ |
|
40 pDest->eDest = eDest; |
|
41 pDest->iParm = iParm; |
|
42 pDest->affinity = 0; |
|
43 pDest->iMem = 0; |
|
44 pDest->nMem = 0; |
|
45 } |
|
46 |
|
47 |
|
48 /* |
|
49 ** Allocate a new Select structure and return a pointer to that |
|
50 ** structure. |
|
51 */ |
|
52 Select *sqlite3SelectNew( |
|
53 Parse *pParse, /* Parsing context */ |
|
54 ExprList *pEList, /* which columns to include in the result */ |
|
55 SrcList *pSrc, /* the FROM clause -- which tables to scan */ |
|
56 Expr *pWhere, /* the WHERE clause */ |
|
57 ExprList *pGroupBy, /* the GROUP BY clause */ |
|
58 Expr *pHaving, /* the HAVING clause */ |
|
59 ExprList *pOrderBy, /* the ORDER BY clause */ |
|
60 int isDistinct, /* true if the DISTINCT keyword is present */ |
|
61 Expr *pLimit, /* LIMIT value. NULL means not used */ |
|
62 Expr *pOffset /* OFFSET value. NULL means no offset */ |
|
63 ){ |
|
64 Select *pNew; |
|
65 Select standin; |
|
66 sqlite3 *db = pParse->db; |
|
67 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); |
|
68 assert( !pOffset || pLimit ); /* Can't have OFFSET without LIMIT. */ |
|
69 if( pNew==0 ){ |
|
70 pNew = &standin; |
|
71 memset(pNew, 0, sizeof(*pNew)); |
|
72 } |
|
73 if( pEList==0 ){ |
|
74 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0); |
|
75 } |
|
76 pNew->pEList = pEList; |
|
77 pNew->pSrc = pSrc; |
|
78 pNew->pWhere = pWhere; |
|
79 pNew->pGroupBy = pGroupBy; |
|
80 pNew->pHaving = pHaving; |
|
81 pNew->pOrderBy = pOrderBy; |
|
82 pNew->isDistinct = isDistinct; |
|
83 pNew->op = TK_SELECT; |
|
84 assert( pOffset==0 || pLimit!=0 ); |
|
85 pNew->pLimit = pLimit; |
|
86 pNew->pOffset = pOffset; |
|
87 pNew->addrOpenEphm[0] = -1; |
|
88 pNew->addrOpenEphm[1] = -1; |
|
89 pNew->addrOpenEphm[2] = -1; |
|
90 if( pNew==&standin) { |
|
91 clearSelect(db, pNew); |
|
92 pNew = 0; |
|
93 } |
|
94 return pNew; |
|
95 } |
|
96 |
|
97 /* |
|
98 ** Delete the given Select structure and all of its substructures. |
|
99 */ |
|
100 void sqlite3SelectDelete(sqlite3 *db, Select *p){ |
|
101 if( p ){ |
|
102 clearSelect(db, p); |
|
103 sqlite3DbFree(db, p); |
|
104 } |
|
105 } |
|
106 |
|
107 /* |
|
108 ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the |
|
109 ** type of join. Return an integer constant that expresses that type |
|
110 ** in terms of the following bit values: |
|
111 ** |
|
112 ** JT_INNER |
|
113 ** JT_CROSS |
|
114 ** JT_OUTER |
|
115 ** JT_NATURAL |
|
116 ** JT_LEFT |
|
117 ** JT_RIGHT |
|
118 ** |
|
119 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. |
|
120 ** |
|
121 ** If an illegal or unsupported join type is seen, then still return |
|
122 ** a join type, but put an error in the pParse structure. |
|
123 */ |
|
124 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ |
|
125 int jointype = 0; |
|
126 Token *apAll[3]; |
|
127 Token *p; |
|
128 static const struct { |
|
129 const char zKeyword[8]; |
|
130 u8 nChar; |
|
131 u8 code; |
|
132 } keywords[] = { |
|
133 { "natural", 7, JT_NATURAL }, |
|
134 { "left", 4, JT_LEFT|JT_OUTER }, |
|
135 { "right", 5, JT_RIGHT|JT_OUTER }, |
|
136 { "full", 4, JT_LEFT|JT_RIGHT|JT_OUTER }, |
|
137 { "outer", 5, JT_OUTER }, |
|
138 { "inner", 5, JT_INNER }, |
|
139 { "cross", 5, JT_INNER|JT_CROSS }, |
|
140 }; |
|
141 int i, j; |
|
142 apAll[0] = pA; |
|
143 apAll[1] = pB; |
|
144 apAll[2] = pC; |
|
145 for(i=0; i<3 && apAll[i]; i++){ |
|
146 p = apAll[i]; |
|
147 for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){ |
|
148 if( p->n==keywords[j].nChar |
|
149 && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){ |
|
150 jointype |= keywords[j].code; |
|
151 break; |
|
152 } |
|
153 } |
|
154 if( j>=sizeof(keywords)/sizeof(keywords[0]) ){ |
|
155 jointype |= JT_ERROR; |
|
156 break; |
|
157 } |
|
158 } |
|
159 if( |
|
160 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || |
|
161 (jointype & JT_ERROR)!=0 |
|
162 ){ |
|
163 const char *zSp = " "; |
|
164 assert( pB!=0 ); |
|
165 if( pC==0 ){ zSp++; } |
|
166 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " |
|
167 "%T %T%s%T", pA, pB, zSp, pC); |
|
168 jointype = JT_INNER; |
|
169 }else if( jointype & JT_RIGHT ){ |
|
170 sqlite3ErrorMsg(pParse, |
|
171 "RIGHT and FULL OUTER JOINs are not currently supported"); |
|
172 jointype = JT_INNER; |
|
173 } |
|
174 return jointype; |
|
175 } |
|
176 |
|
177 /* |
|
178 ** Return the index of a column in a table. Return -1 if the column |
|
179 ** is not contained in the table. |
|
180 */ |
|
181 static int columnIndex(Table *pTab, const char *zCol){ |
|
182 int i; |
|
183 for(i=0; i<pTab->nCol; i++){ |
|
184 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; |
|
185 } |
|
186 return -1; |
|
187 } |
|
188 |
|
189 /* |
|
190 ** Set the value of a token to a '\000'-terminated string. |
|
191 */ |
|
192 static void setToken(Token *p, const char *z){ |
|
193 p->z = (u8*)z; |
|
194 p->n = z ? strlen(z) : 0; |
|
195 p->dyn = 0; |
|
196 } |
|
197 |
|
198 /* |
|
199 ** Set the token to the double-quoted and escaped version of the string pointed |
|
200 ** to by z. For example; |
|
201 ** |
|
202 ** {a"bc} -> {"a""bc"} |
|
203 */ |
|
204 static void setQuotedToken(Parse *pParse, Token *p, const char *z){ |
|
205 |
|
206 /* Check if the string contains any " characters. If it does, then |
|
207 ** this function will malloc space to create a quoted version of |
|
208 ** the string in. Otherwise, save a call to sqlite3MPrintf() by |
|
209 ** just copying the pointer to the string. |
|
210 */ |
|
211 const char *z2 = z; |
|
212 while( *z2 ){ |
|
213 if( *z2=='"' ) break; |
|
214 z2++; |
|
215 } |
|
216 |
|
217 if( *z2 ){ |
|
218 /* String contains " characters - copy and quote the string. */ |
|
219 p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z); |
|
220 if( p->z ){ |
|
221 p->n = strlen((char *)p->z); |
|
222 p->dyn = 1; |
|
223 } |
|
224 }else{ |
|
225 /* String contains no " characters - copy the pointer. */ |
|
226 p->z = (u8*)z; |
|
227 p->n = (z2 - z); |
|
228 p->dyn = 0; |
|
229 } |
|
230 } |
|
231 |
|
232 /* |
|
233 ** Create an expression node for an identifier with the name of zName |
|
234 */ |
|
235 Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){ |
|
236 Token dummy; |
|
237 setToken(&dummy, zName); |
|
238 return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy); |
|
239 } |
|
240 |
|
241 /* |
|
242 ** Add a term to the WHERE expression in *ppExpr that requires the |
|
243 ** zCol column to be equal in the two tables pTab1 and pTab2. |
|
244 */ |
|
245 static void addWhereTerm( |
|
246 Parse *pParse, /* Parsing context */ |
|
247 const char *zCol, /* Name of the column */ |
|
248 const Table *pTab1, /* First table */ |
|
249 const char *zAlias1, /* Alias for first table. May be NULL */ |
|
250 const Table *pTab2, /* Second table */ |
|
251 const char *zAlias2, /* Alias for second table. May be NULL */ |
|
252 int iRightJoinTable, /* VDBE cursor for the right table */ |
|
253 Expr **ppExpr, /* Add the equality term to this expression */ |
|
254 int isOuterJoin /* True if dealing with an OUTER join */ |
|
255 ){ |
|
256 Expr *pE1a, *pE1b, *pE1c; |
|
257 Expr *pE2a, *pE2b, *pE2c; |
|
258 Expr *pE; |
|
259 |
|
260 pE1a = sqlite3CreateIdExpr(pParse, zCol); |
|
261 pE2a = sqlite3CreateIdExpr(pParse, zCol); |
|
262 if( zAlias1==0 ){ |
|
263 zAlias1 = pTab1->zName; |
|
264 } |
|
265 pE1b = sqlite3CreateIdExpr(pParse, zAlias1); |
|
266 if( zAlias2==0 ){ |
|
267 zAlias2 = pTab2->zName; |
|
268 } |
|
269 pE2b = sqlite3CreateIdExpr(pParse, zAlias2); |
|
270 pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0); |
|
271 pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0); |
|
272 pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0); |
|
273 if( pE && isOuterJoin ){ |
|
274 ExprSetProperty(pE, EP_FromJoin); |
|
275 pE->iRightJoinTable = iRightJoinTable; |
|
276 } |
|
277 *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE); |
|
278 } |
|
279 |
|
280 /* |
|
281 ** Set the EP_FromJoin property on all terms of the given expression. |
|
282 ** And set the Expr.iRightJoinTable to iTable for every term in the |
|
283 ** expression. |
|
284 ** |
|
285 ** The EP_FromJoin property is used on terms of an expression to tell |
|
286 ** the LEFT OUTER JOIN processing logic that this term is part of the |
|
287 ** join restriction specified in the ON or USING clause and not a part |
|
288 ** of the more general WHERE clause. These terms are moved over to the |
|
289 ** WHERE clause during join processing but we need to remember that they |
|
290 ** originated in the ON or USING clause. |
|
291 ** |
|
292 ** The Expr.iRightJoinTable tells the WHERE clause processing that the |
|
293 ** expression depends on table iRightJoinTable even if that table is not |
|
294 ** explicitly mentioned in the expression. That information is needed |
|
295 ** for cases like this: |
|
296 ** |
|
297 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 |
|
298 ** |
|
299 ** The where clause needs to defer the handling of the t1.x=5 |
|
300 ** term until after the t2 loop of the join. In that way, a |
|
301 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not |
|
302 ** defer the handling of t1.x=5, it will be processed immediately |
|
303 ** after the t1 loop and rows with t1.x!=5 will never appear in |
|
304 ** the output, which is incorrect. |
|
305 */ |
|
306 static void setJoinExpr(Expr *p, int iTable){ |
|
307 while( p ){ |
|
308 ExprSetProperty(p, EP_FromJoin); |
|
309 p->iRightJoinTable = iTable; |
|
310 setJoinExpr(p->pLeft, iTable); |
|
311 p = p->pRight; |
|
312 } |
|
313 } |
|
314 |
|
315 /* |
|
316 ** This routine processes the join information for a SELECT statement. |
|
317 ** ON and USING clauses are converted into extra terms of the WHERE clause. |
|
318 ** NATURAL joins also create extra WHERE clause terms. |
|
319 ** |
|
320 ** The terms of a FROM clause are contained in the Select.pSrc structure. |
|
321 ** The left most table is the first entry in Select.pSrc. The right-most |
|
322 ** table is the last entry. The join operator is held in the entry to |
|
323 ** the left. Thus entry 0 contains the join operator for the join between |
|
324 ** entries 0 and 1. Any ON or USING clauses associated with the join are |
|
325 ** also attached to the left entry. |
|
326 ** |
|
327 ** This routine returns the number of errors encountered. |
|
328 */ |
|
329 static int sqliteProcessJoin(Parse *pParse, Select *p){ |
|
330 SrcList *pSrc; /* All tables in the FROM clause */ |
|
331 int i, j; /* Loop counters */ |
|
332 struct SrcList_item *pLeft; /* Left table being joined */ |
|
333 struct SrcList_item *pRight; /* Right table being joined */ |
|
334 |
|
335 pSrc = p->pSrc; |
|
336 pLeft = &pSrc->a[0]; |
|
337 pRight = &pLeft[1]; |
|
338 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ |
|
339 Table *pLeftTab = pLeft->pTab; |
|
340 Table *pRightTab = pRight->pTab; |
|
341 int isOuter; |
|
342 |
|
343 if( pLeftTab==0 || pRightTab==0 ) continue; |
|
344 isOuter = (pRight->jointype & JT_OUTER)!=0; |
|
345 |
|
346 /* When the NATURAL keyword is present, add WHERE clause terms for |
|
347 ** every column that the two tables have in common. |
|
348 */ |
|
349 if( pRight->jointype & JT_NATURAL ){ |
|
350 if( pRight->pOn || pRight->pUsing ){ |
|
351 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " |
|
352 "an ON or USING clause", 0); |
|
353 return 1; |
|
354 } |
|
355 for(j=0; j<pLeftTab->nCol; j++){ |
|
356 char *zName = pLeftTab->aCol[j].zName; |
|
357 if( columnIndex(pRightTab, zName)>=0 ){ |
|
358 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, |
|
359 pRightTab, pRight->zAlias, |
|
360 pRight->iCursor, &p->pWhere, isOuter); |
|
361 |
|
362 } |
|
363 } |
|
364 } |
|
365 |
|
366 /* Disallow both ON and USING clauses in the same join |
|
367 */ |
|
368 if( pRight->pOn && pRight->pUsing ){ |
|
369 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " |
|
370 "clauses in the same join"); |
|
371 return 1; |
|
372 } |
|
373 |
|
374 /* Add the ON clause to the end of the WHERE clause, connected by |
|
375 ** an AND operator. |
|
376 */ |
|
377 if( pRight->pOn ){ |
|
378 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); |
|
379 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); |
|
380 pRight->pOn = 0; |
|
381 } |
|
382 |
|
383 /* Create extra terms on the WHERE clause for each column named |
|
384 ** in the USING clause. Example: If the two tables to be joined are |
|
385 ** A and B and the USING clause names X, Y, and Z, then add this |
|
386 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z |
|
387 ** Report an error if any column mentioned in the USING clause is |
|
388 ** not contained in both tables to be joined. |
|
389 */ |
|
390 if( pRight->pUsing ){ |
|
391 IdList *pList = pRight->pUsing; |
|
392 for(j=0; j<pList->nId; j++){ |
|
393 char *zName = pList->a[j].zName; |
|
394 if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){ |
|
395 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " |
|
396 "not present in both tables", zName); |
|
397 return 1; |
|
398 } |
|
399 addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, |
|
400 pRightTab, pRight->zAlias, |
|
401 pRight->iCursor, &p->pWhere, isOuter); |
|
402 } |
|
403 } |
|
404 } |
|
405 return 0; |
|
406 } |
|
407 |
|
408 /* |
|
409 ** Insert code into "v" that will push the record on the top of the |
|
410 ** stack into the sorter. |
|
411 */ |
|
412 static void pushOntoSorter( |
|
413 Parse *pParse, /* Parser context */ |
|
414 ExprList *pOrderBy, /* The ORDER BY clause */ |
|
415 Select *pSelect, /* The whole SELECT statement */ |
|
416 int regData /* Register holding data to be sorted */ |
|
417 ){ |
|
418 Vdbe *v = pParse->pVdbe; |
|
419 int nExpr = pOrderBy->nExpr; |
|
420 int regBase = sqlite3GetTempRange(pParse, nExpr+2); |
|
421 int regRecord = sqlite3GetTempReg(pParse); |
|
422 sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0); |
|
423 sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr); |
|
424 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1); |
|
425 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord); |
|
426 sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord); |
|
427 sqlite3ReleaseTempReg(pParse, regRecord); |
|
428 sqlite3ReleaseTempRange(pParse, regBase, nExpr+2); |
|
429 if( pSelect->iLimit ){ |
|
430 int addr1, addr2; |
|
431 int iLimit; |
|
432 if( pSelect->iOffset ){ |
|
433 iLimit = pSelect->iOffset+1; |
|
434 }else{ |
|
435 iLimit = pSelect->iLimit; |
|
436 } |
|
437 addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); |
|
438 sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1); |
|
439 addr2 = sqlite3VdbeAddOp0(v, OP_Goto); |
|
440 sqlite3VdbeJumpHere(v, addr1); |
|
441 sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor); |
|
442 sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor); |
|
443 sqlite3VdbeJumpHere(v, addr2); |
|
444 pSelect->iLimit = 0; |
|
445 } |
|
446 } |
|
447 |
|
448 /* |
|
449 ** Add code to implement the OFFSET |
|
450 */ |
|
451 static void codeOffset( |
|
452 Vdbe *v, /* Generate code into this VM */ |
|
453 Select *p, /* The SELECT statement being coded */ |
|
454 int iContinue /* Jump here to skip the current record */ |
|
455 ){ |
|
456 if( p->iOffset && iContinue!=0 ){ |
|
457 int addr; |
|
458 sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1); |
|
459 addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset); |
|
460 sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue); |
|
461 VdbeComment((v, "skip OFFSET records")); |
|
462 sqlite3VdbeJumpHere(v, addr); |
|
463 } |
|
464 } |
|
465 |
|
466 /* |
|
467 ** Add code that will check to make sure the N registers starting at iMem |
|
468 ** form a distinct entry. iTab is a sorting index that holds previously |
|
469 ** seen combinations of the N values. A new entry is made in iTab |
|
470 ** if the current N values are new. |
|
471 ** |
|
472 ** A jump to addrRepeat is made and the N+1 values are popped from the |
|
473 ** stack if the top N elements are not distinct. |
|
474 */ |
|
475 static void codeDistinct( |
|
476 Parse *pParse, /* Parsing and code generating context */ |
|
477 int iTab, /* A sorting index used to test for distinctness */ |
|
478 int addrRepeat, /* Jump to here if not distinct */ |
|
479 int N, /* Number of elements */ |
|
480 int iMem /* First element */ |
|
481 ){ |
|
482 Vdbe *v; |
|
483 int r1; |
|
484 |
|
485 v = pParse->pVdbe; |
|
486 r1 = sqlite3GetTempReg(pParse); |
|
487 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); |
|
488 sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1); |
|
489 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); |
|
490 sqlite3ReleaseTempReg(pParse, r1); |
|
491 } |
|
492 |
|
493 /* |
|
494 ** Generate an error message when a SELECT is used within a subexpression |
|
495 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result |
|
496 ** column. We do this in a subroutine because the error occurs in multiple |
|
497 ** places. |
|
498 */ |
|
499 static int checkForMultiColumnSelectError( |
|
500 Parse *pParse, /* Parse context. */ |
|
501 SelectDest *pDest, /* Destination of SELECT results */ |
|
502 int nExpr /* Number of result columns returned by SELECT */ |
|
503 ){ |
|
504 int eDest = pDest->eDest; |
|
505 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ |
|
506 sqlite3ErrorMsg(pParse, "only a single result allowed for " |
|
507 "a SELECT that is part of an expression"); |
|
508 return 1; |
|
509 }else{ |
|
510 return 0; |
|
511 } |
|
512 } |
|
513 |
|
514 /* |
|
515 ** This routine generates the code for the inside of the inner loop |
|
516 ** of a SELECT. |
|
517 ** |
|
518 ** If srcTab and nColumn are both zero, then the pEList expressions |
|
519 ** are evaluated in order to get the data for this row. If nColumn>0 |
|
520 ** then data is pulled from srcTab and pEList is used only to get the |
|
521 ** datatypes for each column. |
|
522 */ |
|
523 static void selectInnerLoop( |
|
524 Parse *pParse, /* The parser context */ |
|
525 Select *p, /* The complete select statement being coded */ |
|
526 ExprList *pEList, /* List of values being extracted */ |
|
527 int srcTab, /* Pull data from this table */ |
|
528 int nColumn, /* Number of columns in the source table */ |
|
529 ExprList *pOrderBy, /* If not NULL, sort results using this key */ |
|
530 int distinct, /* If >=0, make sure results are distinct */ |
|
531 SelectDest *pDest, /* How to dispose of the results */ |
|
532 int iContinue, /* Jump here to continue with next row */ |
|
533 int iBreak /* Jump here to break out of the inner loop */ |
|
534 ){ |
|
535 Vdbe *v = pParse->pVdbe; |
|
536 int i; |
|
537 int hasDistinct; /* True if the DISTINCT keyword is present */ |
|
538 int regResult; /* Start of memory holding result set */ |
|
539 int eDest = pDest->eDest; /* How to dispose of results */ |
|
540 int iParm = pDest->iParm; /* First argument to disposal method */ |
|
541 int nResultCol; /* Number of result columns */ |
|
542 |
|
543 if( v==0 ) return; |
|
544 assert( pEList!=0 ); |
|
545 hasDistinct = distinct>=0; |
|
546 if( pOrderBy==0 && !hasDistinct ){ |
|
547 codeOffset(v, p, iContinue); |
|
548 } |
|
549 |
|
550 /* Pull the requested columns. |
|
551 */ |
|
552 if( nColumn>0 ){ |
|
553 nResultCol = nColumn; |
|
554 }else{ |
|
555 nResultCol = pEList->nExpr; |
|
556 } |
|
557 if( pDest->iMem==0 ){ |
|
558 pDest->iMem = pParse->nMem+1; |
|
559 pDest->nMem = nResultCol; |
|
560 pParse->nMem += nResultCol; |
|
561 }else if( pDest->nMem!=nResultCol ){ |
|
562 /* This happens when two SELECTs of a compound SELECT have differing |
|
563 ** numbers of result columns. The error message will be generated by |
|
564 ** a higher-level routine. */ |
|
565 return; |
|
566 } |
|
567 regResult = pDest->iMem; |
|
568 if( nColumn>0 ){ |
|
569 for(i=0; i<nColumn; i++){ |
|
570 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); |
|
571 } |
|
572 }else if( eDest!=SRT_Exists ){ |
|
573 /* If the destination is an EXISTS(...) expression, the actual |
|
574 ** values returned by the SELECT are not required. |
|
575 */ |
|
576 sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Callback); |
|
577 } |
|
578 nColumn = nResultCol; |
|
579 |
|
580 /* If the DISTINCT keyword was present on the SELECT statement |
|
581 ** and this row has been seen before, then do not make this row |
|
582 ** part of the result. |
|
583 */ |
|
584 if( hasDistinct ){ |
|
585 assert( pEList!=0 ); |
|
586 assert( pEList->nExpr==nColumn ); |
|
587 codeDistinct(pParse, distinct, iContinue, nColumn, regResult); |
|
588 if( pOrderBy==0 ){ |
