|
1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** Utility functions used throughout sqlite. |
|
13 ** |
|
14 ** This file contains functions for allocating memory, comparing |
|
15 ** strings, and stuff like that. |
|
16 ** |
|
17 ** $Id: util.c,v 1.241 2008/07/28 19:34:54 drh Exp $ |
|
18 */ |
|
19 #include "sqliteInt.h" |
|
20 #include <stdarg.h> |
|
21 #include <ctype.h> |
|
22 |
|
23 |
|
24 /* |
|
25 ** Return true if the floating point value is Not a Number (NaN). |
|
26 */ |
|
27 int sqlite3IsNaN(double x){ |
|
28 /* This NaN test sometimes fails if compiled on GCC with -ffast-math. |
|
29 ** On the other hand, the use of -ffast-math comes with the following |
|
30 ** warning: |
|
31 ** |
|
32 ** This option [-ffast-math] should never be turned on by any |
|
33 ** -O option since it can result in incorrect output for programs |
|
34 ** which depend on an exact implementation of IEEE or ISO |
|
35 ** rules/specifications for math functions. |
|
36 ** |
|
37 ** Under MSVC, this NaN test may fail if compiled with a floating- |
|
38 ** point precision mode other than /fp:precise. From the MSDN |
|
39 ** documentation: |
|
40 ** |
|
41 ** The compiler [with /fp:precise] will properly handle comparisons |
|
42 ** involving NaN. For example, x != x evaluates to true if x is NaN |
|
43 ** ... |
|
44 */ |
|
45 #ifdef __FAST_MATH__ |
|
46 # error SQLite will not work correctly with the -ffast-math option of GCC. |
|
47 #endif |
|
48 volatile double y = x; |
|
49 volatile double z = y; |
|
50 return y!=z; |
|
51 } |
|
52 |
|
53 /* |
|
54 ** Return the length of a string, except do not allow the string length |
|
55 ** to exceed the SQLITE_LIMIT_LENGTH setting. |
|
56 */ |
|
57 int sqlite3Strlen(sqlite3 *db, const char *z){ |
|
58 const char *z2 = z; |
|
59 int len; |
|
60 size_t x; |
|
61 while( *z2 ){ z2++; } |
|
62 x = z2 - z; |
|
63 len = 0x7fffffff & x; |
|
64 if( len!=x || len > db->aLimit[SQLITE_LIMIT_LENGTH] ){ |
|
65 return db->aLimit[SQLITE_LIMIT_LENGTH]; |
|
66 }else{ |
|
67 return len; |
|
68 } |
|
69 } |
|
70 |
|
71 /* |
|
72 ** Set the most recent error code and error string for the sqlite |
|
73 ** handle "db". The error code is set to "err_code". |
|
74 ** |
|
75 ** If it is not NULL, string zFormat specifies the format of the |
|
76 ** error string in the style of the printf functions: The following |
|
77 ** format characters are allowed: |
|
78 ** |
|
79 ** %s Insert a string |
|
80 ** %z A string that should be freed after use |
|
81 ** %d Insert an integer |
|
82 ** %T Insert a token |
|
83 ** %S Insert the first element of a SrcList |
|
84 ** |
|
85 ** zFormat and any string tokens that follow it are assumed to be |
|
86 ** encoded in UTF-8. |
|
87 ** |
|
88 ** To clear the most recent error for sqlite handle "db", sqlite3Error |
|
89 ** should be called with err_code set to SQLITE_OK and zFormat set |
|
90 ** to NULL. |
|
91 */ |
|
92 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ |
|
93 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ |
|
94 db->errCode = err_code; |
|
95 if( zFormat ){ |
|
96 char *z; |
|
97 va_list ap; |
|
98 va_start(ap, zFormat); |
|
99 z = sqlite3VMPrintf(db, zFormat, ap); |
|
100 va_end(ap); |
|
101 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); |
|
102 }else{ |
|
103 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); |
|
104 } |
|
105 } |
|
106 } |
|
107 |
|
108 /* |
|
109 ** Add an error message to pParse->zErrMsg and increment pParse->nErr. |
|
110 ** The following formatting characters are allowed: |
|
111 ** |
|
112 ** %s Insert a string |
|
113 ** %z A string that should be freed after use |
|