|
589 codeOffset(v, p, iContinue); |
|
590 } |
|
591 } |
|
592 |
|
593 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ |
|
594 return; |
|
595 } |
|
596 |
|
597 switch( eDest ){ |
|
598 /* In this mode, write each query result to the key of the temporary |
|
599 ** table iParm. |
|
600 */ |
|
601 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
602 case SRT_Union: { |
|
603 int r1; |
|
604 r1 = sqlite3GetTempReg(pParse); |
|
605 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); |
|
606 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); |
|
607 sqlite3ReleaseTempReg(pParse, r1); |
|
608 break; |
|
609 } |
|
610 |
|
611 /* Construct a record from the query result, but instead of |
|
612 ** saving that record, use it as a key to delete elements from |
|
613 ** the temporary table iParm. |
|
614 */ |
|
615 case SRT_Except: { |
|
616 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn); |
|
617 break; |
|
618 } |
|
619 #endif |
|
620 |
|
621 /* Store the result as data using a unique key. |
|
622 */ |
|
623 case SRT_Table: |
|
624 case SRT_EphemTab: { |
|
625 int r1 = sqlite3GetTempReg(pParse); |
|
626 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); |
|
627 if( pOrderBy ){ |
|
628 pushOntoSorter(pParse, pOrderBy, p, r1); |
|
629 }else{ |
|
630 int r2 = sqlite3GetTempReg(pParse); |
|
631 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); |
|
632 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); |
|
633 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
|
634 sqlite3ReleaseTempReg(pParse, r2); |
|
635 } |
|
636 sqlite3ReleaseTempReg(pParse, r1); |
|
637 break; |
|
638 } |
|
639 |
|
640 #ifndef SQLITE_OMIT_SUBQUERY |
|
641 /* If we are creating a set for an "expr IN (SELECT ...)" construct, |
|
642 ** then there should be a single item on the stack. Write this |
|
643 ** item into the set table with bogus data. |
|
644 */ |
|
645 case SRT_Set: { |
|
646 assert( nColumn==1 ); |
|
647 p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity); |
|
648 if( pOrderBy ){ |
|
649 /* At first glance you would think we could optimize out the |
|
650 ** ORDER BY in this case since the order of entries in the set |
|
651 ** does not matter. But there might be a LIMIT clause, in which |
|
652 ** case the order does matter */ |
|
653 pushOntoSorter(pParse, pOrderBy, p, regResult); |
|
654 }else{ |
|
655 int r1 = sqlite3GetTempReg(pParse); |
|
656 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1); |
|
657 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); |
|
658 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); |
|
659 sqlite3ReleaseTempReg(pParse, r1); |
|
660 } |
|
661 break; |
|
662 } |
|
663 |
|
664 /* If any row exist in the result set, record that fact and abort. |
|
665 */ |
|
666 case SRT_Exists: { |
|
667 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); |
|
668 /* The LIMIT clause will terminate the loop for us */ |
|
669 break; |
|
670 } |
|
671 |
|
672 /* If this is a scalar select that is part of an expression, then |
|
673 ** store the results in the appropriate memory cell and break out |
|
674 ** of the scan loop. |
|
675 */ |
|
676 case SRT_Mem: { |
|
677 assert( nColumn==1 ); |
|
678 if( pOrderBy ){ |
|
679 pushOntoSorter(pParse, pOrderBy, p, regResult); |
|
680 }else{ |
|
681 sqlite3ExprCodeMove(pParse, regResult, iParm, 1); |
|
682 /* The LIMIT clause will jump out of the loop for us */ |
|
683 } |
|
684 break; |
|
685 } |
|
686 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ |
|
687 |
|
688 /* Send the data to the callback function or to a subroutine. In the |
|
689 ** case of a subroutine, the subroutine itself is responsible for |
|
690 ** popping the data from the stack. |
|
691 */ |
|
692 case SRT_Coroutine: |
|
693 case SRT_Callback: { |
|
694 if( pOrderBy ){ |
|
695 int r1 = sqlite3GetTempReg(pParse); |
|
696 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1); |
|
697 pushOntoSorter(pParse, pOrderBy, p, r1); |
|
698 sqlite3ReleaseTempReg(pParse, r1); |
|
699 }else if( eDest==SRT_Coroutine ){ |
|
700 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); |
|
701 }else{ |
|
702 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn); |
|
703 sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn); |
|
704 } |
|
705 break; |
|
706 } |
|
707 |
|
708 #if !defined(SQLITE_OMIT_TRIGGER) |
|
709 /* Discard the results. This is used for SELECT statements inside |
|
710 ** the body of a TRIGGER. The purpose of such selects is to call |
|
711 ** user-defined functions that have side effects. We do not care |
|
712 ** about the actual results of the select. |
|
713 */ |
|
714 default: { |
|
715 assert( eDest==SRT_Discard ); |
|
716 break; |
|
717 } |
|
718 #endif |
|
719 } |
|
720 |
|
721 /* Jump to the end of the loop if the LIMIT is reached. |
|
722 */ |
|
723 if( p->iLimit ){ |
|
724 assert( pOrderBy==0 ); /* If there is an ORDER BY, the call to |
|
725 ** pushOntoSorter() would have cleared p->iLimit */ |
|
726 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); |
|
727 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); |
|
728 } |
|
729 } |
|
730 |
|
731 /* |
|
732 ** Given an expression list, generate a KeyInfo structure that records |
|
733 ** the collating sequence for each expression in that expression list. |
|
734 ** |
|
735 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting |
|
736 ** KeyInfo structure is appropriate for initializing a virtual index to |
|
737 ** implement that clause. If the ExprList is the result set of a SELECT |
|
738 ** then the KeyInfo structure is appropriate for initializing a virtual |
|
739 ** index to implement a DISTINCT test. |
|
740 ** |
|
741 ** Space to hold the KeyInfo structure is obtain from malloc. The calling |
|
742 ** function is responsible for seeing that this structure is eventually |
|
743 ** freed. Add the KeyInfo structure to the P4 field of an opcode using |
|
744 ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. |
|
745 */ |
|
746 static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ |
|
747 sqlite3 *db = pParse->db; |
|
748 int nExpr; |
|
749 KeyInfo *pInfo; |
|
750 struct ExprList_item *pItem; |
|
751 int i; |
|
752 |
|
753 nExpr = pList->nExpr; |
|
754 pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); |
|
755 if( pInfo ){ |
|
756 pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; |
|
757 pInfo->nField = nExpr; |
|
758 pInfo->enc = ENC(db); |
|
759 for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ |
|
760 CollSeq *pColl; |
|
761 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); |
|
762 if( !pColl ){ |
|
763 pColl = db->pDfltColl; |
|
764 } |
|
765 pInfo->aColl[i] = pColl; |
|
766 pInfo->aSortOrder[i] = pItem->sortOrder; |
|
767 } |
|
768 } |
|
769 return pInfo; |
|
770 } |
|
771 |
|
772 |
|
773 /* |
|
774 ** If the inner loop was generated using a non-null pOrderBy argument, |
|
775 ** then the results were placed in a sorter. After the loop is terminated |
|
776 ** we need to run the sorter and output the results. The following |
|
777 ** routine generates the code needed to do that. |
|
778 */ |
|
779 static void generateSortTail( |
|
780 Parse *pParse, /* Parsing context */ |
|
781 Select *p, /* The SELECT statement */ |
|
782 Vdbe *v, /* Generate code into this VDBE */ |
|
783 int nColumn, /* Number of columns of data */ |
|
784 SelectDest *pDest /* Write the sorted results here */ |
|
785 ){ |
|
786 int brk = sqlite3VdbeMakeLabel(v); |
|
787 int cont = sqlite3VdbeMakeLabel(v); |
|
788 int addr; |
|
789 int iTab; |
|
790 int pseudoTab = 0; |
|
791 ExprList *pOrderBy = p->pOrderBy; |
|
792 |
|
793 int eDest = pDest->eDest; |
|
794 int iParm = pDest->iParm; |
|
795 |
|
796 int regRow; |
|
797 int regRowid; |
|
798 |
|
799 iTab = pOrderBy->iECursor; |
|
800 if( eDest==SRT_Callback || eDest==SRT_Coroutine ){ |
|
801 pseudoTab = pParse->nTab++; |
|
802 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn); |
|
803 sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Callback); |
|
804 } |
|
805 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk); |
|
806 codeOffset(v, p, cont); |
|
807 regRow = sqlite3GetTempReg(pParse); |
|
808 regRowid = sqlite3GetTempReg(pParse); |
|
809 sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow); |
|
810 switch( eDest ){ |
|
811 case SRT_Table: |
|
812 case SRT_EphemTab: { |
|
813 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); |
|
814 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); |
|
815 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
|
816 break; |
|
817 } |
|
818 #ifndef SQLITE_OMIT_SUBQUERY |
|
819 case SRT_Set: { |
|
820 assert( nColumn==1 ); |
|
821 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1); |
|
822 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); |
|
823 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); |
|
824 break; |
|
825 } |
|
826 case SRT_Mem: { |
|
827 assert( nColumn==1 ); |
|
828 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); |
|
829 /* The LIMIT clause will terminate the loop for us */ |
|
830 break; |
|
831 } |
|
832 #endif |
|
833 case SRT_Callback: |
|
834 case SRT_Coroutine: { |
|
835 int i; |
|
836 sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid); |
|
837 sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid); |
|
838 for(i=0; i<nColumn; i++){ |
|
839 assert( regRow!=pDest->iMem+i ); |
|
840 sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i); |
|
841 } |
|
842 if( eDest==SRT_Callback ){ |
|
843 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn); |
|
844 sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn); |
|
845 }else{ |
|
846 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); |
|
847 } |
|
848 break; |
|
849 } |
|
850 default: { |
|
851 /* Do nothing */ |
|
852 break; |
|
853 } |
|
854 } |
|
855 sqlite3ReleaseTempReg(pParse, regRow); |
|
856 sqlite3ReleaseTempReg(pParse, regRowid); |
|
857 |
|
858 /* LIMIT has been implemented by the pushOntoSorter() routine. |
|
859 */ |
|
860 assert( p->iLimit==0 ); |
|
861 |
|
862 /* The bottom of the loop |
|
863 */ |
|
864 sqlite3VdbeResolveLabel(v, cont); |
|
865 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); |
|
866 sqlite3VdbeResolveLabel(v, brk); |
|
867 if( eDest==SRT_Callback || eDest==SRT_Coroutine ){ |
|
868 sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0); |
|
869 } |
|
870 |
|
871 } |
|
872 |
|
873 /* |
|
874 ** Return a pointer to a string containing the 'declaration type' of the |
|
875 ** expression pExpr. The string may be treated as static by the caller. |
|
876 ** |
|
877 ** The declaration type is the exact datatype definition extracted from the |
|
878 ** original CREATE TABLE statement if the expression is a column. The |
|
879 ** declaration type for a ROWID field is INTEGER. Exactly when an expression |
|
880 ** is considered a column can be complex in the presence of subqueries. The |
|
881 ** result-set expression in all of the following SELECT statements is |
|
882 ** considered a column by this function. |
|
883 ** |
|
884 ** SELECT col FROM tbl; |
|
885 ** SELECT (SELECT col FROM tbl; |
|
886 ** SELECT (SELECT col FROM tbl); |
|
887 ** SELECT abc FROM (SELECT col AS abc FROM tbl); |
|
888 ** |
|
889 ** The declaration type for any expression other than a column is NULL. |
|
890 */ |
|
891 static const char *columnType( |
|
892 NameContext *pNC, |
|
893 Expr *pExpr, |
|
894 const char **pzOriginDb, |
|
895 const char **pzOriginTab, |
|
896 const char **pzOriginCol |
|
897 ){ |
|
898 char const *zType = 0; |
|
899 char const *zOriginDb = 0; |
|
900 char const *zOriginTab = 0; |
|
901 char const *zOriginCol = 0; |
|
902 int j; |
|
903 if( pExpr==0 || pNC->pSrcList==0 ) return 0; |
|
904 |
|
905 switch( pExpr->op ){ |
|
906 case TK_AGG_COLUMN: |
|
907 case TK_COLUMN: { |
|
908 /* The expression is a column. Locate the table the column is being |
|
909 ** extracted from in NameContext.pSrcList. This table may be real |
|
910 ** database table or a subquery. |
|
911 */ |
|
912 Table *pTab = 0; /* Table structure column is extracted from */ |
|
913 Select *pS = 0; /* Select the column is extracted from */ |
|
914 int iCol = pExpr->iColumn; /* Index of column in pTab */ |
|
915 while( pNC && !pTab ){ |
|
916 SrcList *pTabList = pNC->pSrcList; |
|
917 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); |
|
918 if( j<pTabList->nSrc ){ |
|
919 pTab = pTabList->a[j].pTab; |
|
920 pS = pTabList->a[j].pSelect; |
|
921 }else{ |
|
922 pNC = pNC->pNext; |
|
923 } |
|
924 } |
|
925 |
|
926 if( pTab==0 ){ |
|
927 /* FIX ME: |
|
928 ** This can occurs if you have something like "SELECT new.x;" inside |
|
929 ** a trigger. In other words, if you reference the special "new" |
|
930 ** table in the result set of a select. We do not have a good way |
|
931 ** to find the actual table type, so call it "TEXT". This is really |
|
932 ** something of a bug, but I do not know how to fix it. |
|
933 ** |
|
934 ** This code does not produce the correct answer - it just prevents |
|
935 ** a segfault. See ticket #1229. |
|
936 */ |
|
937 zType = "TEXT"; |
|
938 break; |
|
939 } |
|
940 |
|
941 assert( pTab ); |
|
942 if( pS ){ |
|
943 /* The "table" is actually a sub-select or a view in the FROM clause |
|
944 ** of the SELECT statement. Return the declaration type and origin |
|
945 ** data for the result-set column of the sub-select. |
|
946 */ |
|
947 if( iCol>=0 && iCol<pS->pEList->nExpr ){ |
|
948 /* If iCol is less than zero, then the expression requests the |
|
949 ** rowid of the sub-select or view. This expression is legal (see |
|
950 ** test case misc2.2.2) - it always evaluates to NULL. |
|
951 */ |
|
952 NameContext sNC; |
|
953 Expr *p = pS->pEList->a[iCol].pExpr; |
|
954 sNC.pSrcList = pS->pSrc; |
|
955 sNC.pNext = 0; |
|
956 sNC.pParse = pNC->pParse; |
|
957 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); |
|
958 } |
|
959 }else if( pTab->pSchema ){ |
|
960 /* A real table */ |
|
961 assert( !pS ); |
|
962 if( iCol<0 ) iCol = pTab->iPKey; |
|
963 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); |
|
964 if( iCol<0 ){ |
|
965 zType = "INTEGER"; |
|
966 zOriginCol = "rowid"; |
|
967 }else{ |
|
968 zType = pTab->aCol[iCol].zType; |
|
969 zOriginCol = pTab->aCol[iCol].zName; |
|
970 } |
|
971 zOriginTab = pTab->zName; |
|
972 if( pNC->pParse ){ |
|
973 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); |
|
974 zOriginDb = pNC->pParse->db->aDb[iDb].zName; |
|
975 } |
|
976 } |
|
977 break; |
|
978 } |
|
979 #ifndef SQLITE_OMIT_SUBQUERY |
|
980 case TK_SELECT: { |
|
981 /* The expression is a sub-select. Return the declaration type and |
|
982 ** origin info for the single column in the result set of the SELECT |
|
983 ** statement. |
|
984 */ |
|
985 NameContext sNC; |
|
986 Select *pS = pExpr->pSelect; |
|
987 Expr *p = pS->pEList->a[0].pExpr; |
|
988 sNC.pSrcList = pS->pSrc; |
|
989 sNC.pNext = pNC; |
|
990 sNC.pParse = pNC->pParse; |
|
991 zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); |
|
992 break; |
|
993 } |
|
994 #endif |
|
995 } |
|
996 |
|
997 if( pzOriginDb ){ |
|
998 assert( pzOriginTab && pzOriginCol ); |
|
999 *pzOriginDb = zOriginDb; |
|
1000 *pzOriginTab = zOriginTab; |
|
1001 *pzOriginCol = zOriginCol; |
|
1002 } |
|
1003 return zType; |
|
1004 } |
|
1005 |
|
1006 /* |
|
1007 ** Generate code that will tell the VDBE the declaration types of columns |
|
1008 ** in the result set. |
|
1009 */ |
|
1010 static void generateColumnTypes( |
|
1011 Parse *pParse, /* Parser context */ |
|
1012 SrcList *pTabList, /* List of tables */ |
|
1013 ExprList *pEList /* Expressions defining the result set */ |
|
1014 ){ |
|
1015 #ifndef SQLITE_OMIT_DECLTYPE |
|
1016 Vdbe *v = pParse->pVdbe; |
|
1017 int i; |
|
1018 NameContext sNC; |
|
1019 sNC.pSrcList = pTabList; |
|
1020 sNC.pParse = pParse; |
|
1021 for(i=0; i<pEList->nExpr; i++){ |
|
1022 Expr *p = pEList->a[i].pExpr; |
|
1023 const char *zType; |
|
1024 #ifdef SQLITE_ENABLE_COLUMN_METADATA |
|
1025 const char *zOrigDb = 0; |
|
1026 const char *zOrigTab = 0; |
|
1027 const char *zOrigCol = 0; |
|
1028 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol); |
|
1029 |
|
1030 /* The vdbe must make its own copy of the column-type and other |
|
1031 ** column specific strings, in case the schema is reset before this |
|
1032 ** virtual machine is deleted. |
|
1033 */ |
|
1034 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT); |
|
1035 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT); |
|
1036 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT); |
|
1037 #else |
|
1038 zType = columnType(&sNC, p, 0, 0, 0); |
|
1039 #endif |
|
1040 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT); |
|
1041 } |
|
1042 #endif /* SQLITE_OMIT_DECLTYPE */ |
|
1043 } |
|
1044 |
|
1045 /* |
|
1046 ** Generate code that will tell the VDBE the names of columns |
|
1047 ** in the result set. This information is used to provide the |
|
1048 ** azCol[] values in the callback. |
|
1049 */ |
|
1050 static void generateColumnNames( |
|
1051 Parse *pParse, /* Parser context */ |
|
1052 SrcList *pTabList, /* List of tables */ |
|
1053 ExprList *pEList /* Expressions defining the result set */ |
|
1054 ){ |
|
1055 Vdbe *v = pParse->pVdbe; |
|
1056 int i, j; |
|
1057 sqlite3 *db = pParse->db; |
|
1058 int fullNames, shortNames; |
|
1059 |
|
1060 #ifndef SQLITE_OMIT_EXPLAIN |
|
1061 /* If this is an EXPLAIN, skip this step */ |
|
1062 if( pParse->explain ){ |
|
1063 return; |
|
1064 } |
|
1065 #endif |
|
1066 |
|
1067 assert( v!=0 ); |
|
1068 if( pParse->colNamesSet || v==0 || db->mallocFailed ) return; |
|
1069 pParse->colNamesSet = 1; |
|
1070 fullNames = (db->flags & SQLITE_FullColNames)!=0; |
|
1071 shortNames = (db->flags & SQLITE_ShortColNames)!=0; |
|
1072 sqlite3VdbeSetNumCols(v, pEList->nExpr); |
|
1073 for(i=0; i<pEList->nExpr; i++){ |
|
1074 Expr *p; |
|
1075 p = pEList->a[i].pExpr; |
|
1076 if( p==0 ) continue; |
|
1077 if( pEList->a[i].zName ){ |
|
1078 char *zName = pEList->a[i].zName; |
|
1079 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName)); |
|
1080 }else if( p->op==TK_COLUMN && pTabList ){ |
|
1081 Table *pTab; |
|
1082 char *zCol; |
|
1083 int iCol = p->iColumn; |
|
1084 for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){} |
|
1085 assert( j<pTabList->nSrc ); |
|
1086 pTab = pTabList->a[j].pTab; |
|
1087 if( iCol<0 ) iCol = pTab->iPKey; |
|
1088 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); |
|
1089 if( iCol<0 ){ |
|
1090 zCol = "rowid"; |
|
1091 }else{ |
|
1092 zCol = pTab->aCol[iCol].zName; |
|
1093 } |
|
1094 if( !shortNames && !fullNames ){ |
|
1095 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); |
|
1096 }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){ |
|
1097 char *zName = 0; |
|
1098 char *zTab; |
|
1099 |
|
1100 zTab = pTabList->a[j].zAlias; |
|
1101 if( fullNames || zTab==0 ) zTab = pTab->zName; |
|
1102 zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol); |
|
1103 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC); |
|
1104 }else{ |
|
1105 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol)); |
|
1106 } |
|
1107 }else{ |
|
1108 sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n); |
|
1109 } |
|
1110 } |
|
1111 generateColumnTypes(pParse, pTabList, pEList); |
|
1112 } |
|
1113 |
|
1114 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
1115 /* |
|
1116 ** Name of the connection operator, used for error messages. |
|
1117 */ |
|
1118 static const char *selectOpName(int id){ |
|
1119 char *z; |
|
1120 switch( id ){ |
|
1121 case TK_ALL: z = "UNION ALL"; break; |
|
1122 case TK_INTERSECT: z = "INTERSECT"; break; |
|
1123 case TK_EXCEPT: z = "EXCEPT"; break; |
|
1124 default: z = "UNION"; break; |
|
1125 } |
|
1126 return z; |
|
1127 } |
|
1128 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
|
1129 |
|
1130 /* |
|
1131 ** Forward declaration |
|
1132 */ |
|
1133 static int prepSelectStmt(Parse*, Select*); |
|
1134 |
|
1135 /* |
|
1136 ** Given a SELECT statement, generate a Table structure that describes |
|
1137 ** the result set of that SELECT. |
|
1138 */ |
|
1139 Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){ |
|
1140 Table *pTab; |
|
1141 int i, j, rc; |
|
1142 ExprList *pEList; |
|
1143 Column *aCol, *pCol; |
|
1144 sqlite3 *db = pParse->db; |
|
1145 int savedFlags; |
|
1146 |
|
1147 savedFlags = db->flags; |
|
1148 db->flags &= ~SQLITE_FullColNames; |
|
1149 db->flags |= SQLITE_ShortColNames; |
|
1150 rc = sqlite3SelectResolve(pParse, pSelect, 0); |
|
1151 if( rc==SQLITE_OK ){ |
|