114 ** %d Insert an integer |
|
115 ** %T Insert a token |
|
116 ** %S Insert the first element of a SrcList |
|
117 ** |
|
118 ** This function should be used to report any error that occurs whilst |
|
119 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The |
|
120 ** last thing the sqlite3_prepare() function does is copy the error |
|
121 ** stored by this function into the database handle using sqlite3Error(). |
|
122 ** Function sqlite3Error() should be used during statement execution |
|
123 ** (sqlite3_step() etc.). |
|
124 */ |
|
125 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ |
|
126 va_list ap; |
|
127 sqlite3 *db = pParse->db; |
|
128 pParse->nErr++; |
|
129 sqlite3DbFree(db, pParse->zErrMsg); |
|
130 va_start(ap, zFormat); |
|
131 pParse->zErrMsg = sqlite3VMPrintf(db, zFormat, ap); |
|
132 va_end(ap); |
|
133 if( pParse->rc==SQLITE_OK ){ |
|
134 pParse->rc = SQLITE_ERROR; |
|
135 } |
|
136 } |
|
137 |
|
138 /* |
|
139 ** Clear the error message in pParse, if any |
|
140 */ |
|
141 void sqlite3ErrorClear(Parse *pParse){ |
|
142 sqlite3DbFree(pParse->db, pParse->zErrMsg); |
|
143 pParse->zErrMsg = 0; |
|
144 pParse->nErr = 0; |
|
145 } |
|
146 |
|
147 /* |
|
148 ** Convert an SQL-style quoted string into a normal string by removing |
|
149 ** the quote characters. The conversion is done in-place. If the |
|
150 ** input does not begin with a quote character, then this routine |
|
151 ** is a no-op. |
|
152 ** |
|
153 ** 2002-Feb-14: This routine is extended to remove MS-Access style |
|
154 ** brackets from around identifers. For example: "[a-b-c]" becomes |
|
155 ** "a-b-c". |
|
156 */ |
|
157 void sqlite3Dequote(char *z){ |
|
158 int quote; |
|
159 int i, j; |
|
160 if( z==0 ) return; |
|
161 quote = z[0]; |
|
162 switch( quote ){ |
|
163 case '\'': break; |
|
164 case '"': break; |
|
165 case '`': break; /* For MySQL compatibility */ |
|
166 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ |
|
167 default: return; |
|
168 } |
|
169 for(i=1, j=0; z[i]; i++){ |
|
170 if( z[i]==quote ){ |
|
171 if( z[i+1]==quote ){ |
|
172 z[j++] = quote; |
|
173 i++; |
|
174 }else{ |
|
175 z[j++] = 0; |
|
176 break; |
|
177 } |
|
178 }else{ |
|
179 z[j++] = z[i]; |
|
180 } |
|
181 } |
|
182 } |
|
183 |
|
184 /* Convenient short-hand */ |
|
185 #define UpperToLower sqlite3UpperToLower |
|
186 |
|
187 /* |
|
188 ** Some systems have stricmp(). Others have strcasecmp(). Because |
|
189 ** there is no consistency, we will define our own. |
|
190 */ |
|
191 int sqlite3StrICmp(const char *zLeft, const char *zRight){ |
|
192 register unsigned char *a, *b; |
|
193 a = (unsigned char *)zLeft; |
|
194 b = (unsigned char *)zRight; |
|
195 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
|
196 return UpperToLower[*a] - UpperToLower[*b]; |
|
197 } |
|
198 int sqlite3StrNICmp(const char *zLeft, const char *zRight, int N){ |
|
199 register unsigned char *a, *b; |
|
200 a = (unsigned char *)zLeft; |
|
201 b = (unsigned char *)zRight; |
|
202 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
|
203 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; |
|
204 } |
|
205 |
|
206 /* |
|
207 ** Return TRUE if z is a pure numeric string. Return FALSE if the |
|
208 ** string contains any character which is not part of a number. If |
|
209 ** the string is numeric and contains the '.' character, set *realnum |
|
210 ** to TRUE (otherwise FALSE). |
|
211 ** |
|
212 ** An empty string is considered non-numeric. |
|
213 */ |
|
214 int sqlite3IsNumber(const char *z, int *realnum, u8 enc){ |
|
215 int incr = (enc==SQLITE_UTF8?1:2); |
|
216 if( enc==SQLITE_UTF16BE ) z++; |
|