1152 while( pSelect->pPrior ) pSelect = pSelect->pPrior; |
|
1153 rc = prepSelectStmt(pParse, pSelect); |
|
1154 if( rc==SQLITE_OK ){ |
|
1155 rc = sqlite3SelectResolve(pParse, pSelect, 0); |
|
1156 } |
|
1157 } |
|
1158 db->flags = savedFlags; |
|
1159 if( rc ){ |
|
1160 return 0; |
|
1161 } |
|
1162 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); |
|
1163 if( pTab==0 ){ |
|
1164 return 0; |
|
1165 } |
|
1166 pTab->db = db; |
|
1167 pTab->nRef = 1; |
|
1168 pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0; |
|
1169 pEList = pSelect->pEList; |
|
1170 pTab->nCol = pEList->nExpr; |
|
1171 assert( pTab->nCol>0 ); |
|
1172 pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol); |
|
1173 testcase( aCol==0 ); |
|
1174 for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){ |
|
1175 Expr *p; |
|
1176 char *zType; |
|
1177 char *zName; |
|
1178 int nName; |
|
1179 CollSeq *pColl; |
|
1180 int cnt; |
|
1181 NameContext sNC; |
|
1182 |
|
1183 /* Get an appropriate name for the column |
|
1184 */ |
|
1185 p = pEList->a[i].pExpr; |
|
1186 assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 ); |
|
1187 if( (zName = pEList->a[i].zName)!=0 ){ |
|
1188 /* If the column contains an "AS <name>" phrase, use <name> as the name */ |
|
1189 zName = sqlite3DbStrDup(db, zName); |
|
1190 }else if( p->op==TK_COLUMN && p->pTab ){ |
|
1191 /* For columns use the column name name */ |
|
1192 int iCol = p->iColumn; |
|
1193 if( iCol<0 ) iCol = p->pTab->iPKey; |
|
1194 zName = sqlite3MPrintf(db, "%s", p->pTab->aCol[iCol].zName); |
|
1195 }else{ |
|
1196 /* Use the original text of the column expression as its name */ |
|
1197 zName = sqlite3MPrintf(db, "%T", &p->span); |
|
1198 } |
|
1199 if( db->mallocFailed ){ |
|
1200 sqlite3DbFree(db, zName); |
|
1201 break; |
|
1202 } |
|
1203 sqlite3Dequote(zName); |
|
1204 |
|
1205 /* Make sure the column name is unique. If the name is not unique, |
|
1206 ** append a integer to the name so that it becomes unique. |
|
1207 */ |
|
1208 nName = strlen(zName); |
|
1209 for(j=cnt=0; j<i; j++){ |
|
1210 if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){ |
|
1211 char *zNewName; |
|
1212 zName[nName] = 0; |
|
1213 zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt); |
|
1214 sqlite3DbFree(db, zName); |
|
1215 zName = zNewName; |
|
1216 j = -1; |
|
1217 if( zName==0 ) break; |
|
1218 } |
|
1219 } |
|
1220 pCol->zName = zName; |
|
1221 |
|
1222 /* Get the typename, type affinity, and collating sequence for the |
|
1223 ** column. |
|
1224 */ |
|
1225 memset(&sNC, 0, sizeof(sNC)); |
|
1226 sNC.pSrcList = pSelect->pSrc; |
|
1227 zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0)); |
|
1228 pCol->zType = zType; |
|
1229 pCol->affinity = sqlite3ExprAffinity(p); |
|
1230 pColl = sqlite3ExprCollSeq(pParse, p); |
|
1231 if( pColl ){ |
|
1232 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); |
|
1233 } |
|
1234 } |
|
1235 pTab->iPKey = -1; |
|
1236 if( db->mallocFailed ){ |
|
1237 sqlite3DeleteTable(pTab); |
|
1238 return 0; |
|
1239 } |
|
1240 return pTab; |
|
1241 } |
|
1242 |
|
1243 /* |
|
1244 ** Prepare a SELECT statement for processing by doing the following |
|
1245 ** things: |
|
1246 ** |
|
1247 ** (1) Make sure VDBE cursor numbers have been assigned to every |
|
1248 ** element of the FROM clause. |
|
1249 ** |
|
1250 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that |
|
1251 ** defines FROM clause. When views appear in the FROM clause, |
|
1252 ** fill pTabList->a[].pSelect with a copy of the SELECT statement |
|
1253 ** that implements the view. A copy is made of the view's SELECT |
|
1254 ** statement so that we can freely modify or delete that statement |
|
1255 ** without worrying about messing up the presistent representation |
|
1256 ** of the view. |
|
1257 ** |
|
1258 ** (3) Add terms to the WHERE clause to accomodate the NATURAL keyword |
|
1259 ** on joins and the ON and USING clause of joins. |
|
1260 ** |
|
1261 ** (4) Scan the list of columns in the result set (pEList) looking |
|
1262 ** for instances of the "*" operator or the TABLE.* operator. |
|
1263 ** If found, expand each "*" to be every column in every table |
|
1264 ** and TABLE.* to be every column in TABLE. |
|
1265 ** |
|
1266 ** Return 0 on success. If there are problems, leave an error message |
|
1267 ** in pParse and return non-zero. |
|
1268 */ |
|
1269 static int prepSelectStmt(Parse *pParse, Select *p){ |
|
1270 int i, j, k, rc; |
|
1271 SrcList *pTabList; |
|
1272 ExprList *pEList; |
|
1273 struct SrcList_item *pFrom; |
|
1274 sqlite3 *db = pParse->db; |
|
1275 |
|
1276 if( p==0 || p->pSrc==0 || db->mallocFailed ){ |
|
1277 return 1; |
|
1278 } |
|
1279 pTabList = p->pSrc; |
|
1280 pEList = p->pEList; |
|
1281 |
|
1282 /* Make sure cursor numbers have been assigned to all entries in |
|
1283 ** the FROM clause of the SELECT statement. |
|
1284 */ |
|
1285 sqlite3SrcListAssignCursors(pParse, p->pSrc); |
|
1286 |
|
1287 /* Look up every table named in the FROM clause of the select. If |
|
1288 ** an entry of the FROM clause is a subquery instead of a table or view, |
|
1289 ** then create a transient table structure to describe the subquery. |
|
1290 */ |
|
1291 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
|
1292 Table *pTab; |
|
1293 if( pFrom->pTab!=0 ){ |
|
1294 /* This statement has already been prepared. There is no need |
|
1295 ** to go further. */ |
|
1296 assert( i==0 ); |
|
1297 return 0; |
|
1298 } |
|
1299 if( pFrom->zName==0 ){ |
|
1300 #ifndef SQLITE_OMIT_SUBQUERY |
|
1301 /* A sub-query in the FROM clause of a SELECT */ |
|
1302 assert( pFrom->pSelect!=0 ); |
|
1303 if( pFrom->zAlias==0 ){ |
|
1304 pFrom->zAlias = |
|
1305 sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect); |
|
1306 } |
|
1307 assert( pFrom->pTab==0 ); |
|
1308 pFrom->pTab = pTab = |
|
1309 sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect); |
|
1310 if( pTab==0 ){ |
|
1311 return 1; |
|
1312 } |
|
1313 /* The isEphem flag indicates that the Table structure has been |
|
1314 ** dynamically allocated and may be freed at any time. In other words, |
|
1315 ** pTab is not pointing to a persistent table structure that defines |
|
1316 ** part of the schema. */ |
|
1317 pTab->isEphem = 1; |
|
1318 #endif |
|
1319 }else{ |
|
1320 /* An ordinary table or view name in the FROM clause */ |
|
1321 assert( pFrom->pTab==0 ); |
|
1322 pFrom->pTab = pTab = |
|
1323 sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase); |
|
1324 if( pTab==0 ){ |
|
1325 return 1; |
|
1326 } |
|
1327 pTab->nRef++; |
|
1328 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) |
|
1329 if( pTab->pSelect || IsVirtual(pTab) ){ |
|
1330 /* We reach here if the named table is a really a view */ |
|
1331 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ |
|
1332 return 1; |
|
1333 } |
|
1334 /* If pFrom->pSelect!=0 it means we are dealing with a |
|
1335 ** view within a view. The SELECT structure has already been |
|
1336 ** copied by the outer view so we can skip the copy step here |
|
1337 ** in the inner view. |
|
1338 */ |
|
1339 if( pFrom->pSelect==0 ){ |
|
1340 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect); |
|
1341 } |
|
1342 } |
|
1343 #endif |
|
1344 } |
|
1345 } |
|
1346 |
|
1347 /* Process NATURAL keywords, and ON and USING clauses of joins. |
|
1348 */ |
|
1349 if( sqliteProcessJoin(pParse, p) ) return 1; |
|
1350 |
|
1351 /* For every "*" that occurs in the column list, insert the names of |
|
1352 ** all columns in all tables. And for every TABLE.* insert the names |
|
1353 ** of all columns in TABLE. The parser inserted a special expression |
|
1354 ** with the TK_ALL operator for each "*" that it found in the column list. |
|
1355 ** The following code just has to locate the TK_ALL expressions and expand |
|
1356 ** each one to the list of all columns in all tables. |
|
1357 ** |
|
1358 ** The first loop just checks to see if there are any "*" operators |
|
1359 ** that need expanding. |
|
1360 */ |
|
1361 for(k=0; k<pEList->nExpr; k++){ |
|
1362 Expr *pE = pEList->a[k].pExpr; |
|
1363 if( pE->op==TK_ALL ) break; |
|
1364 if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL |
|
1365 && pE->pLeft && pE->pLeft->op==TK_ID ) break; |
|
1366 } |
|
1367 rc = 0; |
|
1368 if( k<pEList->nExpr ){ |
|
1369 /* |
|
1370 ** If we get here it means the result set contains one or more "*" |
|
1371 ** operators that need to be expanded. Loop through each expression |
|
1372 ** in the result set and expand them one by one. |
|
1373 */ |
|
1374 struct ExprList_item *a = pEList->a; |
|
1375 ExprList *pNew = 0; |
|
1376 int flags = pParse->db->flags; |
|
1377 int longNames = (flags & SQLITE_FullColNames)!=0 |
|
1378 && (flags & SQLITE_ShortColNames)==0; |
|
1379 |
|
1380 for(k=0; k<pEList->nExpr; k++){ |
|
1381 Expr *pE = a[k].pExpr; |
|
1382 if( pE->op!=TK_ALL && |
|
1383 (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){ |
|
1384 /* This particular expression does not need to be expanded. |
|
1385 */ |
|
1386 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0); |
|
1387 if( pNew ){ |
|
1388 pNew->a[pNew->nExpr-1].zName = a[k].zName; |
|
1389 }else{ |
|
1390 rc = 1; |
|
1391 } |
|
1392 a[k].pExpr = 0; |
|
1393 a[k].zName = 0; |
|
1394 }else{ |
|
1395 /* This expression is a "*" or a "TABLE.*" and needs to be |
|
1396 ** expanded. */ |
|
1397 int tableSeen = 0; /* Set to 1 when TABLE matches */ |
|
1398 char *zTName; /* text of name of TABLE */ |
|
1399 if( pE->op==TK_DOT && pE->pLeft ){ |
|
1400 zTName = sqlite3NameFromToken(db, &pE->pLeft->token); |
|
1401 }else{ |
|
1402 zTName = 0; |
|
1403 } |
|
1404 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ |
|
1405 Table *pTab = pFrom->pTab; |
|
1406 char *zTabName = pFrom->zAlias; |
|
1407 if( zTabName==0 || zTabName[0]==0 ){ |
|
1408 zTabName = pTab->zName; |
|
1409 } |
|
1410 assert( zTabName ); |
|
1411 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ |
|
1412 continue; |
|
1413 } |
|
1414 tableSeen = 1; |
|
1415 for(j=0; j<pTab->nCol; j++){ |
|
1416 Expr *pExpr, *pRight; |
|
1417 char *zName = pTab->aCol[j].zName; |
|
1418 |
|
1419 /* If a column is marked as 'hidden' (currently only possible |
|
1420 ** for virtual tables), do not include it in the expanded |
|
1421 ** result-set list. |
|
1422 */ |
|
1423 if( IsHiddenColumn(&pTab->aCol[j]) ){ |
|
1424 assert(IsVirtual(pTab)); |
|
1425 continue; |
|
1426 } |
|
1427 |
|
1428 if( i>0 ){ |
|
1429 struct SrcList_item *pLeft = &pTabList->a[i-1]; |
|
1430 if( (pLeft[1].jointype & JT_NATURAL)!=0 && |
|
1431 columnIndex(pLeft->pTab, zName)>=0 ){ |
|
1432 /* In a NATURAL join, omit the join columns from the |
|
1433 ** table on the right */ |
|
1434 continue; |
|
1435 } |
|
1436 if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){ |
|
1437 /* In a join with a USING clause, omit columns in the |
|
1438 ** using clause from the table on the right. */ |
|
1439 continue; |
|
1440 } |
|
1441 } |
|
1442 pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); |
|
1443 if( pRight==0 ) break; |
|
1444 setQuotedToken(pParse, &pRight->token, zName); |
|
1445 if( longNames || pTabList->nSrc>1 ){ |
|
1446 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0); |
|
1447 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); |
|
1448 if( pExpr==0 ) break; |
|
1449 setQuotedToken(pParse, &pLeft->token, zTabName); |
|
1450 #if 1 |
|
1451 setToken(&pExpr->span, |
|
1452 sqlite3MPrintf(db, "%s.%s", zTabName, zName)); |
|
1453 pExpr->span.dyn = 1; |
|
1454 #else |
|
1455 pExpr->span = pRight->token; |
|
1456 pExpr->span.dyn = 0; |
|
1457 #endif |
|
1458 pExpr->token.z = 0; |
|
1459 pExpr->token.n = 0; |
|
1460 pExpr->token.dyn = 0; |
|
1461 }else{ |
|
1462 pExpr = pRight; |
|
1463 pExpr->span = pExpr->token; |
|
1464 pExpr->span.dyn = 0; |
|
1465 } |
|
1466 if( longNames ){ |
|
1467 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span); |
|
1468 }else{ |
|
1469 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token); |
|
1470 } |
|
1471 } |
|
1472 } |
|
1473 if( !tableSeen ){ |
|
1474 if( zTName ){ |
|
1475 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); |
|
1476 }else{ |
|
1477 sqlite3ErrorMsg(pParse, "no tables specified"); |
|
1478 } |
|
1479 rc = 1; |
|
1480 } |
|
1481 sqlite3DbFree(db, zTName); |
|
1482 } |
|
1483 } |
|
1484 sqlite3ExprListDelete(db, pEList); |
|
1485 p->pEList = pNew; |
|
1486 } |
|
1487 #if SQLITE_MAX_COLUMN |
|
1488 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ |
|
1489 sqlite3ErrorMsg(pParse, "too many columns in result set"); |
|
1490 rc = SQLITE_ERROR; |
|
1491 } |
|
1492 #endif |
|
1493 if( db->mallocFailed ){ |
|
1494 rc = SQLITE_NOMEM; |
|
1495 } |
|
1496 return rc; |
|
1497 } |
|
1498 |
|
1499 /* |
|
1500 ** pE is a pointer to an expression which is a single term in |
|
1501 ** ORDER BY or GROUP BY clause. |
|
1502 ** |
|
1503 ** At the point this routine is called, we already know that the |
|
1504 ** ORDER BY term is not an integer index into the result set. That |
|
1505 ** casee is handled by the calling routine. |
|
1506 ** |
|
1507 ** If pE is a well-formed expression and the SELECT statement |
|
1508 ** is not compound, then return 0. This indicates to the |
|
1509 ** caller that it should sort by the value of the ORDER BY |
|
1510 ** expression. |
|
1511 ** |
|
1512 ** If the SELECT is compound, then attempt to match pE against |
|
1513 ** result set columns in the left-most SELECT statement. Return |
|
1514 ** the index i of the matching column, as an indication to the |
|
1515 ** caller that it should sort by the i-th column. If there is |
|
1516 ** no match, return -1 and leave an error message in pParse. |
|
1517 */ |
|
1518 static int matchOrderByTermToExprList( |
|
1519 Parse *pParse, /* Parsing context for error messages */ |
|
1520 Select *pSelect, /* The SELECT statement with the ORDER BY clause */ |
|
1521 Expr *pE, /* The specific ORDER BY term */ |
|
1522 int idx, /* When ORDER BY term is this */ |
|
1523 int isCompound, /* True if this is a compound SELECT */ |
|
1524 u8 *pHasAgg /* True if expression contains aggregate functions */ |
|
1525 ){ |
|
1526 int i; /* Loop counter */ |
|
1527 ExprList *pEList; /* The columns of the result set */ |
|
1528 NameContext nc; /* Name context for resolving pE */ |
|
1529 |
|
1530 assert( sqlite3ExprIsInteger(pE, &i)==0 ); |
|
1531 pEList = pSelect->pEList; |
|
1532 |
|
1533 /* If the term is a simple identifier that try to match that identifier |
|
1534 ** against a column name in the result set. |
|
1535 */ |
|
1536 if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){ |
|
1537 sqlite3 *db = pParse->db; |
|
1538 char *zCol = sqlite3NameFromToken(db, &pE->token); |
|
1539 if( zCol==0 ){ |
|
1540 return -1; |
|
1541 } |
|
1542 for(i=0; i<pEList->nExpr; i++){ |
|
1543 char *zAs = pEList->a[i].zName; |
|
1544 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ |
|
1545 sqlite3DbFree(db, zCol); |
|
1546 return i+1; |
|
1547 } |
|
1548 } |
|
1549 sqlite3DbFree(db, zCol); |
|
1550 } |
|
1551 |
|
1552 /* Resolve all names in the ORDER BY term expression |
|
1553 */ |
|
1554 memset(&nc, 0, sizeof(nc)); |
|
1555 nc.pParse = pParse; |
|
1556 nc.pSrcList = pSelect->pSrc; |
|
1557 nc.pEList = pEList; |
|
1558 nc.allowAgg = 1; |
|
1559 nc.nErr = 0; |
|
1560 if( sqlite3ExprResolveNames(&nc, pE) ){ |
|
1561 if( isCompound ){ |
|
1562 sqlite3ErrorClear(pParse); |
|
1563 return 0; |
|
1564 }else{ |
|
1565 return -1; |
|
1566 } |
|
1567 } |
|
1568 if( nc.hasAgg && pHasAgg ){ |
|
1569 *pHasAgg = 1; |
|
1570 } |
|
1571 |
|
1572 /* For a compound SELECT, we need to try to match the ORDER BY |
|
1573 ** expression against an expression in the result set |
|
1574 */ |
|
1575 if( isCompound ){ |
|
1576 for(i=0; i<pEList->nExpr; i++){ |
|
1577 if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){ |
|
1578 return i+1; |
|
1579 } |
|
1580 } |
|
1581 } |
|
1582 return 0; |
|
1583 } |
|
1584 |
|
1585 |
|
1586 /* |
|
1587 ** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement. |
|
1588 ** Return the number of errors seen. |
|
1589 ** |
|
1590 ** Every term of the ORDER BY or GROUP BY clause needs to be an |
|
1591 ** expression. If any expression is an integer constant, then |
|
1592 ** that expression is replaced by the corresponding |
|
1593 ** expression from the result set. |
|
1594 */ |
|
1595 static int processOrderGroupBy( |
|
1596 Parse *pParse, /* Parsing context. Leave error messages here */ |
|
1597 Select *pSelect, /* The SELECT statement containing the clause */ |
|
1598 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ |
|
1599 int isOrder, /* 1 for ORDER BY. 0 for GROUP BY */ |
|
1600 u8 *pHasAgg /* Set to TRUE if any term contains an aggregate */ |
|
1601 ){ |
|
1602 int i; |
|
1603 sqlite3 *db = pParse->db; |
|
1604 ExprList *pEList; |
|
1605 |
|
1606 if( pOrderBy==0 || pParse->db->mallocFailed ) return 0; |
|
1607 #if SQLITE_MAX_COLUMN |
|
1608 if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ |
|
1609 const char *zType = isOrder ? "ORDER" : "GROUP"; |
|
1610 sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); |
|
1611 return 1; |
|
1612 } |
|
1613 #endif |
|
1614 pEList = pSelect->pEList; |
|
1615 if( pEList==0 ){ |
|
1616 return 0; |
|
1617 } |
|
1618 for(i=0; i<pOrderBy->nExpr; i++){ |
|
1619 int iCol; |
|
1620 Expr *pE = pOrderBy->a[i].pExpr; |
|
1621 if( sqlite3ExprIsInteger(pE, &iCol) ){ |
|
1622 if( iCol<=0 || iCol>pEList->nExpr ){ |
|
1623 const char *zType = isOrder ? "ORDER" : "GROUP"; |
|
1624 sqlite3ErrorMsg(pParse, |
|
1625 "%r %s BY term out of range - should be " |
|
1626 "between 1 and %d", i+1, zType, pEList->nExpr); |
|
1627 return 1; |
|
1628 } |
|
1629 }else{ |
|
1630 iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg); |
|
1631 if( iCol<0 ){ |
|
1632 return 1; |
|
1633 } |
|
1634 } |
|
1635 if( iCol>0 ){ |
|
1636 CollSeq *pColl = pE->pColl; |
|
1637 int flags = pE->flags & EP_ExpCollate; |
|
1638 sqlite3ExprDelete(db, pE); |
|
1639 pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr); |
|
1640 pOrderBy->a[i].pExpr = pE; |
|
1641 if( pE && pColl && flags ){ |
|
1642 pE->pColl = pColl; |
|
1643 pE->flags |= flags; |
|
1644 } |
|
1645 } |
|
1646 } |
|
1647 return 0; |
|
1648 } |
|
1649 |
|
1650 /* |
|
1651 ** Analyze and ORDER BY or GROUP BY clause in a SELECT statement. Return |
|
1652 ** the number of errors seen. |
|
1653 ** |
|
1654 ** If iTable>0 then make the N-th term of the ORDER BY clause refer to |
|
1655 ** the N-th column of table iTable. |
|
1656 ** |
|
1657 ** If iTable==0 then transform each term of the ORDER BY clause to refer |
|
1658 ** to a column of the result set by number. |
|
1659 */ |
|
1660 static int processCompoundOrderBy( |
|
1661 Parse *pParse, /* Parsing context. Leave error messages here */ |
|
1662 Select *pSelect /* The SELECT statement containing the ORDER BY */ |
|
1663 ){ |
|
1664 int i; |
|
1665 ExprList *pOrderBy; |
|
1666 ExprList *pEList; |
|
1667 sqlite3 *db; |
|
1668 int moreToDo = 1; |
|
1669 |
|
1670 pOrderBy = pSelect->pOrderBy; |
|
1671 if( pOrderBy==0 ) return 0; |
|
1672 db = pParse->db; |
|
1673 #if SQLITE_MAX_COLUMN |
|
1674 if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ |
|
1675 sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause"); |
|
1676 return 1; |
|
1677 } |
|
1678 #endif |
|
1679 for(i=0; i<pOrderBy->nExpr; i++){ |
|
1680 pOrderBy->a[i].done = 0; |
|
1681 } |
|
1682 while( pSelect->pPrior ){ |
|
1683 pSelect = pSelect->pPrior; |
|
1684 } |
|
1685 while( pSelect && moreToDo ){ |
|
1686 moreToDo = 0; |
|
1687 pEList = pSelect->pEList; |
|
1688 if( pEList==0 ){ |
|
1689 return 1; |
|
1690 } |
|
1691 for(i=0; i<pOrderBy->nExpr; i++){ |
|
1692 int iCol = -1; |
|
1693 Expr *pE, *pDup; |
|
1694 if( pOrderBy->a[i].done ) continue; |
|
1695 pE = pOrderBy->a[i].pExpr; |
|
1696 if( sqlite3ExprIsInteger(pE, &iCol) ){ |
|
1697 if( iCol<0 || iCol>pEList->nExpr ){ |
|
1698 sqlite3ErrorMsg(pParse, |
|
1699 "%r ORDER BY term out of range - should be " |
|
1700 "between 1 and %d", i+1, pEList->nExpr); |
|
1701 return 1; |
|
1702 } |
|
1703 }else{ |
|
1704 pDup = sqlite3ExprDup(db, pE); |
|
1705 if( !db->mallocFailed ){ |
|
1706 assert(pDup); |
|
1707 iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0); |
|
1708 } |
|
1709 sqlite3ExprDelete(db, pDup); |
|
1710 if( iCol<0 ){ |
|
1711 return 1; |
|
1712 } |
|
1713 } |
|
1714 if( iCol>0 ){ |
|
1715 pE->op = TK_INTEGER; |
|
1716 pE->flags |= EP_IntValue; |
|
1717 pE->iTable = iCol; |
|
1718 pOrderBy->a[i].done = 1; |
|
1719 }else{ |
|
1720 moreToDo = 1; |
|
1721 } |
|
1722 } |
|
1723 pSelect = pSelect->pNext; |