217 if( *z=='-' || *z=='+' ) z += incr; |
|
218 if( !isdigit(*(u8*)z) ){ |
|
219 return 0; |
|
220 } |
|
221 z += incr; |
|
222 if( realnum ) *realnum = 0; |
|
223 while( isdigit(*(u8*)z) ){ z += incr; } |
|
224 if( *z=='.' ){ |
|
225 z += incr; |
|
226 if( !isdigit(*(u8*)z) ) return 0; |
|
227 while( isdigit(*(u8*)z) ){ z += incr; } |
|
228 if( realnum ) *realnum = 1; |
|
229 } |
|
230 if( *z=='e' || *z=='E' ){ |
|
231 z += incr; |
|
232 if( *z=='+' || *z=='-' ) z += incr; |
|
233 if( !isdigit(*(u8*)z) ) return 0; |
|
234 while( isdigit(*(u8*)z) ){ z += incr; } |
|
235 if( realnum ) *realnum = 1; |
|
236 } |
|
237 return *z==0; |
|
238 } |
|
239 |
|
240 /* |
|
241 ** The string z[] is an ascii representation of a real number. |
|
242 ** Convert this string to a double. |
|
243 ** |
|
244 ** This routine assumes that z[] really is a valid number. If it |
|
245 ** is not, the result is undefined. |
|
246 ** |
|
247 ** This routine is used instead of the library atof() function because |
|
248 ** the library atof() might want to use "," as the decimal point instead |
|
249 ** of "." depending on how locale is set. But that would cause problems |
|
250 ** for SQL. So this routine always uses "." regardless of locale. |
|
251 */ |
|
252 int sqlite3AtoF(const char *z, double *pResult){ |
|
253 #ifndef SQLITE_OMIT_FLOATING_POINT |
|
254 int sign = 1; |
|
255 const char *zBegin = z; |
|
256 LONGDOUBLE_TYPE v1 = 0.0; |
|
257 int nSignificant = 0; |
|
258 while( isspace(*(u8*)z) ) z++; |
|
259 if( *z=='-' ){ |
|
260 sign = -1; |
|
261 z++; |
|
262 }else if( *z=='+' ){ |
|
263 z++; |
|
264 } |
|
265 while( z[0]=='0' ){ |
|
266 z++; |
|
267 } |
|
268 while( isdigit(*(u8*)z) ){ |
|
269 v1 = v1*10.0 + (*z - '0'); |
|
270 z++; |
|
271 nSignificant++; |
|
272 } |
|
273 if( *z=='.' ){ |
|
274 LONGDOUBLE_TYPE divisor = 1.0; |
|
275 z++; |
|
276 if( nSignificant==0 ){ |
|
277 while( z[0]=='0' ){ |
|
278 divisor *= 10.0; |
|
279 z++; |
|
280 } |
|
281 } |
|
282 while( isdigit(*(u8*)z) ){ |
|
283 if( nSignificant<18 ){ |
|
284 v1 = v1*10.0 + (*z - '0'); |
|
285 divisor *= 10.0; |
|
286 nSignificant++; |
|
287 } |
|
288 z++; |
|
289 } |
|
290 v1 /= divisor; |
|
291 } |
|
292 if( *z=='e' || *z=='E' ){ |
|
293 int esign = 1; |
|
294 int eval = 0; |
|
295 LONGDOUBLE_TYPE scale = 1.0; |
|
296 z++; |
|
297 if( *z=='-' ){ |
|
298 esign = -1; |
|
299 z++; |
|
300 }else if( *z=='+' ){ |
|
301 z++; |
|
302 } |
|
303 while( isdigit(*(u8*)z) ){ |
|
304 eval = eval*10 + *z - '0'; |
|
305 z++; |
|
306 } |
|
307 while( eval>=64 ){ scale *= 1.0e+64; eval -= 64; } |
|
308 while( eval>=16 ){ scale *= 1.0e+16; eval -= 16; } |
|
309 while( eval>=4 ){ scale *= 1.0e+4; eval -= 4; } |
|
310 while( eval>=1 ){ scale *= 1.0e+1; eval -= 1; } |
|
311 if( esign<0 ){ |
|
312 v1 /= scale; |
|
313 }else{ |
|
314 v1 *= scale; |
|
315 } |
|
316 } |
|
317 *pResult = sign<0 ? -v1 : v1; |
|
318 return z - zBegin; |
|
319 #else |
|
320 return sqlite3Atoi64(z, pResult); |
|
321 #endif /* SQLITE_OMIT_FLOATING_POINT */ |
|
322 } |
|
323 |
|
324 /* |
|
325 ** Compare the 19-character string zNum against the text representation |
|
326 ** value 2^63: 9223372036854775808. Return negative, zero, or positive |
|
327 ** if zNum is less than, equal to, or greater than the string. |
|
328 ** |
|
329 ** Unlike memcmp() this routine is guaranteed to return the difference |
|
330 ** in the values of the last digit if the only difference is in the |
|
331 ** last digit. So, for example, |
|
332 ** |
|
333 ** compare2pow63("9223372036854775800") |
|
334 ** |
|
335 ** will return -8. |
|
336 */ |
|
337 static int compare2pow63(const char *zNum){ |
|
338 int c; |
|