|
1724 } |
|
1725 for(i=0; i<pOrderBy->nExpr; i++){ |
|
1726 if( pOrderBy->a[i].done==0 ){ |
|
1727 sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any " |
|
1728 "column in the result set", i+1); |
|
1729 return 1; |
|
1730 } |
|
1731 } |
|
1732 return 0; |
|
1733 } |
|
1734 |
|
1735 /* |
|
1736 ** Get a VDBE for the given parser context. Create a new one if necessary. |
|
1737 ** If an error occurs, return NULL and leave a message in pParse. |
|
1738 */ |
|
1739 Vdbe *sqlite3GetVdbe(Parse *pParse){ |
|
1740 Vdbe *v = pParse->pVdbe; |
|
1741 if( v==0 ){ |
|
1742 v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db); |
|
1743 #ifndef SQLITE_OMIT_TRACE |
|
1744 if( v ){ |
|
1745 sqlite3VdbeAddOp0(v, OP_Trace); |
|
1746 } |
|
1747 #endif |
|
1748 } |
|
1749 return v; |
|
1750 } |
|
1751 |
|
1752 |
|
1753 /* |
|
1754 ** Compute the iLimit and iOffset fields of the SELECT based on the |
|
1755 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions |
|
1756 ** that appear in the original SQL statement after the LIMIT and OFFSET |
|
1757 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset |
|
1758 ** are the integer memory register numbers for counters used to compute |
|
1759 ** the limit and offset. If there is no limit and/or offset, then |
|
1760 ** iLimit and iOffset are negative. |
|
1761 ** |
|
1762 ** This routine changes the values of iLimit and iOffset only if |
|
1763 ** a limit or offset is defined by pLimit and pOffset. iLimit and |
|
1764 ** iOffset should have been preset to appropriate default values |
|
1765 ** (usually but not always -1) prior to calling this routine. |
|
1766 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get |
|
1767 ** redefined. The UNION ALL operator uses this property to force |
|
1768 ** the reuse of the same limit and offset registers across multiple |
|
1769 ** SELECT statements. |
|
1770 */ |
|
1771 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ |
|
1772 Vdbe *v = 0; |
|
1773 int iLimit = 0; |
|
1774 int iOffset; |
|
1775 int addr1; |
|
1776 if( p->iLimit ) return; |
|
1777 |
|
1778 /* |
|
1779 ** "LIMIT -1" always shows all rows. There is some |
|
1780 ** contraversy about what the correct behavior should be. |
|
1781 ** The current implementation interprets "LIMIT 0" to mean |
|
1782 ** no rows. |
|
1783 */ |
|
1784 if( p->pLimit ){ |
|
1785 p->iLimit = iLimit = ++pParse->nMem; |
|
1786 v = sqlite3GetVdbe(pParse); |
|
1787 if( v==0 ) return; |
|
1788 sqlite3ExprCode(pParse, p->pLimit, iLimit); |
|
1789 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); |
|
1790 VdbeComment((v, "LIMIT counter")); |
|
1791 sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); |
|
1792 } |
|
1793 if( p->pOffset ){ |
|
1794 p->iOffset = iOffset = ++pParse->nMem; |
|
1795 if( p->pLimit ){ |
|
1796 pParse->nMem++; /* Allocate an extra register for limit+offset */ |
|
1797 } |
|
1798 v = sqlite3GetVdbe(pParse); |
|
1799 if( v==0 ) return; |
|
1800 sqlite3ExprCode(pParse, p->pOffset, iOffset); |
|
1801 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); |
|
1802 VdbeComment((v, "OFFSET counter")); |
|
1803 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset); |
|
1804 sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset); |
|
1805 sqlite3VdbeJumpHere(v, addr1); |
|
1806 if( p->pLimit ){ |
|
1807 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); |
|
1808 VdbeComment((v, "LIMIT+OFFSET")); |
|
1809 addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit); |
|
1810 sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1); |
|
1811 sqlite3VdbeJumpHere(v, addr1); |
|
1812 } |
|
1813 } |
|
1814 } |
|
1815 |
|
1816 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
1817 /* |
|
1818 ** Return the appropriate collating sequence for the iCol-th column of |
|
1819 ** the result set for the compound-select statement "p". Return NULL if |
|
1820 ** the column has no default collating sequence. |
|
1821 ** |
|
1822 ** The collating sequence for the compound select is taken from the |
|
1823 ** left-most term of the select that has a collating sequence. |
|
1824 */ |
|
1825 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ |
|
1826 CollSeq *pRet; |
|
1827 if( p->pPrior ){ |
|
1828 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); |
|
1829 }else{ |
|
1830 pRet = 0; |
|
1831 } |
|
1832 if( pRet==0 ){ |
|
1833 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); |
|
1834 } |
|
1835 return pRet; |
|
1836 } |
|
1837 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
|
1838 |
|
1839 /* Forward reference */ |
|
1840 static int multiSelectOrderBy( |
|
1841 Parse *pParse, /* Parsing context */ |
|
1842 Select *p, /* The right-most of SELECTs to be coded */ |
|
1843 SelectDest *pDest /* What to do with query results */ |
|
1844 ); |
|
1845 |
|
1846 |
|
1847 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
1848 /* |
|
1849 ** This routine is called to process a compound query form from |
|
1850 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or |
|
1851 ** INTERSECT |
|
1852 ** |
|
1853 ** "p" points to the right-most of the two queries. the query on the |
|
1854 ** left is p->pPrior. The left query could also be a compound query |
|
1855 ** in which case this routine will be called recursively. |
|
1856 ** |
|
1857 ** The results of the total query are to be written into a destination |
|
1858 ** of type eDest with parameter iParm. |
|
1859 ** |
|
1860 ** Example 1: Consider a three-way compound SQL statement. |
|
1861 ** |
|
1862 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 |
|
1863 ** |
|
1864 ** This statement is parsed up as follows: |
|
1865 ** |
|
1866 ** SELECT c FROM t3 |
|
1867 ** | |
|
1868 ** `-----> SELECT b FROM t2 |
|
1869 ** | |
|
1870 ** `------> SELECT a FROM t1 |
|
1871 ** |
|
1872 ** The arrows in the diagram above represent the Select.pPrior pointer. |
|
1873 ** So if this routine is called with p equal to the t3 query, then |
|
1874 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. |
|
1875 ** |
|
1876 ** Notice that because of the way SQLite parses compound SELECTs, the |
|
1877 ** individual selects always group from left to right. |
|
1878 */ |
|
1879 static int multiSelect( |
|
1880 Parse *pParse, /* Parsing context */ |
|
1881 Select *p, /* The right-most of SELECTs to be coded */ |
|
1882 SelectDest *pDest /* What to do with query results */ |
|
1883 ){ |
|
1884 int rc = SQLITE_OK; /* Success code from a subroutine */ |
|
1885 Select *pPrior; /* Another SELECT immediately to our left */ |
|
1886 Vdbe *v; /* Generate code to this VDBE */ |
|
1887 SelectDest dest; /* Alternative data destination */ |
|
1888 Select *pDelete = 0; /* Chain of simple selects to delete */ |
|
1889 sqlite3 *db; /* Database connection */ |
|
1890 |
|
1891 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only |
|
1892 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. |
|
1893 */ |
|
1894 assert( p && p->pPrior ); /* Calling function guarantees this much */ |
|
1895 db = pParse->db; |
|
1896 pPrior = p->pPrior; |
|
1897 assert( pPrior->pRightmost!=pPrior ); |
|
1898 assert( pPrior->pRightmost==p->pRightmost ); |
|
1899 if( pPrior->pOrderBy ){ |
|
1900 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", |
|
1901 selectOpName(p->op)); |
|
1902 rc = 1; |
|
1903 goto multi_select_end; |
|
1904 } |
|
1905 if( pPrior->pLimit ){ |
|
1906 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", |
|
1907 selectOpName(p->op)); |
|
1908 rc = 1; |
|
1909 goto multi_select_end; |
|
1910 } |
|
1911 |
|
1912 v = sqlite3GetVdbe(pParse); |
|
1913 assert( v!=0 ); /* The VDBE already created by calling function */ |
|
1914 |
|
1915 /* Create the destination temporary table if necessary |
|
1916 */ |
|
1917 dest = *pDest; |
|
1918 if( dest.eDest==SRT_EphemTab ){ |
|
1919 assert( p->pEList ); |
|
1920 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr); |
|
1921 dest.eDest = SRT_Table; |
|
1922 } |
|
1923 |
|
1924 /* Make sure all SELECTs in the statement have the same number of elements |
|
1925 ** in their result sets. |
|
1926 */ |
|
1927 assert( p->pEList && pPrior->pEList ); |
|
1928 if( p->pEList->nExpr!=pPrior->pEList->nExpr ){ |
|
1929 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" |
|
1930 " do not have the same number of result columns", selectOpName(p->op)); |
|
1931 rc = 1; |
|
1932 goto multi_select_end; |
|
1933 } |
|
1934 |
|
1935 /* Compound SELECTs that have an ORDER BY clause are handled separately. |
|
1936 */ |
|
1937 if( p->pOrderBy ){ |
|
1938 return multiSelectOrderBy(pParse, p, pDest); |
|
1939 } |
|
1940 |
|
1941 /* Generate code for the left and right SELECT statements. |
|
1942 */ |
|
1943 switch( p->op ){ |
|
1944 case TK_ALL: { |
|
1945 int addr = 0; |
|
1946 assert( !pPrior->pLimit ); |
|
1947 pPrior->pLimit = p->pLimit; |
|
1948 pPrior->pOffset = p->pOffset; |
|
1949 rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0); |
|
1950 p->pLimit = 0; |
|
1951 p->pOffset = 0; |
|
1952 if( rc ){ |
|
1953 goto multi_select_end; |
|
1954 } |
|
1955 p->pPrior = 0; |
|
1956 p->iLimit = pPrior->iLimit; |
|
1957 p->iOffset = pPrior->iOffset; |
|
1958 if( p->iLimit ){ |
|
1959 addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); |
|
1960 VdbeComment((v, "Jump ahead if LIMIT reached")); |
|
1961 } |
|
1962 rc = sqlite3Select(pParse, p, &dest, 0, 0, 0); |
|
1963 pDelete = p->pPrior; |
|
1964 p->pPrior = pPrior; |
|
1965 if( rc ){ |
|
1966 goto multi_select_end; |
|
1967 } |
|
1968 if( addr ){ |
|
1969 sqlite3VdbeJumpHere(v, addr); |
|
1970 } |
|
1971 break; |
|
1972 } |
|
1973 case TK_EXCEPT: |
|
1974 case TK_UNION: { |
|
1975 int unionTab; /* Cursor number of the temporary table holding result */ |
|
1976 int op = 0; /* One of the SRT_ operations to apply to self */ |
|
1977 int priorOp; /* The SRT_ operation to apply to prior selects */ |
|
1978 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ |
|
1979 int addr; |
|
1980 SelectDest uniondest; |
|
1981 |
|
1982 priorOp = SRT_Union; |
|
1983 if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){ |
|
1984 /* We can reuse a temporary table generated by a SELECT to our |
|
1985 ** right. |
|
1986 */ |
|
1987 unionTab = dest.iParm; |
|
1988 }else{ |
|
1989 /* We will need to create our own temporary table to hold the |
|
1990 ** intermediate results. |
|
1991 */ |
|
1992 unionTab = pParse->nTab++; |
|
1993 assert( p->pOrderBy==0 ); |
|
1994 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); |
|
1995 assert( p->addrOpenEphm[0] == -1 ); |
|
1996 p->addrOpenEphm[0] = addr; |
|
1997 p->pRightmost->usesEphm = 1; |
|
1998 assert( p->pEList ); |
|
1999 } |
|
2000 |
|
2001 /* Code the SELECT statements to our left |
|
2002 */ |
|
2003 assert( !pPrior->pOrderBy ); |
|
2004 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); |
|
2005 rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0); |
|
2006 if( rc ){ |
|
2007 goto multi_select_end; |
|
2008 } |
|
2009 |
|
2010 /* Code the current SELECT statement |
|
2011 */ |
|
2012 if( p->op==TK_EXCEPT ){ |
|
2013 op = SRT_Except; |
|
2014 }else{ |
|
2015 assert( p->op==TK_UNION ); |
|
2016 op = SRT_Union; |
|
2017 } |
|
2018 p->pPrior = 0; |
|
2019 p->disallowOrderBy = 0; |
|
2020 pLimit = p->pLimit; |
|
2021 p->pLimit = 0; |
|
2022 pOffset = p->pOffset; |
|
2023 p->pOffset = 0; |
|
2024 uniondest.eDest = op; |
|
2025 rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0); |
|
2026 /* Query flattening in sqlite3Select() might refill p->pOrderBy. |
|
2027 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ |
|
2028 sqlite3ExprListDelete(db, p->pOrderBy); |
|
2029 pDelete = p->pPrior; |
|
2030 p->pPrior = pPrior; |
|
2031 p->pOrderBy = 0; |
|
2032 sqlite3ExprDelete(db, p->pLimit); |
|
2033 p->pLimit = pLimit; |
|
2034 p->pOffset = pOffset; |
|
2035 p->iLimit = 0; |
|
2036 p->iOffset = 0; |
|
2037 if( rc ){ |
|
2038 goto multi_select_end; |
|
2039 } |
|
2040 |
|
2041 |
|
2042 /* Convert the data in the temporary table into whatever form |
|
2043 ** it is that we currently need. |
|
2044 */ |
|
2045 if( dest.eDest!=priorOp || unionTab!=dest.iParm ){ |
|
2046 int iCont, iBreak, iStart; |
|
2047 assert( p->pEList ); |
|
2048 if( dest.eDest==SRT_Callback ){ |
|
2049 Select *pFirst = p; |
|
2050 while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
|
2051 generateColumnNames(pParse, 0, pFirst->pEList); |
|
2052 } |
|
2053 iBreak = sqlite3VdbeMakeLabel(v); |
|
2054 iCont = sqlite3VdbeMakeLabel(v); |
|
2055 computeLimitRegisters(pParse, p, iBreak); |
|
2056 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); |
|
2057 iStart = sqlite3VdbeCurrentAddr(v); |
|
2058 selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr, |
|
2059 0, -1, &dest, iCont, iBreak); |
|
2060 sqlite3VdbeResolveLabel(v, iCont); |
|
2061 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); |
|
2062 sqlite3VdbeResolveLabel(v, iBreak); |
|
2063 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); |
|
2064 } |
|
2065 break; |
|
2066 } |
|
2067 case TK_INTERSECT: { |
|
2068 int tab1, tab2; |
|
2069 int iCont, iBreak, iStart; |
|
2070 Expr *pLimit, *pOffset; |
|
2071 int addr; |
|
2072 SelectDest intersectdest; |
|
2073 int r1; |
|
2074 |
|
2075 /* INTERSECT is different from the others since it requires |
|
2076 ** two temporary tables. Hence it has its own case. Begin |
|
2077 ** by allocating the tables we will need. |
|
2078 */ |
|
2079 tab1 = pParse->nTab++; |
|
2080 tab2 = pParse->nTab++; |
|
2081 assert( p->pOrderBy==0 ); |
|
2082 |
|
2083 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); |
|
2084 assert( p->addrOpenEphm[0] == -1 ); |
|
2085 p->addrOpenEphm[0] = addr; |
|
2086 p->pRightmost->usesEphm = 1; |
|
2087 assert( p->pEList ); |
|
2088 |
|
2089 /* Code the SELECTs to our left into temporary table "tab1". |
|
2090 */ |
|
2091 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); |
|
2092 rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0); |
|
2093 if( rc ){ |
|
2094 goto multi_select_end; |
|
2095 } |
|
2096 |
|
2097 /* Code the current SELECT into temporary table "tab2" |
|
2098 */ |
|
2099 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); |
|
2100 assert( p->addrOpenEphm[1] == -1 ); |
|
2101 p->addrOpenEphm[1] = addr; |
|
2102 p->pPrior = 0; |
|
2103 pLimit = p->pLimit; |
|
2104 p->pLimit = 0; |
|
2105 pOffset = p->pOffset; |
|
2106 p->pOffset = 0; |
|
2107 intersectdest.iParm = tab2; |
|
2108 rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0); |
|
2109 pDelete = p->pPrior; |
|
2110 p->pPrior = pPrior; |
|
2111 sqlite3ExprDelete(db, p->pLimit); |
|
2112 p->pLimit = pLimit; |
|
2113 p->pOffset = pOffset; |
|
2114 if( rc ){ |
|
2115 goto multi_select_end; |
|
2116 } |
|
2117 |
|
2118 /* Generate code to take the intersection of the two temporary |
|
2119 ** tables. |
|
2120 */ |
|
2121 assert( p->pEList ); |
|
2122 if( dest.eDest==SRT_Callback ){ |
|
2123 Select *pFirst = p; |
|
2124 while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
|
2125 generateColumnNames(pParse, 0, pFirst->pEList); |
|
2126 } |
|
2127 iBreak = sqlite3VdbeMakeLabel(v); |
|
2128 iCont = sqlite3VdbeMakeLabel(v); |
|
2129 computeLimitRegisters(pParse, p, iBreak); |
|
2130 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); |
|
2131 r1 = sqlite3GetTempReg(pParse); |
|
2132 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); |
|
2133 sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1); |
|
2134 sqlite3ReleaseTempReg(pParse, r1); |
|
2135 selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr, |
|
2136 0, -1, &dest, iCont, iBreak); |
|
2137 sqlite3VdbeResolveLabel(v, iCont); |
|
2138 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); |
|
2139 sqlite3VdbeResolveLabel(v, iBreak); |
|
2140 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); |
|
2141 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); |
|
2142 break; |
|
2143 } |
|
2144 } |
|
2145 |
|
2146 /* Compute collating sequences used by |
|
2147 ** temporary tables needed to implement the compound select. |
|
2148 ** Attach the KeyInfo structure to all temporary tables. |
|
2149 ** |
|
2150 ** This section is run by the right-most SELECT statement only. |
|
2151 ** SELECT statements to the left always skip this part. The right-most |
|
2152 ** SELECT might also skip this part if it has no ORDER BY clause and |
|
2153 ** no temp tables are required. |
|
2154 */ |
|
2155 if( p->usesEphm ){ |
|
2156 int i; /* Loop counter */ |
|
2157 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ |
|
2158 Select *pLoop; /* For looping through SELECT statements */ |
|
2159 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ |
|
2160 int nCol; /* Number of columns in result set */ |
|
2161 |
|
2162 assert( p->pRightmost==p ); |
|
2163 nCol = p->pEList->nExpr; |
|
2164 pKeyInfo = sqlite3DbMallocZero(db, |
|
2165 sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); |
|
2166 if( !pKeyInfo ){ |
|
2167 rc = SQLITE_NOMEM; |
|
2168 goto multi_select_end; |
|
2169 } |
|
2170 |
|
2171 pKeyInfo->enc = ENC(db); |
|
2172 pKeyInfo->nField = nCol; |
|
2173 |
|
2174 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ |
|
2175 *apColl = multiSelectCollSeq(pParse, p, i); |
|
2176 if( 0==*apColl ){ |
|
2177 *apColl = db->pDfltColl; |
|
2178 } |
|
2179 } |
|
2180 |
|
2181 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ |
|
2182 for(i=0; i<2; i++){ |
|
2183 int addr = pLoop->addrOpenEphm[i]; |
|
2184 if( addr<0 ){ |
|
2185 /* If [0] is unused then [1] is also unused. So we can |
|
2186 ** always safely abort as soon as the first unused slot is found */ |
|
2187 assert( pLoop->addrOpenEphm[1]<0 ); |
|
2188 break; |
|
2189 } |
|
2190 sqlite3VdbeChangeP2(v, addr, nCol); |
|
2191 sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO); |
|
2192 pLoop->addrOpenEphm[i] = -1; |
|
2193 } |
|
2194 } |
|
2195 sqlite3DbFree(db, pKeyInfo); |
|
2196 } |
|
2197 |
|
2198 multi_select_end: |
|
2199 pDest->iMem = dest.iMem; |
|
2200 pDest->nMem = dest.nMem; |
|
2201 sqlite3SelectDelete(db, pDelete); |
|
2202 return rc; |
|
2203 } |
|
2204 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ |
|
2205 |
|
2206 /* |
|
2207 ** Code an output subroutine for a coroutine implementation of a |
|
2208 ** SELECT statment. |
|
2209 ** |
|
2210 ** The data to be output is contained in pIn->iMem. There are |
|
2211 ** pIn->nMem columns to be output. pDest is where the output should |
|
2212 ** be sent. |
|
2213 ** |
|
2214 ** regReturn is the number of the register holding the subroutine |
|
2215 ** return address. |
|
2216 ** |
|
2217 ** If regPrev>0 then it is a the first register in a vector that |
|
2218 ** records the previous output. mem[regPrev] is a flag that is false |
|
2219 ** if there has been no previous output. If regPrev>0 then code is |
|
2220 ** generated to suppress duplicates. pKeyInfo is used for comparing |
|
2221 ** keys. |
|
2222 ** |
|
2223 ** If the LIMIT found in p->iLimit is reached, jump immediately to |
|
2224 ** iBreak. |
|
2225 */ |
|
2226 static int generateOutputSubroutine( |
|
2227 Parse *pParse, /* Parsing context */ |
|
2228 Select *p, /* The SELECT statement */ |
|
2229 SelectDest *pIn, /* Coroutine supplying data */ |
|
2230 SelectDest *pDest, /* Where to send the data */ |
|
2231 int regReturn, /* The return address register */ |
|
2232 int regPrev, /* Previous result register. No uniqueness if 0 */ |
|
2233 KeyInfo *pKeyInfo, /* For comparing with previous entry */ |
|
2234 int p4type, /* The p4 type for pKeyInfo */ |
|
2235 int iBreak /* Jump here if we hit the LIMIT */ |
|
2236 ){ |
|
2237 Vdbe *v = pParse->pVdbe; |
|
2238 int iContinue; |
|
2239 int addr; |
|
2240 |
|
2241 addr = sqlite3VdbeCurrentAddr(v); |
|
2242 iContinue = sqlite3VdbeMakeLabel(v); |
|
2243 |
|
2244 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT |
|
2245 */ |
|
2246 if( regPrev ){ |
|
2247 int j1, j2; |
|
2248 j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); |
|
2249 j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem, |
|
2250 (char*)pKeyInfo, p4type); |
|
2251 sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2); |
|
2252 sqlite3VdbeJumpHere(v, j1); |
|
2253 sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem); |
|
2254 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); |
|
2255 } |
|
2256 if( pParse->db->mallocFailed ) return 0; |
|
2257 |
|
2258 /* Suppress the the first OFFSET entries if there is an OFFSET clause |
|
2259 */ |
|
2260 codeOffset(v, p, iContinue); |
|
2261 |
|
2262 switch( pDest->eDest ){ |
|
2263 /* Store the result as data using a unique key. |
|
2264 */ |
|
2265 case SRT_Table: |
|
2266 case SRT_EphemTab: { |
|
2267 int r1 = sqlite3GetTempReg(pParse); |
|
2268 int r2 = sqlite3GetTempReg(pParse); |
|
2269 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1); |
|
2270 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2); |
|
2271 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2); |
|
2272 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
|
2273 sqlite3ReleaseTempReg(pParse, r2); |
|
2274 sqlite3ReleaseTempReg(pParse, r1); |
|
2275 break; |
|
2276 } |
|
2277 |
|
2278 #ifndef SQLITE_OMIT_SUBQUERY |
|
2279 /* If we are creating a set for an "expr IN (SELECT ...)" construct, |
|
2280 ** then there should be a single item on the stack. Write this |
|
2281 ** item into the set table with bogus data. |
|
2282 */ |
|
2283 case SRT_Set: { |
|
2284 int r1; |
|
2285 assert( pIn->nMem==1 ); |
|
2286 p->affinity = |
|
2287 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity); |
|
2288 r1 = sqlite3GetTempReg(pParse); |
|
2289 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1); |
|
2290 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1); |
|
2291 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1); |
|
2292 sqlite3ReleaseTempReg(pParse, r1); |
|
2293 break; |
|
2294 } |
|
2295 |
|
2296 #if 0 /* Never occurs on an ORDER BY query */ |
|
2297 /* If any row exist in the result set, record that fact and abort. |
|
2298 */ |
|
2299 case SRT_Exists: { |
|
2300 sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm); |
|
2301 /* The LIMIT clause will terminate the loop for us */ |
|
2302 break; |
|
2303 } |
|
2304 #endif |
|
2305 |
|
2306 /* If this is a scalar select that is part of an expression, then |
|
2307 ** store the results in the appropriate memory cell and break out |
|
2308 ** of the scan loop. |
|
2309 */ |
|
2310 case SRT_Mem: { |
|
2311 assert( pIn->nMem==1 ); |
|
2312 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1); |
|
2313 /* The LIMIT clause will jump out of the loop for us */ |
|
2314 break; |
|
2315 } |
|
2316 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ |
|
2317 |
|
2318 /* Send the data to the callback function or to a subroutine. In the |
|
2319 ** case of a subroutine, the subroutine itself is responsible for |
|
2320 ** popping the data from the stack. |
|
2321 */ |
|
2322 case SRT_Coroutine: { |
|
2323 if( pDest->iMem==0 ){ |
|
2324 pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem); |
|
2325 pDest->nMem = pIn->nMem; |
|
2326 } |
|
2327 sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem); |
|
2328 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm); |
|
2329 break; |
|
2330 } |
|
2331 |
|
2332 case SRT_Callback: { |
|
2333 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem); |
|
2334 sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem); |
|
2335 break; |
|
2336 } |
|
2337 |
|
2338 #if !defined(SQLITE_OMIT_TRIGGER) |
|
2339 /* Discard the results. This is used for SELECT statements inside |
|
2340 ** the body of a TRIGGER. The purpose of such selects is to call |
|
2341 ** user-defined functions that have side effects. We do not care |
|
2342 ** about the actual results of the select. |
|
2343 */ |
|
2344 default: { |
|
2345 break; |
|
2346 } |
|
2347 #endif |
|
2348 } |
|
2349 |
|
2350 /* Jump to the end of the loop if the LIMIT is reached. |
|
2351 */ |
|
2352 if( p->iLimit ){ |
|
2353 sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1); |
|
2354 sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak); |
|
2355 } |
|
2356 |
|
2357 /* Generate the subroutine return |
|
2358 */ |
|
2359 sqlite3VdbeResolveLabel(v, iContinue); |
|
2360 sqlite3VdbeAddOp1(v, OP_Return, regReturn); |
|
2361 |
|
2362 return addr; |
|
2363 } |
|
2364 |
|
2365 /* |
|
2366 ** Alternative compound select code generator for cases when there |
|
2367 ** is an ORDER BY clause. |
|
2368 ** |
|
2369 ** We assume a query of the following form: |
|
2370 ** |
|
2371 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> |
|
2372 ** |
|
2373 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea |
|
2374 ** is to code both <selectA> and <selectB> with the ORDER BY clause as |
|
2375 ** co-routines. Then run the co-routines in parallel and merge the results |
|
2376 ** into the output. In addition to the two coroutines (called selectA and |
|
2377 ** selectB) there are 7 subroutines: |
|
2378 ** |
|
2379 ** outA: Move the output of the selectA coroutine into the output |
|
2380 ** of the compound query. |
|
2381 ** |
|
2382 ** outB: Move the output of the selectB coroutine into the output |
|
2383 ** of the compound query. (Only generated for UNION and |
|
2384 ** UNION ALL. EXCEPT and INSERTSECT never output a row that |
|
2385 ** appears only in B.) |
|
2386 ** |
|
2387 ** AltB: Called when there is data from both coroutines and A<B. |
|
2388 ** |
|
2389 ** AeqB: Called when there is data from both coroutines and A==B. |
|
2390 ** |
|
2391 ** AgtB: Called when there is data from both coroutines and A>B. |
|
2392 ** |
|
2393 ** EofA: Called when data is exhausted from selectA. |
|
2394 ** |
|
2395 ** EofB: Called when data is exhausted from selectB. |
|
2396 ** |
|
2397 ** The implementation of the latter five subroutines depend on which |
|
2398 ** <operator> is used: |
|
2399 ** |
|
2400 ** |
|
2401 ** UNION ALL UNION EXCEPT INTERSECT |
|
2402 ** ------------- ----------------- -------------- ----------------- |
|
2403 ** AltB: outA, nextA outA, nextA outA, nextA nextA |
|
2404 ** |
|
2405 ** AeqB: outA, nextA nextA nextA outA, nextA |
|
2406 ** |
|
2407 ** AgtB: outB, nextB outB, nextB nextB nextB |
|
2408 ** |
|
2409 ** EofA: outB, nextB outB, nextB halt halt |
|
2410 ** |
|
2411 ** EofB: outA, nextA outA, nextA outA, nextA halt |
|
2412 ** |
|
2413 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA |
|
2414 ** causes an immediate jump to EofA and an EOF on B following nextB causes |
|
2415 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or |
|
2416 ** following nextX causes a jump to the end of the select processing. |
|
2417 ** |
|
2418 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled |
|
2419 ** within the output subroutine. The regPrev register set holds the previously |
|
2420 ** output value. A comparison is made against this value and the output |
|
2421 ** is skipped if the next results would be the same as the previous. |
|
2422 ** |
|
2423 ** The implementation plan is to implement the two coroutines and seven |
|
2424 ** subroutines first, then put the control logic at the bottom. Like this: |
|
2425 ** |
|
2426 ** goto Init |
|
2427 ** coA: coroutine for left query (A) |
|
2428 ** coB: coroutine for right query (B) |
|
2429 ** outA: output one row of A |
|
2430 ** outB: output one row of B (UNION and UNION ALL only) |
|
2431 ** EofA: ... |
|
2432 ** EofB: ... |
|
2433 ** AltB: ... |
|
2434 ** AeqB: ... |
|
2435 ** AgtB: ... |
|
2436 ** Init: initialize coroutine registers |
|
2437 ** yield coA |
|
2438 ** if eof(A) goto EofA |
|
2439 ** yield coB |
|
2440 ** if eof(B) goto EofB |
|
2441 ** Cmpr: Compare A, B |
|
2442 ** Jump AltB, AeqB, AgtB |
|
2443 ** End: ... |
|
2444 ** |
|
2445 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not |
|
2446 ** actually called using Gosub and they do not Return. EofA and EofB loop |
|
2447 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, |
|
2448 ** and AgtB jump to either L2 or to one of EofA or EofB. |
|
2449 */ |
|
2450 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
2451 static int multiSelectOrderBy( |
|
2452 Parse *pParse, /* Parsing context */ |
|
2453 Select *p, /* The right-most of SELECTs to be coded */ |
|
2454 SelectDest *pDest /* What to do with query results */ |
|
2455 ){ |
|
2456 int i, j; /* Loop counters */ |
|
2457 Select *pPrior; /* Another SELECT immediately to our left */ |
|
2458 Vdbe *v; /* Generate code to this VDBE */ |
|
2459 SelectDest destA; /* Destination for coroutine A */ |
|
2460 SelectDest destB; /* Destination for coroutine B */ |
|
2461 int regAddrA; /* Address register for select-A coroutine */ |
|
2462 int regEofA; /* Flag to indicate when select-A is complete */ |
|
2463 int regAddrB; /* Address register for select-B coroutine */ |
|
2464 int regEofB; /* Flag to indicate when select-B is complete */ |
|
2465 int addrSelectA; /* Address of the select-A coroutine */ |
|
2466 int addrSelectB; /* Address of the select-B coroutine */ |
|
2467 int regOutA; /* Address register for the output-A subroutine */ |
|
2468 int regOutB; /* Address register for the output-B subroutine */ |
|
2469 int addrOutA; /* Address of the output-A subroutine */ |
|
2470 int addrOutB; /* Address of the output-B subroutine */ |
|
2471 int addrEofA; /* Address of the select-A-exhausted subroutine */ |
|
2472 int addrEofB; /* Address of the select-B-exhausted subroutine */ |
|
2473 int addrAltB; /* Address of the A<B subroutine */ |
|
2474 int addrAeqB; /* Address of the A==B subroutine */ |
|
2475 int addrAgtB; /* Address of the A>B subroutine */ |
|
2476 int regLimitA; /* Limit register for select-A */ |
|
2477 int regLimitB; /* Limit register for select-A */ |
|
2478 int regPrev; /* A range of registers to hold previous output */ |
|
2479 int savedLimit; /* Saved value of p->iLimit */ |
|
2480 int savedOffset; /* Saved value of p->iOffset */ |
|
2481 int labelCmpr; /* Label for the start of the merge algorithm */ |
|
2482 int labelEnd; /* Label for the end of the overall SELECT stmt */ |
|
2483 int j1; /* Jump instructions that get retargetted */ |
|
2484 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ |
|
2485 KeyInfo *pKeyDup; /* Comparison information for duplicate removal */ |
|
2486 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ |
|
2487 sqlite3 *db; /* Database connection */ |
|
2488 ExprList *pOrderBy; /* The ORDER BY clause */ |
|
2489 int nOrderBy; /* Number of terms in the ORDER BY clause */ |
|
2490 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ |
|
2491 u8 NotUsed; /* Dummy variables */ |
|
2492 |
|
2493 assert( p->pOrderBy!=0 ); |
|
2494 db = pParse->db; |
|
2495 v = pParse->pVdbe; |
|
2496 if( v==0 ) return SQLITE_NOMEM; |
|
2497 labelEnd = sqlite3VdbeMakeLabel(v); |
|
2498 labelCmpr = sqlite3VdbeMakeLabel(v); |
|
2499 |
|
2500 |
|
2501 /* Patch up the ORDER BY clause |
|
2502 */ |
|
2503 op = p->op; |
|
2504 pPrior = p->pPrior; |
|
2505 assert( pPrior->pOrderBy==0 ); |
|
2506 pOrderBy = p->pOrderBy; |
|
2507 assert( pOrderBy ); |
|
2508 if( processCompoundOrderBy(pParse, p) ){ |
|
2509 return SQLITE_ERROR; |
|
2510 } |
|
2511 nOrderBy = pOrderBy->nExpr; |
|
2512 |
|
2513 /* For operators other than UNION ALL we have to make sure that |
|
2514 ** the ORDER BY clause covers every term of the result set. Add |
|
2515 ** terms to the ORDER BY clause as necessary. |
|
2516 */ |
|
2517 if( op!=TK_ALL ){ |
|
2518 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ |
|
2519 for(j=0; j<nOrderBy; j++){ |
|
2520 Expr *pTerm = pOrderBy->a[j].pExpr; |
|
2521 assert( pTerm->op==TK_INTEGER ); |
|
2522 assert( (pTerm->flags & EP_IntValue)!=0 ); |
|
2523 if( pTerm->iTable==i ) break; |
|
2524 } |
|
2525 if( j==nOrderBy ){ |
|
2526 Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0); |
|
2527 if( pNew==0 ) return SQLITE_NOMEM; |
|
2528 pNew->flags |= EP_IntValue; |
|
2529 pNew->iTable = i; |
|
2530 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0); |
|
2531 nOrderBy++; |
|
2532 } |
|
2533 } |
|
2534 } |
|
2535 |
|
2536 /* Compute the comparison permutation and keyinfo that is used with |
|
2537 ** the permutation in order to comparisons to determine if the next |
|
2538 ** row of results comes from selectA or selectB. Also add explicit |
|
2539 ** collations to the ORDER BY clause terms so that when the subqueries |
|
2540 ** to the right and the left are evaluated, they use the correct |
|
2541 ** collation. |
|
2542 */ |
|
2543 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); |
|
2544 if( aPermute ){ |
|
2545 for(i=0; i<nOrderBy; i++){ |
|
2546 Expr *pTerm = pOrderBy->a[i].pExpr; |
|
2547 assert( pTerm->op==TK_INTEGER ); |
|
2548 assert( (pTerm->flags & EP_IntValue)!=0 ); |
|
2549 aPermute[i] = pTerm->iTable-1; |
|
2550 assert( aPermute[i]>=0 && aPermute[i]<p->pEList->nExpr ); |
|
2551 } |
|
2552 pKeyMerge = |
|
2553 sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); |
|
2554 if( pKeyMerge ){ |
|
2555 pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; |
|
2556 pKeyMerge->nField = nOrderBy; |
|
2557 pKeyMerge->enc = ENC(db); |
|
2558 for(i=0; i<nOrderBy; i++){ |
|
2559 CollSeq *pColl; |
|
2560 Expr *pTerm = pOrderBy->a[i].pExpr; |
|
2561 if( pTerm->flags & EP_ExpCollate ){ |
|
2562 pColl = pTerm->pColl; |
|
2563 }else{ |
|
2564 pColl = multiSelectCollSeq(pParse, p, aPermute[i]); |
|
2565 pTerm->flags |= EP_ExpCollate; |
|
2566 pTerm->pColl = pColl; |
|
2567 } |
|
2568 pKeyMerge->aColl[i] = pColl; |
|
2569 pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder; |
|
2570 } |
|
2571 } |
|
2572 }else{ |
|
2573 pKeyMerge = 0; |
|
2574 } |
|
2575 |
|
2576 /* Reattach the ORDER BY clause to the query. |
|
2577 */ |
|
2578 p->pOrderBy = pOrderBy; |
|
2579 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy); |
|
2580 |
|
2581 /* Allocate a range of temporary registers and the KeyInfo needed |
|
2582 ** for the logic that removes duplicate result rows when the |
|
2583 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). |
|
2584 */ |
|
2585 if( op==TK_ALL ){ |
|
2586 regPrev = 0; |
|
2587 }else{ |
|
2588 int nExpr = p->pEList->nExpr; |
|
2589 assert( nOrderBy>=nExpr ); |
|
2590 regPrev = sqlite3GetTempRange(pParse, nExpr+1); |
|
2591 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); |
|
2592 pKeyDup = sqlite3DbMallocZero(db, |
|
2593 sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); |
|
2594 if( pKeyDup ){ |
|
2595 pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; |
|
2596 pKeyDup->nField = nExpr; |
|
2597 pKeyDup->enc = ENC(db); |
|
2598 for(i=0; i<nExpr; i++){ |
|
2599 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); |
|
2600 pKeyDup->aSortOrder[i] = 0; |
|
2601 } |
|
2602 } |
|
2603 } |
|
2604 |
|
2605 /* Separate the left and the right query from one another |
|
2606 */ |
|
2607 p->pPrior = 0; |
|
2608 pPrior->pRightmost = 0; |
|
2609 processOrderGroupBy(pParse, p, p->pOrderBy, 1, &NotUsed); |
|
2610 if( pPrior->pPrior==0 ){ |
|
2611 processOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, 1, &NotUsed); |
|
2612 } |
|
2613 |
|
2614 /* Compute the limit registers */ |
|
2615 computeLimitRegisters(pParse, p, labelEnd); |
|
2616 if( p->iLimit && op==TK_ALL ){ |
|
2617 regLimitA = ++pParse->nMem; |
|
2618 regLimitB = ++pParse->nMem; |
|
2619 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, |
|
2620 regLimitA); |
|
2621 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); |
|
2622 }else{ |
|
2623 regLimitA = regLimitB = 0; |
|
2624 } |
|
2625 sqlite3ExprDelete(db, p->pLimit); |
|
2626 p->pLimit = 0; |
|
2627 sqlite3ExprDelete(db, p->pOffset); |
|
2628 p->pOffset = 0; |
|
2629 |
|
2630 regAddrA = ++pParse->nMem; |
|
2631 regEofA = ++pParse->nMem; |
|
2632 regAddrB = ++pParse->nMem; |
|
2633 regEofB = ++pParse->nMem; |
|
2634 regOutA = ++pParse->nMem; |
|
2635 regOutB = ++pParse->nMem; |
|
2636 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); |
|
2637 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); |
|
2638 |
|
2639 /* Jump past the various subroutines and coroutines to the main |
|
2640 ** merge loop |
|
2641 */ |
|
2642 j1 = sqlite3VdbeAddOp0(v, OP_Goto); |
|
2643 addrSelectA = sqlite3VdbeCurrentAddr(v); |
|
2644 |
|
2645 |
|
2646 /* Generate a coroutine to evaluate the SELECT statement to the |
|
2647 ** left of the compound operator - the "A" select. |
|
2648 */ |
|
2649 VdbeNoopComment((v, "Begin coroutine for left SELECT")); |
|
2650 pPrior->iLimit = regLimitA; |
|
2651 sqlite3Select(pParse, pPrior, &destA, 0, 0, 0); |
|
2652 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA); |
|
2653 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); |
|
2654 VdbeNoopComment((v, "End coroutine for left SELECT")); |
|
2655 |
|
2656 /* Generate a coroutine to evaluate the SELECT statement on |
|
2657 ** the right - the "B" select |
|
2658 */ |
|
2659 addrSelectB = sqlite3VdbeCurrentAddr(v); |
|
2660 VdbeNoopComment((v, "Begin coroutine for right SELECT")); |
|
2661 savedLimit = p->iLimit; |
|
2662 savedOffset = p->iOffset; |
|
2663 p->iLimit = regLimitB; |
|
2664 p->iOffset = 0; |
|
2665 sqlite3Select(pParse, p, &destB, 0, 0, 0); |
|
2666 p->iLimit = savedLimit; |
|
2667 p->iOffset = savedOffset; |
|
2668 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB); |
|
2669 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); |
|
2670 VdbeNoopComment((v, "End coroutine for right SELECT")); |
|
2671 |
|
2672 /* Generate a subroutine that outputs the current row of the A |
|
2673 ** select as the next output row of the compound select. |
|
2674 */ |
|
2675 VdbeNoopComment((v, "Output routine for A")); |
|
2676 addrOutA = generateOutputSubroutine(pParse, |
|
2677 p, &destA, pDest, regOutA, |
|
2678 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd); |
|
2679 |
|
2680 /* Generate a subroutine that outputs the current row of the B |
|
2681 ** select as the next output row of the compound select. |
|
2682 */ |
|
2683 if( op==TK_ALL || op==TK_UNION ){ |
|
2684 VdbeNoopComment((v, "Output routine for B")); |
|
2685 addrOutB = generateOutputSubroutine(pParse, |
|
2686 p, &destB, pDest, regOutB, |
|
2687 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd); |
|
2688 } |
|
2689 |
|
2690 /* Generate a subroutine to run when the results from select A |
|
2691 ** are exhausted and only data in select B remains. |
|
2692 */ |
|
2693 VdbeNoopComment((v, "eof-A subroutine")); |
|
2694 if( op==TK_EXCEPT || op==TK_INTERSECT ){ |
|
2695 addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd); |
|
2696 }else{ |
|
2697 addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd); |
|
2698 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); |
|
2699 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); |
|
2700 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA); |
|
2701 } |
|
2702 |
|
2703 /* Generate a subroutine to run when the results from select B |
|
2704 ** are exhausted and only data in select A remains. |
|
2705 */ |
|
2706 if( op==TK_INTERSECT ){ |
|
2707 addrEofB = addrEofA; |
|
2708 }else{ |
|
2709 VdbeNoopComment((v, "eof-B subroutine")); |
|
2710 addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd); |
|
2711 sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); |
|
2712 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); |
|
2713 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB); |
|
2714 } |
|
2715 |
|
2716 /* Generate code to handle the case of A<B |
|
2717 */ |
|
2718 VdbeNoopComment((v, "A-lt-B subroutine")); |
|
2719 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); |
|
2720 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); |
|
2721 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); |
|
2722 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); |
|
2723 |
|
2724 /* Generate code to handle the case of A==B |
|
2725 */ |
|
2726 if( op==TK_ALL ){ |
|
2727 addrAeqB = addrAltB; |
|
2728 }else if( op==TK_INTERSECT ){ |
|
2729 addrAeqB = addrAltB; |
|
2730 addrAltB++; |
|
2731 }else{ |
|
2732 VdbeNoopComment((v, "A-eq-B subroutine")); |
|
2733 addrAeqB = |
|
2734 sqlite3VdbeAddOp1(v, OP_Yield, regAddrA); |
|
2735 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); |
|
2736 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); |
|
2737 } |
|
2738 |
|
2739 /* Generate code to handle the case of A>B |
|
2740 */ |
|
2741 VdbeNoopComment((v, "A-gt-B subroutine")); |
|
2742 addrAgtB = sqlite3VdbeCurrentAddr(v); |
|
2743 if( op==TK_ALL || op==TK_UNION ){ |
|
2744 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); |
|
2745 } |
|
2746 sqlite3VdbeAddOp1(v, OP_Yield, regAddrB); |
|
2747 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); |
|
2748 sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr); |
|
2749 |
|
2750 /* This code runs once to initialize everything. |
|
2751 */ |
|
2752 sqlite3VdbeJumpHere(v, j1); |
|
2753 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA); |
|
2754 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB); |
|
2755 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA); |
|
2756 sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB); |
|
2757 sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA); |
|