339 c = memcmp(zNum,"922337203685477580",18); |
|
340 if( c==0 ){ |
|
341 c = zNum[18] - '8'; |
|
342 } |
|
343 return c; |
|
344 } |
|
345 |
|
346 |
|
347 /* |
|
348 ** Return TRUE if zNum is a 64-bit signed integer and write |
|
349 ** the value of the integer into *pNum. If zNum is not an integer |
|
350 ** or is an integer that is too large to be expressed with 64 bits, |
|
351 ** then return false. |
|
352 ** |
|
353 ** When this routine was originally written it dealt with only |
|
354 ** 32-bit numbers. At that time, it was much faster than the |
|
355 ** atoi() library routine in RedHat 7.2. |
|
356 */ |
|
357 int sqlite3Atoi64(const char *zNum, i64 *pNum){ |
|
358 i64 v = 0; |
|
359 int neg; |
|
360 int i, c; |
|
361 const char *zStart; |
|
362 while( isspace(*(u8*)zNum) ) zNum++; |
|
363 if( *zNum=='-' ){ |
|
364 neg = 1; |
|
365 zNum++; |
|
366 }else if( *zNum=='+' ){ |
|
367 neg = 0; |
|
368 zNum++; |
|
369 }else{ |
|
370 neg = 0; |
|
371 } |
|
372 zStart = zNum; |
|
373 while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */ |
|
374 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){ |
|
375 v = v*10 + c - '0'; |
|
376 } |
|
377 *pNum = neg ? -v : v; |
|
378 if( c!=0 || (i==0 && zStart==zNum) || i>19 ){ |
|
379 /* zNum is empty or contains non-numeric text or is longer |
|
380 ** than 19 digits (thus guaranting that it is too large) */ |
|
381 return 0; |
|
382 }else if( i<19 ){ |
|
383 /* Less than 19 digits, so we know that it fits in 64 bits */ |
|
384 return 1; |
|
385 }else{ |
|
386 /* 19-digit numbers must be no larger than 9223372036854775807 if positive |
|
387 ** or 9223372036854775808 if negative. Note that 9223372036854665808 |
|
388 ** is 2^63. */ |
|
389 return compare2pow63(zNum)<neg; |
|
390 } |
|
391 } |
|
392 |
|
393 /* |
|
394 ** The string zNum represents an integer. There might be some other |
|
395 ** information following the integer too, but that part is ignored. |
|
396 ** If the integer that the prefix of zNum represents will fit in a |
|
397 ** 64-bit signed integer, return TRUE. Otherwise return FALSE. |
|
398 ** |
|
399 ** This routine returns FALSE for the string -9223372036854775808 even that |
|
400 ** that number will, in theory fit in a 64-bit integer. Positive |
|
401 ** 9223373036854775808 will not fit in 64 bits. So it seems safer to return |
|
402 ** false. |
|
403 */ |
|
404 int sqlite3FitsIn64Bits(const char *zNum, int negFlag){ |
|
405 int i, c; |
|
406 int neg = 0; |
|
407 if( *zNum=='-' ){ |
|
408 neg = 1; |
|
409 zNum++; |
|
410 }else if( *zNum=='+' ){ |
|
411 zNum++; |
|
412 } |
|
413 if( negFlag ) neg = 1-neg; |
|
414 while( *zNum=='0' ){ |
|
415 zNum++; /* Skip leading zeros. Ticket #2454 */ |
|
416 } |
|
417 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){} |
|
418 if( i<19 ){ |
|
419 /* Guaranteed to fit if less than 19 digits */ |
|
420 return 1; |
|
421 }else if( i>19 ){ |
|
422 /* Guaranteed to be too big if greater than 19 digits */ |
|
423 return 0; |
|
424 }else{ |
|
425 /* Compare against 2^63. */ |
|
426 return compare2pow63(zNum)<neg; |
|
427 } |
|
428 } |
|
429 |
|
430 /* |
|
431 ** If zNum represents an integer that will fit in 32-bits, then set |
|
432 ** *pValue to that integer and return true. Otherwise return false. |
|
433 ** |
|
434 ** Any non-numeric characters that following zNum are ignored. |
|
435 ** This is different from sqlite3Atoi64() which requires the |
|
436 ** input number to be zero-terminated. |
|
437 */ |
|
438 int sqlite3GetInt32(const char *zNum, int *pValue){ |
|
439 sqlite_int64 v = 0; |
|
440 int i, c; |
|
441 int neg = 0; |
|
442 if( zNum[0]=='-' ){ |
|
443 neg = 1; |
|
444 zNum++; |
|
445 }else if( zNum[0]=='+' ){ |
|
446 zNum++; |
|
447 } |
|
448 while( zNum[0]=='0' ) zNum++; |
|
449 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ |
|
450 v = v*10 + c; |
|
451 } |
|
452 |
|
453 /* The longest decimal representation of a 32 bit integer is 10 digits: |
|
454 ** |
|
455 ** 1234567890 |
|
456 ** 2^31 -> 2147483648 |
|
457 */ |
|
458 if( i>10 ){ |
|
459 return 0; |
|
460 } |
|
461 if( v-neg>2147483647 ){ |
|
462 return 0; |
|
463 } |
|
464 if( neg ){ |
|
465 v = -v; |
|
466 } |
|
467 *pValue = (int)v; |
|
468 return 1; |
|
469 } |
|
470 |
|
471 /* |
|
472 ** The variable-length integer encoding is as follows: |
|
473 ** |
|
474 ** KEY: |
|
475 ** A = 0xxxxxxx 7 bits of data and one flag bit |
|
476 ** B = 1xxxxxxx 7 bits of data and one flag bit |
|
477 ** C = xxxxxxxx 8 bits of data |
|
478 ** |
|
479 ** 7 bits - A |
|
480 ** 14 bits - BA |
|
481 ** 21 bits - BBA |
|
482 ** 28 bits - BBBA |
|
483 ** 35 bits - BBBBA |
|
484 ** 42 bits - BBBBBA |
|
485 ** 49 bits - BBBBBBA |
|
486 ** 56 bits - BBBBBBBA |
|
487 ** 64 bits - BBBBBBBBC |
|
488 */ |
|
489 |
|
490 /* |
|
491 ** Write a 64-bit variable-length integer to memory starting at p[0]. |
|
492 ** The length of data write will be between 1 and 9 bytes. The number |
|
493 ** of bytes written is returned. |
|
494 ** |
|
495 ** A variable-length integer consists of the lower 7 bits of each byte |
|
496 ** for all bytes that have the 8th bit set and one byte with the 8th |
|
497 ** bit clear. Except, if we get to the 9th byte, it stores the full |
|
498 ** 8 bits and is the last byte. |
|
499 */ |
|
500 int sqlite3PutVarint(unsigned char *p, u64 v){ |
|
501 int i, j, n; |
|
502 u8 buf[10]; |
|
503 if( v & (((u64)0xff000000)<<32) ){ |
|
504 p[8] = v; |
|
505 v >>= 8; |
|
506 for(i=7; i>=0; i--){ |
|
507 p[i] = (v & 0x7f) | 0x80; |
|
508 v >>= 7; |
|
509 } |
|
510 return 9; |
|
511 } |
|
512 n = 0; |
|
513 do{ |
|
514 buf[n++] = (v & 0x7f) | 0x80; |
|
515 v >>= 7; |
|
516 }while( v!=0 ); |
|
517 buf[0] &= 0x7f; |
|
518 assert( n<=9 ); |
|
519 for(i=0, j=n-1; j>=0; j--, i++){ |
|
520 p[i] = buf[j]; |
|
521 } |
|
522 return n; |
|
523 } |
|
524 |
|
525 /* |
|
526 ** This routine is a faster version of sqlite3PutVarint() that only |
|
527 ** works for 32-bit positive integers and which is optimized for |
|
528 ** the common case of small integers. A MACRO version, putVarint32, |
|
529 ** is provided which inlines the single-byte case. All code should use |
|
530 ** the MACRO version as this function assumes the single-byte case has |
|
531 ** already been handled. |
|
532 */ |
|
533 int sqlite3PutVarint32(unsigned char *p, u32 v){ |
|
534 #ifndef putVarint32 |
|
535 if( (v & ~0x7f)==0 ){ |
|
536 p[0] = v; |
|
537 return 1; |
|
538 } |
|
539 #endif |
|
540 if( (v & ~0x3fff)==0 ){ |
|
541 p[0] = (v>>7) | 0x80; |
|
542 p[1] = v & 0x7f; |
|
543 return 2; |
|
544 } |
|
545 return sqlite3PutVarint(p, v); |
|
546 } |
|
547 |
|
548 /* |
|
549 ** Read a 64-bit variable-length integer from memory starting at p[0]. |
|
550 ** Return the number of bytes read. The value is stored in *v. |
|
551 */ |
|
552 int sqlite3GetVarint(const unsigned char *p, u64 *v){ |
|
553 u32 a,b,s; |
|
554 |
|
555 a = *p; |
|
556 /* a: p0 (unmasked) */ |
|
557 if (!(a&0x80)) |
|
558 { |
|
559 *v = a; |
|
560 return 1; |
|
561 } |
|
562 |
|
563 p++; |
|
564 b = *p; |
|
565 /* b: p1 (unmasked) */ |
|
566 if (!(b&0x80)) |
|
567 { |
|
568 a &= 0x7f; |
|
569 a = a<<7; |
|
570 a |= b; |
|
571 *v = a; |
|
572 return 2; |
|
573 } |
|
574 |
|
575 p++; |
|
576 a = a<<14; |
|
577 a |= *p; |
|
578 /* a: p0<<14 | p2 (unmasked) */ |
|
579 if (!(a&0x80)) |
|
580 { |
|
581 a &= (0x7f<<14)|(0x7f); |
|
582 b &= 0x7f; |
|
583 b = b<<7; |
|
584 a |= b; |
|
585 *v = a; |
|
586 return 3; |
|
587 } |
|
588 |
|
589 /* CSE1 from below */ |
|
590 a &= (0x7f<<14)|(0x7f); |
|
591 p++; |
|
592 b = b<<14; |
|
593 b |= *p; |
|
594 /* b: p1<<14 | p3 (unmasked) */ |
|
595 if (!(b&0x80)) |
|
596 { |
|
597 b &= (0x7f<<14)|(0x7f); |
|
598 /* moved CSE1 up */ |
|
599 /* a &= (0x7f<<14)|(0x7f); */ |
|
600 a = a<<7; |
|
601 a |= b; |
|
602 *v = a; |
|
603 return 4; |
|
604 } |
|
605 |
|
606 /* a: p0<<14 | p2 (masked) */ |
|
607 /* b: p1<<14 | p3 (unmasked) */ |
|
608 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
|
609 /* moved CSE1 up */ |
|
610 /* a &= (0x7f<<14)|(0x7f); */ |
|
611 b &= (0x7f<<14)|(0x7f); |
|
612 s = a; |
|
613 /* s: p0<<14 | p2 (masked) */ |
|
614 |
|
615 p++; |
|
616 a = a<<14; |
|
617 a |= *p; |
|
618 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
|
619 if (!(a&0x80)) |
|
620 { |
|
621 /* we can skip these cause they were (effectively) done above in calc'ing s */ |
|
622 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
|
623 /* b &= (0x7f<<14)|(0x7f); */ |
|
624 b = b<<7; |
|
625 a |= b; |
|
626 s = s>>18; |
|
627 *v = ((u64)s)<<32 | a; |
|
628 return 5; |
|
629 } |
|
630 |
|
631 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
|
632 s = s<<7; |
|
633 s |= b; |
|
634 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
|
635 |
|
636 p++; |
|
637 b = b<<14; |
|
638 b |= *p; |
|
639 /* b: p1<<28 | p3<<14 | p5 (unmasked) */ |
|
640 if (!(b&0x80)) |
|
641 { |
|
642 /* we can skip this cause it was (effectively) done above in calc'ing s */ |
|
643 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
|
644 a &= (0x7f<<14)|(0x7f); |
|
645 a = a<<7; |
|
646 a |= b; |
|
647 s = s>>18; |
|
648 *v = ((u64)s)<<32 | a; |
|
649 return 6; |
|
650 } |
|
651 |
|
652 p++; |
|
653 a = a<<14; |
|
654 a |= *p; |
|
655 /* a: p2<<28 | p4<<14 | p6 (unmasked) */ |
|
656 if (!(a&0x80)) |
|
657 { |
|
658 a &= (0x7f<<28)|(0x7f<<14)|(0x7f); |
|
659 b &= (0x7f<<14)|(0x7f); |
|
660 b = b<<7; |
|
661 a |= b; |
|
662 s = s>>11; |
|
663 *v = ((u64)s)<<32 | a; |
|
664 return 7; |
|
665 } |
|
666 |
|
667 /* CSE2 from below */ |
|
668 a &= (0x7f<<14)|(0x7f); |
|
669 p++; |
|
670 b = b<<14; |
|
671 b |= *p; |
|
672 /* b: p3<<28 | p5<<14 | p7 (unmasked) */ |
|
673 if (!(b&0x80)) |
|
674 { |
|
675 b &= (0x7f<<28)|(0x7f<<14)|(0x7f); |
|
676 /* moved CSE2 up */ |
|
677 /* a &= (0x7f<<14)|(0x7f); */ |
|
678 a = a<<7; |
|
679 a |= b; |
|
680 s = s>>4; |
|
681 *v = ((u64)s)<<32 | a; |
|
682 return 8; |
|
683 } |
|
684 |
|
685 p++; |
|
686 a = a<<15; |
|
687 a |= *p; |
|
688 /* a: p4<<29 | p6<<15 | p8 (unmasked) */ |
|
689 |
|
690 /* moved CSE2 up */ |
|
691 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ |
|
692 b &= (0x7f<<14)|(0x7f); |
|
693 b = b<<8; |
|
694 a |= b; |
|
695 |
|
696 s = s<<4; |
|
697 b = p[-4]; |
|
698 b &= 0x7f; |
|
699 b = b>>3; |
|
700 s |= b; |
|
701 |
|
702 *v = ((u64)s)<<32 | a; |
|
703 |
|
704 return 9; |
|
705 } |
|
706 |
|
707 /* |
|
708 ** Read a 32-bit variable-length integer from memory starting at p[0]. |
|
709 ** Return the number of bytes read. The value is stored in *v. |
|
710 ** A MACRO version, getVarint32, is provided which inlines the |
|
711 ** single-byte case. All code should use the MACRO version as |
|
712 ** this function assumes the single-byte case has already been handled. |
|
713 */ |
|
714 int sqlite3GetVarint32(const unsigned char *p, u32 *v){ |
|
715 u32 a,b; |
|
716 |
|
717 a = *p; |
|
718 /* a: p0 (unmasked) */ |
|
719 #ifndef getVarint32 |
|
720 if (!(a&0x80)) |
|
721 { |
|
722 *v = a; |
|
723 return 1; |
|
724 } |
|
725 #endif |
|
726 |
|
727 p++; |
|
728 b = *p; |
|
729 /* b: p1 (unmasked) */ |
|
730 if (!(b&0x80)) |
|
731 { |
|
732 a &= 0x7f; |
|
733 a = a<<7; |
|
734 *v = a | b; |
|
735 return 2; |
|
736 } |
|
737 |
|
738 p++; |
|
739 a = a<<14; |
|
740 a |= *p; |
|
741 /* a: p0<<14 | p2 (unmasked) */ |
|
742 if (!(a&0x80)) |
|
743 { |
|
744 a &= (0x7f<<14)|(0x7f); |
|
745 b &= 0x7f; |
|
746 b = b<<7; |
|
747 *v = a | b; |
|
748 return 3; |
|
749 } |
|
750 |
|
751 p++; |
|
752 b = b<<14; |
|
753 b |= *p; |
|
754 /* b: p1<<14 | p3 (unmasked) */ |
|
755 if (!(b&0x80)) |
|
756 { |
|
757 b &= (0x7f<<14)|(0x7f); |
|
758 a &= (0x7f<<14)|(0x7f); |
|
759 a = a<<7; |
|
760 *v = a | b; |
|
761 return 4; |
|
762 } |
|
763 |
|
764 p++; |
|
765 a = a<<14; |
|
766 a |= *p; |
|
767 /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
|
768 if (!(a&0x80)) |
|
769 { |
|
770 a &= (0x7f<<28)|(0x7f<<14)|(0x7f); |
|
771 b &= (0x7f<<28)|(0x7f<<14)|(0x7f); |
|
772 b = b<<7; |
|
773 *v = a | b; |
|
774 return 5; |
|
775 } |
|
776 |
|
777 /* We can only reach this point when reading a corrupt database |
|
778 ** file. In that case we are not in any hurry. Use the (relatively |
|
779 ** slow) general-purpose sqlite3GetVarint() routine to extract the |
|
780 ** value. */ |
|
781 { |
|
782 u64 v64; |
|
783 int n; |
|
784 |
|
785 p -= 4; |
|
786 n = sqlite3GetVarint(p, &v64); |
|
787 assert( n>5 && n<=9 ); |
|
788 *v = (u32)v64; |
|
789 return n; |
|
790 } |
|
791 } |
|
792 |
|
793 /* |
|
794 ** Return the number of bytes that will be needed to store the given |
|
795 ** 64-bit integer. |
|
796 */ |
|
797 int sqlite3VarintLen(u64 v){ |
|
798 int i = 0; |
|
799 do{ |
|
800 i++; |
|
801 v >>= 7; |
|
802 }while( v!=0 && i<9 ); |
|
803 return i; |
|
804 } |
|
805 |
|
806 |
|
807 /* |
|
808 ** Read or write a four-byte big-endian integer value. |
|
809 */ |
|
810 u32 sqlite3Get4byte(const u8 *p){ |
|
811 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; |
|
812 } |
|
813 void sqlite3Put4byte(unsigned char *p, u32 v){ |
|
814 p[0] = v>>24; |
|
815 p[1] = v>>16; |
|
816 p[2] = v>>8; |
|
817 p[3] = v; |
|
818 } |
|
819 |
|
820 |
|
821 |
|
822 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) |
|
823 /* |
|
824 ** Translate a single byte of Hex into an integer. |
|
825 ** This routinen only works if h really is a valid hexadecimal |
|
826 ** character: 0..9a..fA..F |
|
827 */ |
|
828 static int hexToInt(int h){ |
|
829 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); |
|
830 #ifdef SQLITE_ASCII |
|
831 h += 9*(1&(h>>6)); |
|
832 #endif |
|
833 #ifdef SQLITE_EBCDIC |
|
834 h += 9*(1&~(h>>4)); |
|
835 #endif |
|
836 return h & 0xf; |
|
837 } |
|
838 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ |
|
839 |
|
840 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) |
|
841 /* |
|
842 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary |
|
843 ** value. Return a pointer to its binary value. Space to hold the |
|
844 ** binary value has been obtained from malloc and must be freed by |
|
845 ** the calling routine. |
|
846 */ |
|
847 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ |
|
848 char *zBlob; |
|
849 int i; |
|
850 |
|
851 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); |
|
852 n--; |
|
853 if( zBlob ){ |
|
854 for(i=0; i<n; i+=2){ |
|
855 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); |
|
856 } |
|
857 zBlob[i/2] = 0; |
|
858 } |
|
859 return zBlob; |
|
860 } |
|
861 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ |
|
862 |
|
863 |
|
864 /* |
|
865 ** Change the sqlite.magic from SQLITE_MAGIC_OPEN to SQLITE_MAGIC_BUSY. |
|
866 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_OPEN |
|
867 ** when this routine is called. |
|
868 ** |
|
869 ** This routine is called when entering an SQLite API. The SQLITE_MAGIC_OPEN |
|
870 ** value indicates that the database connection passed into the API is |
|
871 ** open and is not being used by another thread. By changing the value |
|
872 ** to SQLITE_MAGIC_BUSY we indicate that the connection is in use. |
|
873 ** sqlite3SafetyOff() below will change the value back to SQLITE_MAGIC_OPEN |
|
874 ** when the API exits. |
|
875 ** |
|
876 ** This routine is a attempt to detect if two threads use the |
|
877 ** same sqlite* pointer at the same time. There is a race |
|
878 ** condition so it is possible that the error is not detected. |
|
879 ** But usually the problem will be seen. The result will be an |
|
880 ** error which can be used to debug the application that is |
|
881 ** using SQLite incorrectly. |
|
882 ** |
|
883 ** Ticket #202: If db->magic is not a valid open value, take care not |
|
884 ** to modify the db structure at all. It could be that db is a stale |
|
885 ** pointer. In other words, it could be that there has been a prior |
|
886 ** call to sqlite3_close(db) and db has been deallocated. And we do |
|
887 ** not want to write into deallocated memory. |
|
888 */ |
|
889 #ifdef SQLITE_DEBUG |
|
890 int sqlite3SafetyOn(sqlite3 *db){ |
|
891 if( db->magic==SQLITE_MAGIC_OPEN ){ |
|
892 db->magic = SQLITE_MAGIC_BUSY; |
|
893 assert( sqlite3_mutex_held(db->mutex) ); |
|
894 return 0; |
|
895 }else if( db->magic==SQLITE_MAGIC_BUSY ){ |
|
896 db->magic = SQLITE_MAGIC_ERROR; |
|
897 db->u1.isInterrupted = 1; |
|
898 } |
|
899 return 1; |
|
900 } |
|
901 #endif |
|
902 |
|
903 /* |
|
904 ** Change the magic from SQLITE_MAGIC_BUSY to SQLITE_MAGIC_OPEN. |
|
905 ** Return an error (non-zero) if the magic was not SQLITE_MAGIC_BUSY |
|
906 ** when this routine is called. |
|
907 */ |
|
908 #ifdef SQLITE_DEBUG |
|
909 int sqlite3SafetyOff(sqlite3 *db){ |
|
910 if( db->magic==SQLITE_MAGIC_BUSY ){ |
|
911 db->magic = SQLITE_MAGIC_OPEN; |
|
912 assert( sqlite3_mutex_held(db->mutex) ); |
|
913 return 0; |
|
914 }else{ |
|
915 db->magic = SQLITE_MAGIC_ERROR; |
|
916 db->u1.isInterrupted = 1; |
|
917 return 1; |
|
918 } |
|
919 } |
|
920 #endif |
|
921 |
|
922 /* |
|
923 ** Check to make sure we have a valid db pointer. This test is not |
|
924 ** foolproof but it does provide some measure of protection against |
|
925 ** misuse of the interface such as passing in db pointers that are |
|
926 ** NULL or which have been previously closed. If this routine returns |
|
927 ** 1 it means that the db pointer is valid and 0 if it should not be |
|
928 ** dereferenced for any reason. The calling function should invoke |
|
929 ** SQLITE_MISUSE immediately. |
|
930 ** |
|
931 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for |
|
932 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to |
|
933 ** open properly and is not fit for general use but which can be |
|
934 ** used as an argument to sqlite3_errmsg() or sqlite3_close(). |
|
935 */ |
|
936 int sqlite3SafetyCheckOk(sqlite3 *db){ |
|
937 int magic; |
|
938 if( db==0 ) return 0; |
|
939 magic = db->magic; |
|
940 if( magic!=SQLITE_MAGIC_OPEN && |
|
941 magic!=SQLITE_MAGIC_BUSY ) return 0; |
|
942 return 1; |
|
943 } |
|
944 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ |
|
945 int magic; |
|
946 if( db==0 ) return 0; |
|
947 magic = db->magic; |
|
948 if( magic!=SQLITE_MAGIC_SICK && |
|
949 magic!=SQLITE_MAGIC_OPEN && |
|
950 magic!=SQLITE_MAGIC_BUSY ) return 0; |
|
951 return 1; |
|
952 } |