2758 sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB); |
|
2759 |
|
2760 /* Implement the main merge loop |
|
2761 */ |
|
2762 sqlite3VdbeResolveLabel(v, labelCmpr); |
|
2763 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); |
|
2764 sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy, |
|
2765 (char*)pKeyMerge, P4_KEYINFO_HANDOFF); |
|
2766 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); |
|
2767 |
|
2768 /* Release temporary registers |
|
2769 */ |
|
2770 if( regPrev ){ |
|
2771 sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1); |
|
2772 } |
|
2773 |
|
2774 /* Jump to the this point in order to terminate the query. |
|
2775 */ |
|
2776 sqlite3VdbeResolveLabel(v, labelEnd); |
|
2777 |
|
2778 /* Set the number of output columns |
|
2779 */ |
|
2780 if( pDest->eDest==SRT_Callback ){ |
|
2781 Select *pFirst = pPrior; |
|
2782 while( pFirst->pPrior ) pFirst = pFirst->pPrior; |
|
2783 generateColumnNames(pParse, 0, pFirst->pEList); |
|
2784 } |
|
2785 |
|
2786 /* Reassembly the compound query so that it will be freed correctly |
|
2787 ** by the calling function */ |
|
2788 if( p->pPrior ){ |
|
2789 sqlite3SelectDelete(db, p->pPrior); |
|
2790 } |
|
2791 p->pPrior = pPrior; |
|
2792 |
|
2793 /*** TBD: Insert subroutine calls to close cursors on incomplete |
|
2794 **** subqueries ****/ |
|
2795 return SQLITE_OK; |
|
2796 } |
|
2797 #endif |
|
2798 |
|
2799 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
|
2800 /* Forward Declarations */ |
|
2801 static void substExprList(sqlite3*, ExprList*, int, ExprList*); |
|
2802 static void substSelect(sqlite3*, Select *, int, ExprList *); |
|
2803 |
|
2804 /* |
|
2805 ** Scan through the expression pExpr. Replace every reference to |
|
2806 ** a column in table number iTable with a copy of the iColumn-th |
|
2807 ** entry in pEList. (But leave references to the ROWID column |
|
2808 ** unchanged.) |
|
2809 ** |
|
2810 ** This routine is part of the flattening procedure. A subquery |
|
2811 ** whose result set is defined by pEList appears as entry in the |
|
2812 ** FROM clause of a SELECT such that the VDBE cursor assigned to that |
|
2813 ** FORM clause entry is iTable. This routine make the necessary |
|
2814 ** changes to pExpr so that it refers directly to the source table |
|
2815 ** of the subquery rather the result set of the subquery. |
|
2816 */ |
|
2817 static void substExpr( |
|
2818 sqlite3 *db, /* Report malloc errors to this connection */ |
|
2819 Expr *pExpr, /* Expr in which substitution occurs */ |
|
2820 int iTable, /* Table to be substituted */ |
|
2821 ExprList *pEList /* Substitute expressions */ |
|
2822 ){ |
|
2823 if( pExpr==0 ) return; |
|
2824 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ |
|
2825 if( pExpr->iColumn<0 ){ |
|
2826 pExpr->op = TK_NULL; |
|
2827 }else{ |
|
2828 Expr *pNew; |
|
2829 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); |
|
2830 assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 ); |
|
2831 pNew = pEList->a[pExpr->iColumn].pExpr; |
|
2832 assert( pNew!=0 ); |
|
2833 pExpr->op = pNew->op; |
|
2834 assert( pExpr->pLeft==0 ); |
|
2835 pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft); |
|
2836 assert( pExpr->pRight==0 ); |
|
2837 pExpr->pRight = sqlite3ExprDup(db, pNew->pRight); |
|
2838 assert( pExpr->pList==0 ); |
|
2839 pExpr->pList = sqlite3ExprListDup(db, pNew->pList); |
|
2840 pExpr->iTable = pNew->iTable; |
|
2841 pExpr->pTab = pNew->pTab; |
|
2842 pExpr->iColumn = pNew->iColumn; |
|
2843 pExpr->iAgg = pNew->iAgg; |
|
2844 sqlite3TokenCopy(db, &pExpr->token, &pNew->token); |
|
2845 sqlite3TokenCopy(db, &pExpr->span, &pNew->span); |
|
2846 pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect); |
|
2847 pExpr->flags = pNew->flags; |
|
2848 } |
|
2849 }else{ |
|
2850 substExpr(db, pExpr->pLeft, iTable, pEList); |
|
2851 substExpr(db, pExpr->pRight, iTable, pEList); |
|
2852 substSelect(db, pExpr->pSelect, iTable, pEList); |
|
2853 substExprList(db, pExpr->pList, iTable, pEList); |
|
2854 } |
|
2855 } |
|
2856 static void substExprList( |
|
2857 sqlite3 *db, /* Report malloc errors here */ |
|
2858 ExprList *pList, /* List to scan and in which to make substitutes */ |
|
2859 int iTable, /* Table to be substituted */ |
|
2860 ExprList *pEList /* Substitute values */ |
|
2861 ){ |
|
2862 int i; |
|
2863 if( pList==0 ) return; |
|
2864 for(i=0; i<pList->nExpr; i++){ |
|
2865 substExpr(db, pList->a[i].pExpr, iTable, pEList); |
|
2866 } |
|
2867 } |
|
2868 static void substSelect( |
|
2869 sqlite3 *db, /* Report malloc errors here */ |
|
2870 Select *p, /* SELECT statement in which to make substitutions */ |
|
2871 int iTable, /* Table to be replaced */ |
|
2872 ExprList *pEList /* Substitute values */ |
|
2873 ){ |
|
2874 if( !p ) return; |
|
2875 substExprList(db, p->pEList, iTable, pEList); |
|
2876 substExprList(db, p->pGroupBy, iTable, pEList); |
|
2877 substExprList(db, p->pOrderBy, iTable, pEList); |
|
2878 substExpr(db, p->pHaving, iTable, pEList); |
|
2879 substExpr(db, p->pWhere, iTable, pEList); |
|
2880 substSelect(db, p->pPrior, iTable, pEList); |
|
2881 } |
|
2882 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ |
|
2883 |
|
2884 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
|
2885 /* |
|
2886 ** This routine attempts to flatten subqueries in order to speed |
|
2887 ** execution. It returns 1 if it makes changes and 0 if no flattening |
|
2888 ** occurs. |
|
2889 ** |
|
2890 ** To understand the concept of flattening, consider the following |
|
2891 ** query: |
|
2892 ** |
|
2893 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 |
|
2894 ** |
|
2895 ** The default way of implementing this query is to execute the |
|
2896 ** subquery first and store the results in a temporary table, then |
|
2897 ** run the outer query on that temporary table. This requires two |
|
2898 ** passes over the data. Furthermore, because the temporary table |
|
2899 ** has no indices, the WHERE clause on the outer query cannot be |
|
2900 ** optimized. |
|
2901 ** |
|
2902 ** This routine attempts to rewrite queries such as the above into |
|
2903 ** a single flat select, like this: |
|
2904 ** |
|
2905 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 |
|
2906 ** |
|
2907 ** The code generated for this simpification gives the same result |
|
2908 ** but only has to scan the data once. And because indices might |
|
2909 ** exist on the table t1, a complete scan of the data might be |
|
2910 ** avoided. |
|
2911 ** |
|
2912 ** Flattening is only attempted if all of the following are true: |
|
2913 ** |
|
2914 ** (1) The subquery and the outer query do not both use aggregates. |
|
2915 ** |
|
2916 ** (2) The subquery is not an aggregate or the outer query is not a join. |
|
2917 ** |
|
2918 ** (3) The subquery is not the right operand of a left outer join, or |
|
2919 ** the subquery is not itself a join. (Ticket #306) |
|
2920 ** |
|
2921 ** (4) The subquery is not DISTINCT or the outer query is not a join. |
|
2922 ** |
|
2923 ** (5) The subquery is not DISTINCT or the outer query does not use |
|
2924 ** aggregates. |
|
2925 ** |
|
2926 ** (6) The subquery does not use aggregates or the outer query is not |
|
2927 ** DISTINCT. |
|
2928 ** |
|
2929 ** (7) The subquery has a FROM clause. |
|
2930 ** |
|
2931 ** (8) The subquery does not use LIMIT or the outer query is not a join. |
|
2932 ** |
|
2933 ** (9) The subquery does not use LIMIT or the outer query does not use |
|
2934 ** aggregates. |
|
2935 ** |
|
2936 ** (10) The subquery does not use aggregates or the outer query does not |
|
2937 ** use LIMIT. |
|
2938 ** |
|
2939 ** (11) The subquery and the outer query do not both have ORDER BY clauses. |
|
2940 ** |
|
2941 ** (12) The subquery is not the right term of a LEFT OUTER JOIN or the |
|
2942 ** subquery has no WHERE clause. (added by ticket #350) |
|
2943 ** |
|
2944 ** (13) The subquery and outer query do not both use LIMIT |
|
2945 ** |
|
2946 ** (14) The subquery does not use OFFSET |
|
2947 ** |
|
2948 ** (15) The outer query is not part of a compound select or the |
|
2949 ** subquery does not have both an ORDER BY and a LIMIT clause. |
|
2950 ** (See ticket #2339) |
|
2951 ** |
|
2952 ** (16) The outer query is not an aggregate or the subquery does |
|
2953 ** not contain ORDER BY. (Ticket #2942) This used to not matter |
|
2954 ** until we introduced the group_concat() function. |
|
2955 ** |
|
2956 ** (17) The sub-query is not a compound select, or it is a UNION ALL |
|
2957 ** compound clause made up entirely of non-aggregate queries, and |
|
2958 ** the parent query: |
|
2959 ** |
|
2960 ** * is not itself part of a compound select, |
|
2961 ** * is not an aggregate or DISTINCT query, and |
|
2962 ** * has no other tables or sub-selects in the FROM clause. |
|
2963 ** |
|
2964 ** The parent and sub-query may contain WHERE clauses. Subject to |
|
2965 ** rules (11), (13) and (14), they may also contain ORDER BY, |
|
2966 ** LIMIT and OFFSET clauses. |
|
2967 ** |
|
2968 ** (18) If the sub-query is a compound select, then all terms of the |
|
2969 ** ORDER by clause of the parent must be simple references to |
|
2970 ** columns of the sub-query. |
|
2971 ** |
|
2972 ** In this routine, the "p" parameter is a pointer to the outer query. |
|
2973 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query |
|
2974 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. |
|
2975 ** |
|
2976 ** If flattening is not attempted, this routine is a no-op and returns 0. |
|
2977 ** If flattening is attempted this routine returns 1. |
|
2978 ** |
|
2979 ** All of the expression analysis must occur on both the outer query and |
|
2980 ** the subquery before this routine runs. |
|
2981 */ |
|
2982 static int flattenSubquery( |
|
2983 Parse *pParse, /* Parsing context */ |
|
2984 Select *p, /* The parent or outer SELECT statement */ |
|
2985 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ |
|
2986 int isAgg, /* True if outer SELECT uses aggregate functions */ |
|
2987 int subqueryIsAgg /* True if the subquery uses aggregate functions */ |
|
2988 ){ |
|
2989 const char *zSavedAuthContext = pParse->zAuthContext; |
|
2990 Select *pParent; |
|
2991 Select *pSub; /* The inner query or "subquery" */ |
|
2992 Select *pSub1; /* Pointer to the rightmost select in sub-query */ |
|
2993 SrcList *pSrc; /* The FROM clause of the outer query */ |
|
2994 SrcList *pSubSrc; /* The FROM clause of the subquery */ |
|
2995 ExprList *pList; /* The result set of the outer query */ |
|
2996 int iParent; /* VDBE cursor number of the pSub result set temp table */ |
|
2997 int i; /* Loop counter */ |
|
2998 Expr *pWhere; /* The WHERE clause */ |
|
2999 struct SrcList_item *pSubitem; /* The subquery */ |
|
3000 sqlite3 *db = pParse->db; |
|
3001 |
|
3002 /* Check to see if flattening is permitted. Return 0 if not. |
|
3003 */ |
|
3004 if( p==0 ) return 0; |
|
3005 pSrc = p->pSrc; |
|
3006 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); |
|
3007 pSubitem = &pSrc->a[iFrom]; |
|
3008 iParent = pSubitem->iCursor; |
|
3009 pSub = pSubitem->pSelect; |
|
3010 assert( pSub!=0 ); |
|
3011 if( isAgg && subqueryIsAgg ) return 0; /* Restriction (1) */ |
|
3012 if( subqueryIsAgg && pSrc->nSrc>1 ) return 0; /* Restriction (2) */ |
|
3013 pSubSrc = pSub->pSrc; |
|
3014 assert( pSubSrc ); |
|
3015 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, |
|
3016 ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET |
|
3017 ** because they could be computed at compile-time. But when LIMIT and OFFSET |
|
3018 ** became arbitrary expressions, we were forced to add restrictions (13) |
|
3019 ** and (14). */ |
|
3020 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ |
|
3021 if( pSub->pOffset ) return 0; /* Restriction (14) */ |
|
3022 if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){ |
|
3023 return 0; /* Restriction (15) */ |
|
3024 } |
|
3025 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ |
|
3026 if( (pSub->isDistinct || pSub->pLimit) |
|
3027 && (pSrc->nSrc>1 || isAgg) ){ /* Restrictions (4)(5)(8)(9) */ |
|
3028 return 0; |
|
3029 } |
|
3030 if( p->isDistinct && subqueryIsAgg ) return 0; /* Restriction (6) */ |
|
3031 if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){ |
|
3032 return 0; /* Restriction (11) */ |
|
3033 } |
|
3034 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ |
|
3035 |
|
3036 /* Restriction 3: If the subquery is a join, make sure the subquery is |
|
3037 ** not used as the right operand of an outer join. Examples of why this |
|
3038 ** is not allowed: |
|
3039 ** |
|
3040 ** t1 LEFT OUTER JOIN (t2 JOIN t3) |
|
3041 ** |
|
3042 ** If we flatten the above, we would get |
|
3043 ** |
|
3044 ** (t1 LEFT OUTER JOIN t2) JOIN t3 |
|
3045 ** |
|
3046 ** which is not at all the same thing. |
|
3047 */ |
|
3048 if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){ |
|
3049 return 0; |
|
3050 } |
|
3051 |
|
3052 /* Restriction 12: If the subquery is the right operand of a left outer |
|
3053 ** join, make sure the subquery has no WHERE clause. |
|
3054 ** An examples of why this is not allowed: |
|
3055 ** |
|
3056 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) |
|
3057 ** |
|
3058 ** If we flatten the above, we would get |
|
3059 ** |
|
3060 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 |
|
3061 ** |
|
3062 ** But the t2.x>0 test will always fail on a NULL row of t2, which |
|
3063 ** effectively converts the OUTER JOIN into an INNER JOIN. |
|
3064 */ |
|
3065 if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){ |
|
3066 return 0; |
|
3067 } |
|
3068 |
|
3069 /* Restriction 17: If the sub-query is a compound SELECT, then it must |
|
3070 ** use only the UNION ALL operator. And none of the simple select queries |
|
3071 ** that make up the compound SELECT are allowed to be aggregate or distinct |
|
3072 ** queries. |
|
3073 */ |
|
3074 if( pSub->pPrior ){ |
|
3075 if( p->pPrior || isAgg || p->isDistinct || pSrc->nSrc!=1 ){ |
|
3076 return 0; |
|
3077 } |
|
3078 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ |
|
3079 if( pSub1->isAgg || pSub1->isDistinct |
|
3080 || (pSub1->pPrior && pSub1->op!=TK_ALL) |
|
3081 || !pSub1->pSrc || pSub1->pSrc->nSrc!=1 |
|
3082 ){ |
|
3083 return 0; |
|
3084 } |
|
3085 } |
|
3086 |
|
3087 /* Restriction 18. */ |
|
3088 if( p->pOrderBy ){ |
|
3089 int ii; |
|
3090 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ |
|
3091 Expr *pExpr = p->pOrderBy->a[ii].pExpr; |
|
3092 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=iParent ){ |
|
3093 return 0; |
|
3094 } |
|
3095 } |
|
3096 } |
|
3097 } |
|
3098 |
|
3099 pParse->zAuthContext = pSubitem->zName; |
|
3100 sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); |
|
3101 pParse->zAuthContext = zSavedAuthContext; |
|
3102 |
|
3103 /* If the sub-query is a compound SELECT statement, then it must be |
|
3104 ** a UNION ALL and the parent query must be of the form: |
|
3105 ** |
|
3106 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> |
|
3107 ** |
|
3108 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block |
|
3109 ** creates N copies of the parent query without any ORDER BY, LIMIT or |
|
3110 ** OFFSET clauses and joins them to the left-hand-side of the original |
|
3111 ** using UNION ALL operators. In this case N is the number of simple |
|
3112 ** select statements in the compound sub-query. |
|
3113 */ |
|
3114 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ |
|
3115 Select *pNew; |
|
3116 ExprList *pOrderBy = p->pOrderBy; |
|
3117 Expr *pLimit = p->pLimit; |
|
3118 Expr *pOffset = p->pOffset; |
|
3119 Select *pPrior = p->pPrior; |
|
3120 p->pOrderBy = 0; |
|
3121 p->pSrc = 0; |
|
3122 p->pPrior = 0; |
|
3123 p->pLimit = 0; |
|
3124 pNew = sqlite3SelectDup(db, p); |
|
3125 pNew->pPrior = pPrior; |
|
3126 p->pPrior = pNew; |
|
3127 p->pOrderBy = pOrderBy; |
|
3128 p->op = TK_ALL; |
|
3129 p->pSrc = pSrc; |
|
3130 p->pLimit = pLimit; |
|
3131 p->pOffset = pOffset; |
|
3132 p->pRightmost = 0; |
|
3133 pNew->pRightmost = 0; |
|
3134 } |
|
3135 |
|
3136 /* If we reach this point, it means flattening is permitted for the |
|
3137 ** iFrom-th entry of the FROM clause in the outer query. |
|
3138 */ |
|
3139 pSub = pSub1 = pSubitem->pSelect; |
|
3140 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ |
|
3141 int nSubSrc = pSubSrc->nSrc; |
|
3142 int jointype = 0; |
|
3143 pSubSrc = pSub->pSrc; |
|
3144 pSrc = pParent->pSrc; |
|
3145 |
|
3146 /* Move all of the FROM elements of the subquery into the |
|
3147 ** the FROM clause of the outer query. Before doing this, remember |
|
3148 ** the cursor number for the original outer query FROM element in |
|
3149 ** iParent. The iParent cursor will never be used. Subsequent code |
|
3150 ** will scan expressions looking for iParent references and replace |
|
3151 ** those references with expressions that resolve to the subquery FROM |
|
3152 ** elements we are now copying in. |
|
3153 */ |
|
3154 if( pSrc ){ |
|
3155 pSubitem = &pSrc->a[iFrom]; |
|
3156 nSubSrc = pSubSrc->nSrc; |
|
3157 jointype = pSubitem->jointype; |
|
3158 sqlite3DeleteTable(pSubitem->pTab); |
|
3159 sqlite3DbFree(db, pSubitem->zDatabase); |
|
3160 sqlite3DbFree(db, pSubitem->zName); |
|
3161 sqlite3DbFree(db, pSubitem->zAlias); |
|
3162 pSubitem->pTab = 0; |
|
3163 pSubitem->zDatabase = 0; |
|
3164 pSubitem->zName = 0; |
|
3165 pSubitem->zAlias = 0; |
|
3166 } |
|
3167 if( nSubSrc!=1 || !pSrc ){ |
|
3168 int extra = nSubSrc - 1; |
|
3169 for(i=(pSrc?1:0); i<nSubSrc; i++){ |
|
3170 pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0); |
|
3171 if( pSrc==0 ){ |
|
3172 pParent->pSrc = 0; |
|
3173 return 1; |
|
3174 } |
|
3175 } |
|
3176 pParent->pSrc = pSrc; |
|
3177 for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){ |
|
3178 pSrc->a[i] = pSrc->a[i-extra]; |
|
3179 } |
|
3180 } |
|
3181 for(i=0; i<nSubSrc; i++){ |
|
3182 pSrc->a[i+iFrom] = pSubSrc->a[i]; |
|
3183 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); |
|
3184 } |
|
3185 pSrc->a[iFrom].jointype = jointype; |
|
3186 |
|
3187 /* Now begin substituting subquery result set expressions for |
|
3188 ** references to the iParent in the outer query. |
|
3189 ** |
|
3190 ** Example: |
|
3191 ** |
|
3192 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; |
|
3193 ** \ \_____________ subquery __________/ / |
|
3194 ** \_____________________ outer query ______________________________/ |
|
3195 ** |
|
3196 ** We look at every expression in the outer query and every place we see |
|
3197 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". |
|
3198 */ |
|
3199 pList = pParent->pEList; |
|
3200 for(i=0; i<pList->nExpr; i++){ |
|
3201 Expr *pExpr; |
|
3202 if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){ |
|
3203 pList->a[i].zName = |
|
3204 sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n); |
|
3205 } |
|
3206 } |
|
3207 substExprList(db, pParent->pEList, iParent, pSub->pEList); |
|
3208 if( isAgg ){ |
|
3209 substExprList(db, pParent->pGroupBy, iParent, pSub->pEList); |
|
3210 substExpr(db, pParent->pHaving, iParent, pSub->pEList); |
|
3211 } |
|
3212 if( pSub->pOrderBy ){ |
|
3213 assert( pParent->pOrderBy==0 ); |
|
3214 pParent->pOrderBy = pSub->pOrderBy; |
|
3215 pSub->pOrderBy = 0; |
|
3216 }else if( pParent->pOrderBy ){ |
|
3217 substExprList(db, pParent->pOrderBy, iParent, pSub->pEList); |
|
3218 } |
|
3219 if( pSub->pWhere ){ |
|
3220 pWhere = sqlite3ExprDup(db, pSub->pWhere); |
|
3221 }else{ |
|
3222 pWhere = 0; |
|
3223 } |
|
3224 if( subqueryIsAgg ){ |
|
3225 assert( pParent->pHaving==0 ); |
|
3226 pParent->pHaving = pParent->pWhere; |
|
3227 pParent->pWhere = pWhere; |
|
3228 substExpr(db, pParent->pHaving, iParent, pSub->pEList); |
|
3229 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, |
|
3230 sqlite3ExprDup(db, pSub->pHaving)); |
|
3231 assert( pParent->pGroupBy==0 ); |
|
3232 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy); |
|
3233 }else{ |
|
3234 substExpr(db, pParent->pWhere, iParent, pSub->pEList); |
|
3235 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); |
|
3236 } |
|
3237 |
|
3238 /* The flattened query is distinct if either the inner or the |
|
3239 ** outer query is distinct. |
|
3240 */ |
|
3241 pParent->isDistinct = pParent->isDistinct || pSub->isDistinct; |
|
3242 |
|
3243 /* |
|
3244 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; |
|
3245 ** |
|
3246 ** One is tempted to try to add a and b to combine the limits. But this |
|
3247 ** does not work if either limit is negative. |
|
3248 */ |
|
3249 if( pSub->pLimit ){ |
|
3250 pParent->pLimit = pSub->pLimit; |
|
3251 pSub->pLimit = 0; |
|
3252 } |
|
3253 } |
|
3254 |
|
3255 /* Finially, delete what is left of the subquery and return |
|
3256 ** success. |
|
3257 */ |
|
3258 sqlite3SelectDelete(db, pSub1); |
|
3259 |
|
3260 return 1; |
|
3261 } |
|
3262 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ |
|
3263 |
|
3264 /* |
|
3265 ** Analyze the SELECT statement passed as an argument to see if it |
|
3266 ** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if |
|
3267 ** it is, or 0 otherwise. At present, a query is considered to be |
|
3268 ** a min()/max() query if: |
|
3269 ** |
|
3270 ** 1. There is a single object in the FROM clause. |
|
3271 ** |
|
3272 ** 2. There is a single expression in the result set, and it is |
|
3273 ** either min(x) or max(x), where x is a column reference. |
|
3274 */ |
|
3275 static int minMaxQuery(Parse *pParse, Select *p){ |
|
3276 Expr *pExpr; |
|
3277 ExprList *pEList = p->pEList; |
|
3278 |
|
3279 if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL; |
|
3280 pExpr = pEList->a[0].pExpr; |
|
3281 pEList = pExpr->pList; |
|
3282 if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0; |
|
3283 if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL; |
|
3284 if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL; |
|
3285 if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){ |
|
3286 return WHERE_ORDERBY_MIN; |
|
3287 }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){ |
|
3288 return WHERE_ORDERBY_MAX; |
|
3289 } |
|
3290 return WHERE_ORDERBY_NORMAL; |
|
3291 } |
|
3292 |
|
3293 /* |
|
3294 ** This routine resolves any names used in the result set of the |
|
3295 ** supplied SELECT statement. If the SELECT statement being resolved |
|
3296 ** is a sub-select, then pOuterNC is a pointer to the NameContext |
|
3297 ** of the parent SELECT. |
|
3298 */ |
|
3299 int sqlite3SelectResolve( |
|
3300 Parse *pParse, /* The parser context */ |
|
3301 Select *p, /* The SELECT statement being coded. */ |
|
3302 NameContext *pOuterNC /* The outer name context. May be NULL. */ |
|
3303 ){ |
|
3304 ExprList *pEList; /* Result set. */ |
|
3305 int i; /* For-loop variable used in multiple places */ |
|
3306 NameContext sNC; /* Local name-context */ |
|
3307 ExprList *pGroupBy; /* The group by clause */ |
|
3308 |
|
3309 /* If this routine has run before, return immediately. */ |
|
3310 if( p->isResolved ){ |
|
3311 assert( !pOuterNC ); |
|
3312 return SQLITE_OK; |
|
3313 } |
|
3314 p->isResolved = 1; |
|
3315 |
|
3316 /* If there have already been errors, do nothing. */ |
|
3317 if( pParse->nErr>0 ){ |
|
3318 return SQLITE_ERROR; |
|
3319 } |
|
3320 |
|
3321 /* Prepare the select statement. This call will allocate all cursors |
|
3322 ** required to handle the tables and subqueries in the FROM clause. |
|
3323 */ |
|
3324 if( prepSelectStmt(pParse, p) ){ |
|
3325 return SQLITE_ERROR; |
|
3326 } |
|
3327 |
|
3328 /* Resolve the expressions in the LIMIT and OFFSET clauses. These |
|
3329 ** are not allowed to refer to any names, so pass an empty NameContext. |
|
3330 */ |
|
3331 memset(&sNC, 0, sizeof(sNC)); |
|
3332 sNC.pParse = pParse; |
|
3333 if( sqlite3ExprResolveNames(&sNC, p->pLimit) || |
|
3334 sqlite3ExprResolveNames(&sNC, p->pOffset) ){ |
|
3335 return SQLITE_ERROR; |
|
3336 } |
|
3337 |
|
3338 /* Set up the local name-context to pass to ExprResolveNames() to |
|
3339 ** resolve the expression-list. |
|
3340 */ |
|
3341 sNC.allowAgg = 1; |
|
3342 sNC.pSrcList = p->pSrc; |
|
3343 sNC.pNext = pOuterNC; |
|
3344 |
|
3345 /* Resolve names in the result set. */ |
|
3346 pEList = p->pEList; |
|
3347 if( !pEList ) return SQLITE_ERROR; |
|
3348 for(i=0; i<pEList->nExpr; i++){ |
|
3349 Expr *pX = pEList->a[i].pExpr; |
|
3350 if( sqlite3ExprResolveNames(&sNC, pX) ){ |
|
3351 return SQLITE_ERROR; |
|
3352 } |
|
3353 } |
|
3354 |
|
3355 /* If there are no aggregate functions in the result-set, and no GROUP BY |
|
3356 ** expression, do not allow aggregates in any of the other expressions. |
|
3357 */ |
|
3358 assert( !p->isAgg ); |
|
3359 pGroupBy = p->pGroupBy; |
|
3360 if( pGroupBy || sNC.hasAgg ){ |
|
3361 p->isAgg = 1; |
|
3362 }else{ |
|
3363 sNC.allowAgg = 0; |
|
3364 } |
|
3365 |
|
3366 /* If a HAVING clause is present, then there must be a GROUP BY clause. |
|
3367 */ |
|
3368 if( p->pHaving && !pGroupBy ){ |
|
3369 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); |
|
3370 return SQLITE_ERROR; |
|
3371 } |
|
3372 |
|
3373 /* Add the expression list to the name-context before parsing the |
|
3374 ** other expressions in the SELECT statement. This is so that |
|
3375 ** expressions in the WHERE clause (etc.) can refer to expressions by |
|
3376 ** aliases in the result set. |
|
3377 ** |
|
3378 ** Minor point: If this is the case, then the expression will be |
|
3379 ** re-evaluated for each reference to it. |
|
3380 */ |
|
3381 sNC.pEList = p->pEList; |
|
3382 if( sqlite3ExprResolveNames(&sNC, p->pWhere) || |
|
3383 sqlite3ExprResolveNames(&sNC, p->pHaving) ){ |
|
3384 return SQLITE_ERROR; |
|
3385 } |
|
3386 if( p->pPrior==0 ){ |
|
3387 if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){ |
|
3388 return SQLITE_ERROR; |
|
3389 } |
|
3390 } |
|
3391 if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){ |
|
3392 return SQLITE_ERROR; |
|
3393 } |
|
3394 |
|
3395 if( pParse->db->mallocFailed ){ |
|
3396 return SQLITE_NOMEM; |
|
3397 } |
|
3398 |
|
3399 /* Make sure the GROUP BY clause does not contain aggregate functions. |
|
3400 */ |
|
3401 if( pGroupBy ){ |
|
3402 struct ExprList_item *pItem; |
|
3403 |
|
3404 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ |
|
3405 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ |
|
3406 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " |
|
3407 "the GROUP BY clause"); |
|
3408 return SQLITE_ERROR; |
|
3409 } |
|
3410 } |
|
3411 } |
|
3412 |
|
3413 /* If this is one SELECT of a compound, be sure to resolve names |
|
3414 ** in the other SELECTs. |
|
3415 */ |
|
3416 if( p->pPrior ){ |
|
3417 return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC); |
|
3418 }else{ |
|
3419 return SQLITE_OK; |
|
3420 } |
|
3421 } |
|
3422 |
|
3423 /* |
|
3424 ** Reset the aggregate accumulator. |
|
3425 ** |
|
3426 ** The aggregate accumulator is a set of memory cells that hold |
|
3427 ** intermediate results while calculating an aggregate. This |
|
3428 ** routine simply stores NULLs in all of those memory cells. |
|
3429 */ |
|
3430 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ |
|
3431 Vdbe *v = pParse->pVdbe; |
|
3432 int i; |
|
3433 struct AggInfo_func *pFunc; |
|
3434 if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){ |
|
3435 return; |
|
3436 } |
|
3437 for(i=0; i<pAggInfo->nColumn; i++){ |
|
3438 sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem); |
|
3439 } |
|
3440 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ |
|
3441 sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem); |
|
3442 if( pFunc->iDistinct>=0 ){ |
|
3443 Expr *pE = pFunc->pExpr; |
|
3444 if( pE->pList==0 || pE->pList->nExpr!=1 ){ |
|
3445 sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed " |
|
3446 "by an expression"); |
|
3447 pFunc->iDistinct = -1; |
|
3448 }else{ |
|
3449 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList); |
|
3450 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, |
|
3451 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); |
|
3452 } |
|
3453 } |
|
3454 } |
|
3455 } |
|
3456 |
|
3457 /* |
|
3458 ** Invoke the OP_AggFinalize opcode for every aggregate function |
|
3459 ** in the AggInfo structure. |
|
3460 */ |
|
3461 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ |
|
3462 Vdbe *v = pParse->pVdbe; |
|
3463 int i; |
|
3464 struct AggInfo_func *pF; |
|
3465 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
|
3466 ExprList *pList = pF->pExpr->pList; |
|
3467 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, |
|
3468 (void*)pF->pFunc, P4_FUNCDEF); |
|
3469 } |
|
3470 } |
|
3471 |
|
3472 /* |
|
3473 ** Update the accumulator memory cells for an aggregate based on |
|
3474 ** the current cursor position. |
|
3475 */ |
|
3476 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ |
|
3477 Vdbe *v = pParse->pVdbe; |
|
3478 int i; |
|
3479 struct AggInfo_func *pF; |
|
3480 struct AggInfo_col *pC; |
|
3481 |
|
3482 pAggInfo->directMode = 1; |
|
3483 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ |
|
3484 int nArg; |
|
3485 int addrNext = 0; |
|
3486 int regAgg; |
|
3487 ExprList *pList = pF->pExpr->pList; |
|
3488 if( pList ){ |
|
3489 nArg = pList->nExpr; |
|
3490 regAgg = sqlite3GetTempRange(pParse, nArg); |
|
3491 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0); |
|
3492 }else{ |
|
3493 nArg = 0; |
|
3494 regAgg = 0; |
|
3495 } |
|
3496 if( pF->iDistinct>=0 ){ |
|
3497 addrNext = sqlite3VdbeMakeLabel(v); |
|
3498 assert( nArg==1 ); |
|
3499 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); |
|
3500 } |
|
3501 if( pF->pFunc->needCollSeq ){ |
|
3502 CollSeq *pColl = 0; |
|
3503 struct ExprList_item *pItem; |
|
3504 int j; |
|
3505 assert( pList!=0 ); /* pList!=0 if pF->pFunc->needCollSeq is true */ |
|
3506 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ |
|
3507 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); |
|
3508 } |
|
3509 if( !pColl ){ |
|
3510 pColl = pParse->db->pDfltColl; |
|
3511 } |
|
3512 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); |
|
3513 } |
|
3514 sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem, |
|
3515 (void*)pF->pFunc, P4_FUNCDEF); |
|
3516 sqlite3VdbeChangeP5(v, nArg); |
|
3517 sqlite3ReleaseTempRange(pParse, regAgg, nArg); |
|
3518 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); |
|
3519 if( addrNext ){ |
|
3520 sqlite3VdbeResolveLabel(v, addrNext); |
|
3521 } |
|
3522 } |
|
3523 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ |
|
3524 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); |
|
3525 } |
|
3526 pAggInfo->directMode = 0; |
|
3527 } |
|
3528 |
|
3529 /* |
|
3530 ** Generate code for the given SELECT statement. |
|
3531 ** |
|
3532 ** The results are distributed in various ways depending on the |
|
3533 ** contents of the SelectDest structure pointed to by argument pDest |
|
3534 ** as follows: |
|
3535 ** |
|
3536 ** pDest->eDest Result |
|
3537 ** ------------ ------------------------------------------- |
|
3538 ** SRT_Callback Invoke the callback for each row of the result. |
|
3539 ** |
|
3540 ** SRT_Mem Store first result in memory cell pDest->iParm |
|
3541 ** |
|
3542 ** SRT_Set Store results as keys of table pDest->iParm. |
|
3543 ** Apply the affinity pDest->affinity before storing them. |
|
3544 ** |
|
3545 ** SRT_Union Store results as a key in a temporary table pDest->iParm. |
|
3546 ** |
|
3547 ** SRT_Except Remove results from the temporary table pDest->iParm. |
|
3548 ** |
|
3549 ** SRT_Table Store results in temporary table pDest->iParm |
|
3550 ** |
|
3551 ** SRT_EphemTab Create an temporary table pDest->iParm and store |
|
3552 ** the result there. The cursor is left open after |
|
3553 ** returning. |
|
3554 ** |
|
3555 ** SRT_Coroutine Invoke a co-routine to compute a single row of |
|
3556 ** the result |
|
3557 ** |
|
3558 ** SRT_Exists Store a 1 in memory cell pDest->iParm if the result |
|
3559 ** set is not empty. |
|
3560 ** |
|
3561 ** SRT_Discard Throw the results away. |
|
3562 ** |
|
3563 ** See the selectInnerLoop() function for a canonical listing of the |
|
3564 ** allowed values of eDest and their meanings. |
|
3565 ** |
|
3566 ** This routine returns the number of errors. If any errors are |
|
3567 ** encountered, then an appropriate error message is left in |
|
3568 ** pParse->zErrMsg. |
|
3569 ** |
|
3570 ** This routine does NOT free the Select structure passed in. The |
|
3571 ** calling function needs to do that. |
|
3572 ** |
|
3573 ** The pParent, parentTab, and *pParentAgg fields are filled in if this |
|
3574 ** SELECT is a subquery. This routine may try to combine this SELECT |
|
3575 ** with its parent to form a single flat query. In so doing, it might |
|
3576 ** change the parent query from a non-aggregate to an aggregate query. |
|
3577 ** For that reason, the pParentAgg flag is passed as a pointer, so it |
|
3578 ** can be changed. |
|
3579 ** |
|
3580 ** Example 1: The meaning of the pParent parameter. |
|
3581 ** |
|
3582 ** SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3; |
|
3583 ** \ \_______ subquery _______/ / |
|
3584 ** \ / |
|
3585 ** \____________________ outer query ___________________/ |
|
3586 ** |
|
3587 ** This routine is called for the outer query first. For that call, |
|
3588 ** pParent will be NULL. During the processing of the outer query, this |
|
3589 ** routine is called recursively to handle the subquery. For the recursive |
|
3590 ** call, pParent will point to the outer query. Because the subquery is |
|
3591 ** the second element in a three-way join, the parentTab parameter will |
|
3592 ** be 1 (the 2nd value of a 0-indexed array.) |
|
3593 */ |
|
3594 int sqlite3Select( |
|
3595 Parse *pParse, /* The parser context */ |
|
3596 Select *p, /* The SELECT statement being coded. */ |
|
3597 SelectDest *pDest, /* What to do with the query results */ |
|
3598 Select *pParent, /* Another SELECT for which this is a sub-query */ |
|
3599 int parentTab, /* Index in pParent->pSrc of this query */ |
|
3600 int *pParentAgg /* True if pParent uses aggregate functions */ |
|
3601 ){ |
|
3602 int i, j; /* Loop counters */ |
|
3603 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ |
|
3604 Vdbe *v; /* The virtual machine under construction */ |
|
3605 int isAgg; /* True for select lists like "count(*)" */ |
|
3606 ExprList *pEList; /* List of columns to extract. */ |
|
3607 SrcList *pTabList; /* List of tables to select from */ |
|
3608 Expr *pWhere; /* The WHERE clause. May be NULL */ |
|
3609 ExprList *pOrderBy; /* The ORDER BY clause. May be NULL */ |
|
3610 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ |
|
3611 Expr *pHaving; /* The HAVING clause. May be NULL */ |
|
3612 int isDistinct; /* True if the DISTINCT keyword is present */ |
|
3613 int distinct; /* Table to use for the distinct set */ |
|
3614 int rc = 1; /* Value to return from this function */ |
|
3615 int addrSortIndex; /* Address of an OP_OpenEphemeral instruction */ |
|
3616 AggInfo sAggInfo; /* Information used by aggregate queries */ |
|
3617 int iEnd; /* Address of the end of the query */ |
|
3618 sqlite3 *db; /* The database connection */ |
|
3619 |
|
3620 db = pParse->db; |
|
3621 if( p==0 || db->mallocFailed || pParse->nErr ){ |
|
3622 return 1; |
|
3623 } |
|
3624 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; |
|
3625 memset(&sAggInfo, 0, sizeof(sAggInfo)); |
|
3626 |
|
3627 pOrderBy = p->pOrderBy; |
|
3628 if( IgnorableOrderby(pDest) ){ |
|
3629 p->pOrderBy = 0; |
|
3630 |
|
3631 /* In these cases the DISTINCT operator makes no difference to the |
|
3632 ** results, so remove it if it were specified. |
|
3633 */ |
|
3634 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || |
|
3635 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard); |
|
3636 p->isDistinct = 0; |
|
3637 } |
|
3638 if( sqlite3SelectResolve(pParse, p, 0) ){ |
|
3639 goto select_end; |
|
3640 } |
|
3641 p->pOrderBy = pOrderBy; |
|
3642 |
|
3643 |
|
3644 /* Make local copies of the parameters for this query. |
|
3645 */ |
|
3646 pTabList = p->pSrc; |
|
3647 isAgg = p->isAgg; |
|
3648 pEList = p->pEList; |
|
3649 if( pEList==0 ) goto select_end; |
|
3650 |
|
3651 /* |
|
3652 ** Do not even attempt to generate any code if we have already seen |
|
3653 ** errors before this routine starts. |
|
3654 */ |
|
3655 if( pParse->nErr>0 ) goto select_end; |
|
3656 |
|
3657 /* ORDER BY is ignored for some destinations. |
|
3658 */ |
|
3659 if( IgnorableOrderby(pDest) ){ |
|
3660 pOrderBy = 0; |
|
3661 } |
|
3662 |
|
3663 /* Begin generating code. |
|
3664 */ |
|
3665 v = sqlite3GetVdbe(pParse); |
|
3666 if( v==0 ) goto select_end; |
|
3667 |
|
3668 /* Generate code for all sub-queries in the FROM clause |
|
3669 */ |
|
3670 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) |
|
3671 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ |
|
3672 struct SrcList_item *pItem = &pTabList->a[i]; |
|
3673 SelectDest dest; |
|
3674 Select *pSub = pItem->pSelect; |
|
3675 int isAggSub; |
|
3676 char *zName = pItem->zName; |
|
3677 |
|
3678 if( pSub==0 || pItem->isPopulated ) continue; |
|
3679 if( zName!=0 ){ /* An sql view */ |
|
3680 const char *zSavedAuthContext = pParse->zAuthContext; |
|
3681 pParse->zAuthContext = zName; |
|
3682 rc = sqlite3SelectResolve(pParse, pSub, 0); |
|
3683 pParse->zAuthContext = zSavedAuthContext; |
|
3684 if( rc ){ |
|
3685 goto select_end; |
|
3686 } |
|
3687 } |
|
3688 |
|
3689 /* Increment Parse.nHeight by the height of the largest expression |
|
3690 ** tree refered to by this, the parent select. The child select |
|
3691 ** may contain expression trees of at most |
|
3692 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit |
|
3693 ** more conservative than necessary, but much easier than enforcing |
|
3694 ** an exact limit. |
|
3695 */ |
|
3696 pParse->nHeight += sqlite3SelectExprHeight(p); |
|
3697 |
|
3698 /* Check to see if the subquery can be absorbed into the parent. */ |
|
3699 isAggSub = pSub->isAgg; |
|
3700 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ |
|
3701 if( isAggSub ){ |
|
3702 p->isAgg = isAgg = 1; |
|
3703 } |
|
3704 i = -1; |
|
3705 }else{ |
|
3706 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); |
|
3707 sqlite3Select(pParse, pSub, &dest, p, i, &isAgg); |
|
3708 } |
|
3709 if( pParse->nErr || db->mallocFailed ){ |
|
3710 goto select_end; |
|
3711 } |
|
3712 pParse->nHeight -= sqlite3SelectExprHeight(p); |
|
3713 pTabList = p->pSrc; |
|
3714 if( !IgnorableOrderby(pDest) ){ |
|
3715 pOrderBy = p->pOrderBy; |
|
3716 } |
|
3717 } |
|
3718 pEList = p->pEList; |
|
3719 #endif |
|
3720 pWhere = p->pWhere; |
|
3721 pGroupBy = p->pGroupBy; |
|
3722 pHaving = p->pHaving; |
|
3723 isDistinct = p->isDistinct; |
|
3724 |
|
3725 #ifndef SQLITE_OMIT_COMPOUND_SELECT |
|
3726 /* If there is are a sequence of queries, do the earlier ones first. |
|
3727 */ |
|
3728 if( p->pPrior ){ |
|
3729 if( p->pRightmost==0 ){ |
|
3730 Select *pLoop, *pRight = 0; |
|
3731 int cnt = 0; |
|
3732 int mxSelect; |
|
3733 for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){ |
|
3734 pLoop->pRightmost = p; |
|
3735 pLoop->pNext = pRight; |
|
3736 pRight = pLoop; |
|
3737 } |
|
3738 mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; |
|
3739 if( mxSelect && cnt>mxSelect ){ |
|
3740 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); |
|
3741 return 1; |
|
3742 } |
|
3743 } |
|
3744 return multiSelect(pParse, p, pDest); |
|
3745 } |
|
3746 #endif |
|
3747 |
|
3748 /* If writing to memory or generating a set |
|
3749 ** only a single column may be output. |
|
3750 */ |
|
3751 #ifndef SQLITE_OMIT_SUBQUERY |
|
3752 if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){ |
|
3753 goto select_end; |
|
3754 } |
|
3755 #endif |
|
3756 |
|
3757 /* If possible, rewrite the query to use GROUP BY instead of DISTINCT. |
|
3758 ** GROUP BY may use an index, DISTINCT never does. |
|
3759 */ |
|
3760 if( p->isDistinct && !p->isAgg && !p->pGroupBy ){ |
|
3761 p->pGroupBy = sqlite3ExprListDup(db, p->pEList); |
|
3762 pGroupBy = p->pGroupBy; |
|
3763 p->isDistinct = 0; |
|
3764 isDistinct = 0; |
|
3765 } |
|
3766 |
|
3767 /* If there is an ORDER BY clause, then this sorting |
|
3768 ** index might end up being unused if the data can be |
|
3769 ** extracted in pre-sorted order. If that is the case, then the |
|
3770 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once |
|
3771 ** we figure out that the sorting index is not needed. The addrSortIndex |
|
3772 ** variable is used to facilitate that change. |
|
3773 */ |
|
3774 if( pOrderBy ){ |
|
3775 KeyInfo *pKeyInfo; |
|
3776 pKeyInfo = keyInfoFromExprList(pParse, pOrderBy); |
|
3777 pOrderBy->iECursor = pParse->nTab++; |
|
3778 p->addrOpenEphm[2] = addrSortIndex = |
|
3779 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, |
|
3780 pOrderBy->iECursor, pOrderBy->nExpr+2, 0, |
|
3781 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); |
|
3782 }else{ |
|
3783 addrSortIndex = -1; |
|
3784 } |
|
3785 |
|
3786 /* If the output is destined for a temporary table, open that table. |
|
3787 */ |
|
3788 if( pDest->eDest==SRT_EphemTab ){ |
|
3789 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr); |
|
3790 } |
|
3791 |
|
3792 /* Set the limiter. |
|
3793 */ |
|
3794 iEnd = sqlite3VdbeMakeLabel(v); |
|
3795 computeLimitRegisters(pParse, p, iEnd); |
|
3796 |
|
3797 /* Open a virtual index to use for the distinct set. |
|
3798 */ |
|
3799 if( isDistinct ){ |
|
3800 KeyInfo *pKeyInfo; |
|
3801 assert( isAgg || pGroupBy ); |
|
3802 distinct = pParse->nTab++; |
|
3803 pKeyInfo = keyInfoFromExprList(pParse, p->pEList); |
|
3804 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0, |
|
3805 (char*)pKeyInfo, P4_KEYINFO_HANDOFF); |
|
3806 }else{ |
|
3807 distinct = -1; |
|
3808 } |
|
3809 |
|
3810 /* Aggregate and non-aggregate queries are handled differently */ |
|
3811 if( !isAgg && pGroupBy==0 ){ |
|
3812 /* This case is for non-aggregate queries |
|
3813 ** Begin the database scan |
|
3814 */ |
|
3815 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0); |
|
3816 if( pWInfo==0 ) goto select_end; |
|
3817 |
|
3818 /* If sorting index that was created by a prior OP_OpenEphemeral |
|
3819 ** instruction ended up not being needed, then change the OP_OpenEphemeral |
|
3820 ** into an OP_Noop. |
|
3821 */ |
|
3822 if( addrSortIndex>=0 && pOrderBy==0 ){ |
|
3823 sqlite3VdbeChangeToNoop(v, addrSortIndex, 1); |
|
3824 p->addrOpenEphm[2] = -1; |
|
3825 } |
|
3826 |
|
3827 /* Use the standard inner loop |
|
3828 */ |
|
3829 assert(!isDistinct); |
|
3830 selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest, |
|
3831 pWInfo->iContinue, pWInfo->iBreak); |
|
3832 |
|
3833 /* End the database scan loop. |
|
3834 */ |
|
3835 sqlite3WhereEnd(pWInfo); |
|
3836 }else{ |
|
3837 /* This is the processing for aggregate queries */ |
|
3838 NameContext sNC; /* Name context for processing aggregate information */ |
|
3839 int iAMem; /* First Mem address for storing current GROUP BY */ |
|
3840 int iBMem; /* First Mem address for previous GROUP BY */ |
|
3841 int iUseFlag; /* Mem address holding flag indicating that at least |
|
3842 ** one row of the input to the aggregator has been |
|
3843 ** processed */ |
|
3844 int iAbortFlag; /* Mem address which causes query abort if positive */ |
|
3845 int groupBySort; /* Rows come from source in GROUP BY order */ |
|
3846 |
|
3847 |
|
3848 /* The following variables hold addresses or labels for parts of the |
|
3849 ** virtual machine program we are putting together */ |
|
3850 int addrOutputRow; /* Start of subroutine that outputs a result row */ |
|
3851 int regOutputRow; /* Return address register for output subroutine */ |
|
3852 int addrSetAbort; /* Set the abort flag and return */ |
|
3853 int addrInitializeLoop; /* Start of code that initializes the input loop */ |
|
3854 int addrTopOfLoop; /* Top of the input loop */ |
|
3855 int addrEnd; /* End of all processing */ |
|
3856 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ |
|
3857 int addrReset; /* Subroutine for resetting the accumulator */ |
|
3858 int regReset; /* Return address register for reset subroutine */ |
|
3859 |
|
3860 addrEnd = sqlite3VdbeMakeLabel(v); |
|
3861 |
|
3862 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in |
|
3863 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the |
|
3864 ** SELECT statement. |
|
3865 */ |
|
3866 memset(&sNC, 0, sizeof(sNC)); |
|
3867 sNC.pParse = pParse; |
|
3868 sNC.pSrcList = pTabList; |
|
3869 sNC.pAggInfo = &sAggInfo; |
|
3870 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0; |
|
3871 sAggInfo.pGroupBy = pGroupBy; |
|
3872 sqlite3ExprAnalyzeAggList(&sNC, pEList); |
|
3873 sqlite3ExprAnalyzeAggList(&sNC, pOrderBy); |
|
3874 if( pHaving ){ |
|
3875 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); |
|
3876 } |
|
3877 sAggInfo.nAccumulator = sAggInfo.nColumn; |
|
3878 for(i=0; i<sAggInfo.nFunc; i++){ |
|
3879 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList); |
|
3880 } |
|
3881 if( db->mallocFailed ) goto select_end; |
|
3882 |
|
3883 /* Processing for aggregates with GROUP BY is very different and |
|
3884 ** much more complex than aggregates without a GROUP BY. |
|
3885 */ |
|
3886 if( pGroupBy ){ |
|
3887 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ |
|
3888 int j1; |
|
3889 |
|
3890 /* Create labels that we will be needing |
|
3891 */ |
|
3892 addrInitializeLoop = sqlite3VdbeMakeLabel(v); |
|
3893 |
|
3894 /* If there is a GROUP BY clause we might need a sorting index to |
|
3895 ** implement it. Allocate that sorting index now. If it turns out |
|
3896 ** that we do not need it after all, the OpenEphemeral instruction |
|
3897 ** will be converted into a Noop. |
|
3898 */ |
|
3899 sAggInfo.sortingIdx = pParse->nTab++; |
|
3900 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy); |
|
3901 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, |
|
3902 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, |
|
3903 0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF); |
|
3904 |
|
3905 /* Initialize memory locations used by GROUP BY aggregate processing |
|
3906 */ |
|
3907 iUseFlag = ++pParse->nMem; |
|
3908 iAbortFlag = ++pParse->nMem; |
|
3909 iAMem = pParse->nMem + 1; |
|
3910 pParse->nMem += pGroupBy->nExpr; |
|
3911 iBMem = pParse->nMem + 1; |
|
3912 pParse->nMem += pGroupBy->nExpr; |
|
3913 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); |
|
3914 VdbeComment((v, "clear abort flag")); |
|
3915 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); |
|
3916 VdbeComment((v, "indicate accumulator empty")); |
|
3917 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInitializeLoop); |
|
3918 |
|
3919 /* Generate a subroutine that outputs a single row of the result |
|
3920 ** set. This subroutine first looks at the iUseFlag. If iUseFlag |
|
3921 ** is less than or equal to zero, the subroutine is a no-op. If |
|
3922 ** the processing calls for the query to abort, this subroutine |
|
3923 ** increments the iAbortFlag memory location before returning in |
|
3924 ** order to signal the caller to abort. |
|
3925 */ |
|
3926 addrSetAbort = sqlite3VdbeCurrentAddr(v); |
|
3927 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); |
|
3928 VdbeComment((v, "set abort flag")); |
|
3929 regOutputRow = ++pParse->nMem; |
|
3930 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); |
|
3931 addrOutputRow = sqlite3VdbeCurrentAddr(v); |
|
3932 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); |
|
3933 VdbeComment((v, "Groupby result generator entry point")); |
|
3934 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); |
|
3935 finalizeAggFunctions(pParse, &sAggInfo); |
|
3936 if( pHaving ){ |
|
3937 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); |
|
3938 } |
|
3939 selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy, |
|
3940 distinct, pDest, |
|
3941 addrOutputRow+1, addrSetAbort); |
|
3942 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); |
|
3943 VdbeComment((v, "end groupby result generator")); |
|
3944 |
|
3945 /* Generate a subroutine that will reset the group-by accumulator |
|
3946 */ |
|
3947 addrReset = sqlite3VdbeCurrentAddr(v); |
|
3948 regReset = ++pParse->nMem; |
|
3949 resetAccumulator(pParse, &sAggInfo); |
|
3950 sqlite3VdbeAddOp1(v, OP_Return, regReset); |
|
3951 |
|
3952 /* Begin a loop that will extract all source rows in GROUP BY order. |
|
3953 ** This might involve two separate loops with an OP_Sort in between, or |
|
3954 ** it might be a single loop that uses an index to extract information |
|
3955 ** in the right order to begin with. |
|
3956 */ |
|
3957 sqlite3VdbeResolveLabel(v, addrInitializeLoop); |
|
3958 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); |
|
3959 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0); |
|
3960 if( pWInfo==0 ) goto select_end; |
|
3961 if( pGroupBy==0 ){ |
|
3962 /* The optimizer is able to deliver rows in group by order so |
|
3963 ** we do not have to sort. The OP_OpenEphemeral table will be |
|
3964 ** cancelled later because we still need to use the pKeyInfo |
|
3965 */ |
|
3966 pGroupBy = p->pGroupBy; |
|
3967 groupBySort = 0; |
|
3968 }else{ |
|
3969 /* Rows are coming out in undetermined order. We have to push |
|
3970 ** each row into a sorting index, terminate the first loop, |
|
3971 ** then loop over the sorting index in order to get the output |
|
3972 ** in sorted order |
|
3973 */ |
|
3974 int regBase; |
|
3975 int regRecord; |
|
3976 int nCol; |
|
3977 int nGroupBy; |
|
3978 |
|
3979 groupBySort = 1; |
|
3980 nGroupBy = pGroupBy->nExpr; |
|
3981 nCol = nGroupBy + 1; |
|
3982 j = nGroupBy+1; |
|
3983 for(i=0; i<sAggInfo.nColumn; i++){ |
|
3984 if( sAggInfo.aCol[i].iSorterColumn>=j ){ |
|
3985 nCol++; |
|
3986 j++; |
|
3987 } |
|
3988 } |
|
3989 regBase = sqlite3GetTempRange(pParse, nCol); |
|
3990 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0); |
|
3991 sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy); |
|
3992 j = nGroupBy+1; |
|
3993 for(i=0; i<sAggInfo.nColumn; i++){ |
|
3994 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; |
|
3995 if( pCol->iSorterColumn>=j ){ |
|
3996 int r1 = j + regBase; |
|
3997 #ifndef NDEBUG |
|
3998 int r2 = |
|
3999 #endif |
|
4000 sqlite3ExprCodeGetColumn(pParse, |
|
4001 pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0); |
|
4002 j++; |
|
4003 |
|
4004 /* sAggInfo.aCol[] only contains one entry per column. So |
|
4005 ** The reference to pCol->iColumn,pCol->iTable must have been |
|
4006 ** the first reference to that column. Hence, |
|
4007 ** sqliteExprCodeGetColumn is guaranteed to put the result in |
|
4008 ** the column requested. |
|
4009 */ |
|
4010 assert( r1==r2 ); |
|
4011 } |
|
4012 } |
|
4013 regRecord = sqlite3GetTempReg(pParse); |
|
4014 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); |
|
4015 sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord); |
|
4016 sqlite3ReleaseTempReg(pParse, regRecord); |
|
4017 sqlite3ReleaseTempRange(pParse, regBase, nCol); |
|
4018 sqlite3WhereEnd(pWInfo); |
|
4019 sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd); |
|
4020 VdbeComment((v, "GROUP BY sort")); |
|
4021 sAggInfo.useSortingIdx = 1; |
|
4022 } |
|
4023 |
|
4024 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... |
|
4025 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) |
|
4026 ** Then compare the current GROUP BY terms against the GROUP BY terms |
|
4027 ** from the previous row currently stored in a0, a1, a2... |
|
4028 */ |
|
4029 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); |
|
4030 for(j=0; j<pGroupBy->nExpr; j++){ |
|
4031 if( groupBySort ){ |
|
4032 sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j); |
|
4033 }else{ |
|
4034 sAggInfo.directMode = 1; |
|
4035 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); |
|
4036 } |
|
4037 } |
|
4038 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, |
|
4039 (char*)pKeyInfo, P4_KEYINFO); |
|
4040 j1 = sqlite3VdbeCurrentAddr(v); |
|
4041 sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1); |
|
4042 |
|
4043 /* Generate code that runs whenever the GROUP BY changes. |
|
4044 ** Changes in the GROUP BY are detected by the previous code |
|
4045 ** block. If there were no changes, this block is skipped. |
|
4046 ** |
|
4047 ** This code copies current group by terms in b0,b1,b2,... |
|
4048 ** over to a0,a1,a2. It then calls the output subroutine |
|
4049 ** and resets the aggregate accumulator registers in preparation |
|
4050 ** for the next GROUP BY batch. |
|
4051 */ |
|
4052 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); |
|
4053 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); |
|
4054 VdbeComment((v, "output one row")); |
|
4055 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); |
|
4056 VdbeComment((v, "check abort flag")); |
|
4057 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); |
|
4058 VdbeComment((v, "reset accumulator")); |
|
4059 |
|
4060 /* Update the aggregate accumulators based on the content of |
|
4061 ** the current row |
|
4062 */ |
|
4063 sqlite3VdbeJumpHere(v, j1); |
|
4064 updateAccumulator(pParse, &sAggInfo); |
|
4065 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); |
|
4066 VdbeComment((v, "indicate data in accumulator")); |
|
4067 |
|
4068 /* End of the loop |
|
4069 */ |
|
4070 if( groupBySort ){ |
|
4071 sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop); |
|
4072 }else{ |
|
4073 sqlite3WhereEnd(pWInfo); |
|
4074 sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1); |
|
4075 } |
|
4076 |
|
4077 /* Output the final row of result |
|
4078 */ |
|
4079 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); |
|
4080 VdbeComment((v, "output final row")); |
|
4081 |
|
4082 } /* endif pGroupBy */ |
|
4083 else { |
|
4084 ExprList *pMinMax = 0; |
|
4085 ExprList *pDel = 0; |
|
4086 u8 flag; |
|
4087 |
|
4088 /* Check if the query is of one of the following forms: |
|
4089 ** |
|
4090 ** SELECT min(x) FROM ... |
|
4091 ** SELECT max(x) FROM ... |
|
4092 ** |
|
4093 ** If it is, then ask the code in where.c to attempt to sort results |
|
4094 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. |
|
4095 ** If where.c is able to produce results sorted in this order, then |
|
4096 ** add vdbe code to break out of the processing loop after the |
|
4097 ** first iteration (since the first iteration of the loop is |
|
4098 ** guaranteed to operate on the row with the minimum or maximum |
|
4099 ** value of x, the only row required). |
|
4100 ** |
|
4101 ** A special flag must be passed to sqlite3WhereBegin() to slightly |
|
4102 ** modify behaviour as follows: |
|
4103 ** |
|
4104 ** + If the query is a "SELECT min(x)", then the loop coded by |
|
4105 ** where.c should not iterate over any values with a NULL value |
|
4106 ** for x. |
|
4107 ** |
|
4108 ** + The optimizer code in where.c (the thing that decides which |
|
4109 ** index or indices to use) should place a different priority on |
|
4110 ** satisfying the 'ORDER BY' clause than it does in other cases. |
|
4111 ** Refer to code and comments in where.c for details. |
|
4112 */ |
|
4113 flag = minMaxQuery(pParse, p); |
|
4114 if( flag ){ |
|
4115 pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList); |
|
4116 if( pMinMax && !db->mallocFailed ){ |
|
4117 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN; |
|
4118 pMinMax->a[0].pExpr->op = TK_COLUMN; |
|
4119 } |
|
4120 } |
|
4121 |
|
4122 /* This case runs if the aggregate has no GROUP BY clause. The |
|
4123 ** processing is much simpler since there is only a single row |
|
4124 ** of output. |
|
4125 */ |
|
4126 resetAccumulator(pParse, &sAggInfo); |
|
4127 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag); |
|
4128 if( pWInfo==0 ){ |
|
4129 sqlite3ExprListDelete(db, pDel); |
|
4130 goto select_end; |
|
4131 } |
|
4132 updateAccumulator(pParse, &sAggInfo); |
|
4133 if( !pMinMax && flag ){ |
|
4134 sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); |
|
4135 VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max"))); |
|
4136 } |
|
4137 sqlite3WhereEnd(pWInfo); |
|
4138 finalizeAggFunctions(pParse, &sAggInfo); |
|
4139 pOrderBy = 0; |
|
4140 if( pHaving ){ |
|
4141 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); |
|
4142 } |
|
4143 selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, |
|
4144 pDest, addrEnd, addrEnd); |
|
4145 |
|
4146 sqlite3ExprListDelete(db, pDel); |
|
4147 } |
|
4148 sqlite3VdbeResolveLabel(v, addrEnd); |
|
4149 |
|
4150 } /* endif aggregate query */ |
|
4151 |
|
4152 /* If there is an ORDER BY clause, then we need to sort the results |
|
4153 ** and send them to the callback one by one. |
|
4154 */ |
|
4155 if( pOrderBy ){ |
|
4156 generateSortTail(pParse, p, v, pEList->nExpr, pDest); |
|
4157 } |
|
4158 |
|
4159 #ifndef SQLITE_OMIT_SUBQUERY |
|
4160 /* If this was a subquery, we have now converted the subquery into a |
|
4161 ** temporary table. So set the SrcList_item.isPopulated flag to prevent |
|
4162 ** this subquery from being evaluated again and to force the use of |
|
4163 ** the temporary table. |
|
4164 */ |
|
4165 if( pParent ){ |
|
4166 assert( pParent->pSrc->nSrc>parentTab ); |
|
4167 assert( pParent->pSrc->a[parentTab].pSelect==p ); |
|
4168 pParent->pSrc->a[parentTab].isPopulated = 1; |
|
4169 } |
|
4170 #endif |
|
4171 |
|
4172 /* Jump here to skip this query |
|
4173 */ |
|
4174 sqlite3VdbeResolveLabel(v, iEnd); |
|
4175 |
|
4176 /* The SELECT was successfully coded. Set the return code to 0 |
|
4177 ** to indicate no errors. |
|
4178 */ |
|
4179 rc = 0; |
|
4180 |
|
4181 /* Control jumps to here if an error is encountered above, or upon |
|
4182 ** successful coding of the SELECT. |
|
4183 */ |
|
4184 select_end: |
|
4185 |
|
4186 /* Identify column names if we will be using them in a callback. This |
|
4187 ** step is skipped if the output is going to some other destination. |
|
4188 */ |
|
4189 if( rc==SQLITE_OK && pDest->eDest==SRT_Callback ){ |
|
4190 generateColumnNames(pParse, pTabList, pEList); |
|
4191 } |
|
4192 |
|
4193 sqlite3DbFree(db, sAggInfo.aCol); |
|
4194 sqlite3DbFree(db, sAggInfo.aFunc); |
|
4195 return rc; |
|
4196 } |
|
4197 |
|
4198 #if defined(SQLITE_DEBUG) |
|
4199 /* |
|
4200 ******************************************************************************* |
|
4201 ** The following code is used for testing and debugging only. The code |
|
4202 ** that follows does not appear in normal builds. |
|
4203 ** |
|
4204 ** These routines are used to print out the content of all or part of a |
|
4205 ** parse structures such as Select or Expr. Such printouts are useful |
|
4206 ** for helping to understand what is happening inside the code generator |
|
4207 ** during the execution of complex SELECT statements. |
|
4208 ** |
|
4209 ** These routine are not called anywhere from within the normal |
|
4210 ** code base. Then are intended to be called from within the debugger |
|
4211 ** or from temporary "printf" statements inserted for debugging. |
|
4212 */ |
|
4213 void sqlite3PrintExpr(Expr *p){ |
|
4214 if( p->token.z && p->token.n>0 ){ |
|
4215 sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z); |
|
4216 }else{ |
|
4217 sqlite3DebugPrintf("(%d", p->op); |
|
4218 } |
|
4219 if( p->pLeft ){ |
|
4220 sqlite3DebugPrintf(" "); |
|
4221 sqlite3PrintExpr(p->pLeft); |
|
4222 } |
|
4223 if( p->pRight ){ |
|
4224 sqlite3DebugPrintf(" "); |
|
4225 sqlite3PrintExpr(p->pRight); |
|
4226 } |
|
4227 sqlite3DebugPrintf(")"); |
|
4228 } |
|
4229 void sqlite3PrintExprList(ExprList *pList){ |
|
4230 int i; |
|
4231 for(i=0; i<pList->nExpr; i++){ |
|
4232 sqlite3PrintExpr(pList->a[i].pExpr); |
|
4233 if( i<pList->nExpr-1 ){ |
|
4234 sqlite3DebugPrintf(", "); |
|
4235 } |
|
4236 } |
|
4237 } |
|
4238 void sqlite3PrintSelect(Select *p, int indent){ |
|
4239 sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p); |
|
4240 sqlite3PrintExprList(p->pEList); |
|
4241 sqlite3DebugPrintf("\n"); |
|
4242 if( p->pSrc ){ |
|
4243 char *zPrefix; |
|
4244 int i; |
|
4245 zPrefix = "FROM"; |
|
4246 for(i=0; i<p->pSrc->nSrc; i++){ |
|
4247 struct SrcList_item *pItem = &p->pSrc->a[i]; |
|
4248 sqlite3DebugPrintf("%*s ", indent+6, zPrefix); |
|
4249 zPrefix = ""; |
|
4250 if( pItem->pSelect ){ |
|
4251 sqlite3DebugPrintf("(\n"); |
|
4252 sqlite3PrintSelect(pItem->pSelect, indent+10); |
|
4253 sqlite3DebugPrintf("%*s)", indent+8, ""); |
|
4254 }else if( pItem->zName ){ |
|
4255 sqlite3DebugPrintf("%s", pItem->zName); |
|
4256 } |
|
4257 if( pItem->pTab ){ |
|
4258 sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName); |
|
4259 } |
|
4260 if( pItem->zAlias ){ |
|
4261 sqlite3DebugPrintf(" AS %s", pItem->zAlias); |
|
4262 } |
|
4263 if( i<p->pSrc->nSrc-1 ){ |
|
4264 sqlite3DebugPrintf(","); |
|
4265 } |
|
4266 sqlite3DebugPrintf("\n"); |
|
4267 } |
|
4268 } |
|
4269 if( p->pWhere ){ |
|
4270 sqlite3DebugPrintf("%*s WHERE ", indent, ""); |
|
4271 sqlite3PrintExpr(p->pWhere); |
|
4272 sqlite3DebugPrintf("\n"); |
|
4273 } |
|
4274 if( p->pGroupBy ){ |
|
4275 sqlite3DebugPrintf("%*s GROUP BY ", indent, ""); |
|
4276 sqlite3PrintExprList(p->pGroupBy); |
|
4277 sqlite3DebugPrintf("\n"); |
|
4278 } |
|
4279 if( p->pHaving ){ |
|
4280 sqlite3DebugPrintf("%*s HAVING ", indent, ""); |
|
4281 sqlite3PrintExpr(p->pHaving); |
|
4282 sqlite3DebugPrintf("\n"); |
|
4283 } |
|
4284 if( p->pOrderBy ){ |
|
4285 sqlite3DebugPrintf("%*s ORDER BY ", indent, ""); |
|
4286 sqlite3PrintExprList(p->pOrderBy); |
|
4287 sqlite3DebugPrintf("\n"); |
|
4288 } |
|
4289 } |
|
4290 /* End of the structure debug printing code |
|
4291 *****************************************************************************/ |
|
4292 #endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ |