|
1 /* |
|
2 ** 2004 May 26 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** |
|
13 ** This file contains code use to manipulate "Mem" structure. A "Mem" |
|
14 ** stores a single value in the VDBE. Mem is an opaque structure visible |
|
15 ** only within the VDBE. Interface routines refer to a Mem using the |
|
16 ** name sqlite_value |
|
17 ** |
|
18 ** $Id: vdbemem.c,v 1.121 2008/08/01 20:10:09 drh Exp $ |
|
19 */ |
|
20 #include "sqliteInt.h" |
|
21 #include <ctype.h> |
|
22 #include "vdbeInt.h" |
|
23 |
|
24 /* |
|
25 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*) |
|
26 ** P if required. |
|
27 */ |
|
28 #define expandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0) |
|
29 |
|
30 /* |
|
31 ** If pMem is an object with a valid string representation, this routine |
|
32 ** ensures the internal encoding for the string representation is |
|
33 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. |
|
34 ** |
|
35 ** If pMem is not a string object, or the encoding of the string |
|
36 ** representation is already stored using the requested encoding, then this |
|
37 ** routine is a no-op. |
|
38 ** |
|
39 ** SQLITE_OK is returned if the conversion is successful (or not required). |
|
40 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion |
|
41 ** between formats. |
|
42 */ |
|
43 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ |
|
44 int rc; |
|
45 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ |
|
46 return SQLITE_OK; |
|
47 } |
|
48 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
49 #ifdef SQLITE_OMIT_UTF16 |
|
50 return SQLITE_ERROR; |
|
51 #else |
|
52 |
|
53 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, |
|
54 ** then the encoding of the value may not have changed. |
|
55 */ |
|
56 rc = sqlite3VdbeMemTranslate(pMem, desiredEnc); |
|
57 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); |
|
58 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); |
|
59 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); |
|
60 return rc; |
|
61 #endif |
|
62 } |
|
63 |
|
64 /* |
|
65 ** Make sure pMem->z points to a writable allocation of at least |
|
66 ** n bytes. |
|
67 ** |
|
68 ** If the memory cell currently contains string or blob data |
|
69 ** and the third argument passed to this function is true, the |
|
70 ** current content of the cell is preserved. Otherwise, it may |
|
71 ** be discarded. |
|
72 ** |
|
73 ** This function sets the MEM_Dyn flag and clears any xDel callback. |
|
74 ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is |
|
75 ** not set, Mem.n is zeroed. |
|
76 */ |
|
77 int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){ |
|
78 assert( 1 >= |
|
79 ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) + |
|
80 (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) + |
|
81 ((pMem->flags&MEM_Ephem) ? 1 : 0) + |
|
82 ((pMem->flags&MEM_Static) ? 1 : 0) |
|
83 ); |
|
84 |
|
85 if( n<32 ) n = 32; |
|
86 if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){ |
|
87 if( preserve && pMem->z==pMem->zMalloc ){ |
|
88 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); |
|
89 if( !pMem->z ){ |
|
90 pMem->flags = MEM_Null; |
|
91 } |
|
92 preserve = 0; |
|
93 }else{ |
|
94 sqlite3DbFree(pMem->db, pMem->zMalloc); |
|
95 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); |
|
96 } |
|
97 } |
|
98 |
|
99 if( preserve && pMem->z && pMem->zMalloc && pMem->z!=pMem->zMalloc ){ |
|
100 memcpy(pMem->zMalloc, pMem->z, pMem->n); |
|
101 } |
|
102 if( pMem->flags&MEM_Dyn && pMem->xDel ){ |
|
103 pMem->xDel((void *)(pMem->z)); |
|
104 } |
|
105 |
|
106 pMem->z = pMem->zMalloc; |
|
107 pMem->flags &= ~(MEM_Ephem|MEM_Static); |
|
108 pMem->xDel = 0; |
|
109 return (pMem->z ? SQLITE_OK : SQLITE_NOMEM); |
|
110 } |
|
111 |
|
112 /* |
|
113 ** Make the given Mem object MEM_Dyn. In other words, make it so |
|
114 ** that any TEXT or BLOB content is stored in memory obtained from |
|
115 ** malloc(). In this way, we know that the memory is safe to be |
|
116 ** overwritten or altered. |
|
117 ** |
|
118 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. |
|
119 */ |
|
120 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ |
|
121 int f; |
|
122 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
123 expandBlob(pMem); |
|
124 f = pMem->flags; |
|
125 if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){ |
|
126 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ |
|
127 return SQLITE_NOMEM; |
|
128 } |
|
129 pMem->z[pMem->n] = 0; |
|
130 pMem->z[pMem->n+1] = 0; |
|
131 pMem->flags |= MEM_Term; |
|
132 } |
|
133 |
|
134 return SQLITE_OK; |
|
135 } |
|
136 |
|
137 /* |
|
138 ** If the given Mem* has a zero-filled tail, turn it into an ordinary |
|
139 ** blob stored in dynamically allocated space. |
|
140 */ |
|
141 #ifndef SQLITE_OMIT_INCRBLOB |
|
142 int sqlite3VdbeMemExpandBlob(Mem *pMem){ |
|
143 if( pMem->flags & MEM_Zero ){ |
|
144 int nByte; |
|
145 assert( pMem->flags&MEM_Blob ); |
|
146 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
147 |
|
148 /* Set nByte to the number of bytes required to store the expanded blob. */ |
|
149 nByte = pMem->n + pMem->u.i; |
|
150 if( nByte<=0 ){ |
|
151 nByte = 1; |
|
152 } |
|
153 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ |
|
154 return SQLITE_NOMEM; |
|
155 } |
|
156 |
|
157 memset(&pMem->z[pMem->n], 0, pMem->u.i); |
|
158 pMem->n += pMem->u.i; |
|
159 pMem->flags &= ~(MEM_Zero|MEM_Term); |
|
160 } |
|
161 return SQLITE_OK; |
|
162 } |
|
163 #endif |
|
164 |
|
165 |
|
166 /* |
|
167 ** Make sure the given Mem is \u0000 terminated. |
|
168 */ |
|
169 int sqlite3VdbeMemNulTerminate(Mem *pMem){ |
|
170 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
171 if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ |
|
172 return SQLITE_OK; /* Nothing to do */ |
|
173 } |
|
174 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ |
|
175 return SQLITE_NOMEM; |
|
176 } |
|
177 pMem->z[pMem->n] = 0; |
|
178 pMem->z[pMem->n+1] = 0; |
|
179 pMem->flags |= MEM_Term; |
|
180 return SQLITE_OK; |
|
181 } |
|
182 |
|
183 /* |
|
184 ** Add MEM_Str to the set of representations for the given Mem. Numbers |
|
185 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string |
|
186 ** is a no-op. |
|
187 ** |
|
188 ** Existing representations MEM_Int and MEM_Real are *not* invalidated. |
|
189 ** |
|
190 ** A MEM_Null value will never be passed to this function. This function is |
|
191 ** used for converting values to text for returning to the user (i.e. via |
|
192 ** sqlite3_value_text()), or for ensuring that values to be used as btree |
|
193 ** keys are strings. In the former case a NULL pointer is returned the |
|
194 ** user and the later is an internal programming error. |
|
195 */ |
|
196 int sqlite3VdbeMemStringify(Mem *pMem, int enc){ |
|
197 int rc = SQLITE_OK; |
|
198 int fg = pMem->flags; |
|
199 const int nByte = 32; |
|
200 |
|
201 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
202 assert( !(fg&MEM_Zero) ); |
|
203 assert( !(fg&(MEM_Str|MEM_Blob)) ); |
|
204 assert( fg&(MEM_Int|MEM_Real) ); |
|
205 |
|
206 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ |
|
207 return SQLITE_NOMEM; |
|
208 } |
|
209 |
|
210 /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8 |
|
211 ** string representation of the value. Then, if the required encoding |
|
212 ** is UTF-16le or UTF-16be do a translation. |
|
213 ** |
|
214 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. |
|
215 */ |
|
216 if( fg & MEM_Int ){ |
|
217 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); |
|
218 }else{ |
|
219 assert( fg & MEM_Real ); |
|
220 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r); |
|
221 } |
|
222 pMem->n = strlen(pMem->z); |
|
223 pMem->enc = SQLITE_UTF8; |
|
224 pMem->flags |= MEM_Str|MEM_Term; |
|
225 sqlite3VdbeChangeEncoding(pMem, enc); |
|
226 return rc; |
|
227 } |
|
228 |
|
229 /* |
|
230 ** Memory cell pMem contains the context of an aggregate function. |
|
231 ** This routine calls the finalize method for that function. The |
|
232 ** result of the aggregate is stored back into pMem. |
|
233 ** |
|
234 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK |
|
235 ** otherwise. |
|
236 */ |
|
237 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ |
|
238 int rc = SQLITE_OK; |
|
239 if( pFunc && pFunc->xFinalize ){ |
|
240 sqlite3_context ctx; |
|
241 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); |
|
242 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
243 ctx.s.flags = MEM_Null; |
|
244 ctx.s.db = pMem->db; |
|
245 ctx.s.zMalloc = 0; |
|
246 ctx.pMem = pMem; |
|
247 ctx.pFunc = pFunc; |
|
248 ctx.isError = 0; |
|
249 pFunc->xFinalize(&ctx); |
|
250 assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel ); |
|
251 sqlite3DbFree(pMem->db, pMem->zMalloc); |
|
252 *pMem = ctx.s; |
|
253 rc = (ctx.isError?SQLITE_ERROR:SQLITE_OK); |
|
254 } |
|
255 return rc; |
|
256 } |
|
257 |
|
258 /* |
|
259 ** If the memory cell contains a string value that must be freed by |
|
260 ** invoking an external callback, free it now. Calling this function |
|
261 ** does not free any Mem.zMalloc buffer. |
|
262 */ |
|
263 void sqlite3VdbeMemReleaseExternal(Mem *p){ |
|
264 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); |
|
265 if( p->flags&MEM_Agg ){ |
|
266 sqlite3VdbeMemFinalize(p, p->u.pDef); |
|
267 assert( (p->flags & MEM_Agg)==0 ); |
|
268 sqlite3VdbeMemRelease(p); |
|
269 }else if( p->flags&MEM_Dyn && p->xDel ){ |
|
270 p->xDel((void *)p->z); |
|
271 p->xDel = 0; |
|
272 } |
|
273 } |
|
274 |
|
275 /* |
|
276 ** Release any memory held by the Mem. This may leave the Mem in an |
|
277 ** inconsistent state, for example with (Mem.z==0) and |
|
278 ** (Mem.type==SQLITE_TEXT). |
|
279 */ |
|
280 void sqlite3VdbeMemRelease(Mem *p){ |
|
281 sqlite3VdbeMemReleaseExternal(p); |
|
282 sqlite3DbFree(p->db, p->zMalloc); |
|
283 p->z = 0; |
|
284 p->zMalloc = 0; |
|
285 p->xDel = 0; |
|
286 } |
|
287 |
|
288 /* |
|
289 ** Convert a 64-bit IEEE double into a 64-bit signed integer. |
|
290 ** If the double is too large, return 0x8000000000000000. |
|
291 ** |
|
292 ** Most systems appear to do this simply by assigning |
|
293 ** variables and without the extra range tests. But |
|
294 ** there are reports that windows throws an expection |
|
295 ** if the floating point value is out of range. (See ticket #2880.) |
|
296 ** Because we do not completely understand the problem, we will |
|
297 ** take the conservative approach and always do range tests |
|
298 ** before attempting the conversion. |
|
299 */ |
|
300 static i64 doubleToInt64(double r){ |
|
301 /* |
|
302 ** Many compilers we encounter do not define constants for the |
|
303 ** minimum and maximum 64-bit integers, or they define them |
|
304 ** inconsistently. And many do not understand the "LL" notation. |
|
305 ** So we define our own static constants here using nothing |
|
306 ** larger than a 32-bit integer constant. |
|
307 */ |
|
308 static const i64 maxInt = LARGEST_INT64; |
|
309 static const i64 minInt = SMALLEST_INT64; |
|
310 |
|
311 if( r<(double)minInt ){ |
|
312 return minInt; |
|
313 }else if( r>(double)maxInt ){ |
|
314 return minInt; |
|
315 }else{ |
|
316 return (i64)r; |
|
317 } |
|
318 } |
|
319 |
|
320 /* |
|
321 ** Return some kind of integer value which is the best we can do |
|
322 ** at representing the value that *pMem describes as an integer. |
|
323 ** If pMem is an integer, then the value is exact. If pMem is |
|
324 ** a floating-point then the value returned is the integer part. |
|
325 ** If pMem is a string or blob, then we make an attempt to convert |
|
326 ** it into a integer and return that. If pMem is NULL, return 0. |
|
327 ** |
|
328 ** If pMem is a string, its encoding might be changed. |
|
329 */ |
|
330 i64 sqlite3VdbeIntValue(Mem *pMem){ |
|
331 int flags; |
|
332 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
333 flags = pMem->flags; |
|
334 if( flags & MEM_Int ){ |
|
335 return pMem->u.i; |
|
336 }else if( flags & MEM_Real ){ |
|
337 return doubleToInt64(pMem->r); |
|
338 }else if( flags & (MEM_Str|MEM_Blob) ){ |
|
339 i64 value; |
|
340 pMem->flags |= MEM_Str; |
|
341 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) |
|
342 || sqlite3VdbeMemNulTerminate(pMem) ){ |
|
343 return 0; |
|
344 } |
|
345 assert( pMem->z ); |
|
346 sqlite3Atoi64(pMem->z, &value); |
|
347 return value; |
|
348 }else{ |
|
349 return 0; |
|
350 } |
|
351 } |
|
352 |
|
353 /* |
|
354 ** Return the best representation of pMem that we can get into a |
|
355 ** double. If pMem is already a double or an integer, return its |
|
356 ** value. If it is a string or blob, try to convert it to a double. |
|
357 ** If it is a NULL, return 0.0. |
|
358 */ |
|
359 double sqlite3VdbeRealValue(Mem *pMem){ |
|
360 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
361 if( pMem->flags & MEM_Real ){ |
|
362 return pMem->r; |
|
363 }else if( pMem->flags & MEM_Int ){ |
|
364 return (double)pMem->u.i; |
|
365 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ |
|
366 double val = 0.0; |
|
367 pMem->flags |= MEM_Str; |
|
368 if( sqlite3VdbeChangeEncoding(pMem, SQLITE_UTF8) |
|
369 || sqlite3VdbeMemNulTerminate(pMem) ){ |
|
370 return 0.0; |
|
371 } |
|
372 assert( pMem->z ); |
|
373 sqlite3AtoF(pMem->z, &val); |
|
374 return val; |
|
375 }else{ |
|
376 return 0.0; |
|
377 } |
|
378 } |
|
379 |
|
380 /* |
|
381 ** The MEM structure is already a MEM_Real. Try to also make it a |
|
382 ** MEM_Int if we can. |
|
383 */ |
|
384 void sqlite3VdbeIntegerAffinity(Mem *pMem){ |
|
385 assert( pMem->flags & MEM_Real ); |
|
386 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
387 |
|
388 pMem->u.i = doubleToInt64(pMem->r); |
|
389 if( pMem->r==(double)pMem->u.i ){ |
|
390 pMem->flags |= MEM_Int; |
|
391 } |
|
392 } |
|
393 |
|
394 static void setTypeFlag(Mem *pMem, int f){ |
|
395 MemSetTypeFlag(pMem, f); |
|
396 } |
|
397 |
|
398 /* |
|
399 ** Convert pMem to type integer. Invalidate any prior representations. |
|
400 */ |
|
401 int sqlite3VdbeMemIntegerify(Mem *pMem){ |
|
402 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
403 pMem->u.i = sqlite3VdbeIntValue(pMem); |
|
404 setTypeFlag(pMem, MEM_Int); |
|
405 return SQLITE_OK; |
|
406 } |
|
407 |
|
408 /* |
|
409 ** Convert pMem so that it is of type MEM_Real. |
|
410 ** Invalidate any prior representations. |
|
411 */ |
|
412 int sqlite3VdbeMemRealify(Mem *pMem){ |
|
413 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
414 pMem->r = sqlite3VdbeRealValue(pMem); |
|
415 setTypeFlag(pMem, MEM_Real); |
|
416 return SQLITE_OK; |
|
417 } |
|
418 |
|
419 /* |
|
420 ** Convert pMem so that it has types MEM_Real or MEM_Int or both. |
|
421 ** Invalidate any prior representations. |
|
422 */ |
|
423 int sqlite3VdbeMemNumerify(Mem *pMem){ |
|
424 double r1, r2; |
|
425 i64 i; |
|
426 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ); |
|
427 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); |
|
428 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
429 r1 = sqlite3VdbeRealValue(pMem); |
|
430 i = doubleToInt64(r1); |
|
431 r2 = (double)i; |
|
432 if( r1==r2 ){ |
|
433 sqlite3VdbeMemIntegerify(pMem); |
|
434 }else{ |
|
435 pMem->r = r1; |
|
436 setTypeFlag(pMem, MEM_Real); |
|
437 } |
|
438 return SQLITE_OK; |
|
439 } |
|
440 |
|
441 /* |
|
442 ** Delete any previous value and set the value stored in *pMem to NULL. |
|
443 */ |
|
444 void sqlite3VdbeMemSetNull(Mem *pMem){ |
|
445 setTypeFlag(pMem, MEM_Null); |
|
446 pMem->type = SQLITE_NULL; |
|
447 } |
|
448 |
|
449 /* |
|
450 ** Delete any previous value and set the value to be a BLOB of length |
|
451 ** n containing all zeros. |
|
452 */ |
|
453 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ |
|
454 sqlite3VdbeMemRelease(pMem); |
|
455 setTypeFlag(pMem, MEM_Blob); |
|
456 pMem->flags = MEM_Blob|MEM_Zero; |
|
457 pMem->type = SQLITE_BLOB; |
|
458 pMem->n = 0; |
|
459 if( n<0 ) n = 0; |
|
460 pMem->u.i = n; |
|
461 pMem->enc = SQLITE_UTF8; |
|
462 } |
|
463 |
|
464 /* |
|
465 ** Delete any previous value and set the value stored in *pMem to val, |
|
466 ** manifest type INTEGER. |
|
467 */ |
|
468 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ |
|
469 sqlite3VdbeMemRelease(pMem); |
|
470 pMem->u.i = val; |
|
471 pMem->flags = MEM_Int; |
|
472 pMem->type = SQLITE_INTEGER; |
|
473 } |
|
474 |
|
475 /* |
|
476 ** Delete any previous value and set the value stored in *pMem to val, |
|
477 ** manifest type REAL. |
|
478 */ |
|
479 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ |
|
480 if( sqlite3IsNaN(val) ){ |
|
481 sqlite3VdbeMemSetNull(pMem); |
|
482 }else{ |
|
483 sqlite3VdbeMemRelease(pMem); |
|
484 pMem->r = val; |
|
485 pMem->flags = MEM_Real; |
|
486 pMem->type = SQLITE_FLOAT; |
|
487 } |
|
488 } |
|
489 |
|
490 /* |
|
491 ** Return true if the Mem object contains a TEXT or BLOB that is |
|
492 ** too large - whose size exceeds SQLITE_MAX_LENGTH. |
|
493 */ |
|
494 int sqlite3VdbeMemTooBig(Mem *p){ |
|
495 assert( p->db!=0 ); |
|
496 if( p->flags & (MEM_Str|MEM_Blob) ){ |
|
497 int n = p->n; |
|
498 if( p->flags & MEM_Zero ){ |
|
499 n += p->u.i; |
|
500 } |
|
501 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; |
|
502 } |
|
503 return 0; |
|
504 } |
|
505 |
|
506 /* |
|
507 ** Size of struct Mem not including the Mem.zMalloc member. |
|
508 */ |
|
509 #define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc)) |
|
510 |
|
511 /* |
|
512 ** Make an shallow copy of pFrom into pTo. Prior contents of |
|
513 ** pTo are freed. The pFrom->z field is not duplicated. If |
|
514 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z |
|
515 ** and flags gets srcType (either MEM_Ephem or MEM_Static). |
|
516 */ |
|
517 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ |
|
518 sqlite3VdbeMemReleaseExternal(pTo); |
|
519 memcpy(pTo, pFrom, MEMCELLSIZE); |
|
520 pTo->xDel = 0; |
|
521 if( (pFrom->flags&MEM_Dyn)!=0 || pFrom->z==pFrom->zMalloc ){ |
|
522 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); |
|
523 assert( srcType==MEM_Ephem || srcType==MEM_Static ); |
|
524 pTo->flags |= srcType; |
|
525 } |
|
526 } |
|
527 |
|
528 /* |
|
529 ** Make a full copy of pFrom into pTo. Prior contents of pTo are |
|
530 ** freed before the copy is made. |
|
531 */ |
|
532 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ |
|
533 int rc = SQLITE_OK; |
|
534 |
|
535 sqlite3VdbeMemReleaseExternal(pTo); |
|
536 memcpy(pTo, pFrom, MEMCELLSIZE); |
|
537 pTo->flags &= ~MEM_Dyn; |
|
538 |
|
539 if( pTo->flags&(MEM_Str|MEM_Blob) ){ |
|
540 if( 0==(pFrom->flags&MEM_Static) ){ |
|
541 pTo->flags |= MEM_Ephem; |
|
542 rc = sqlite3VdbeMemMakeWriteable(pTo); |
|
543 } |
|
544 } |
|
545 |
|
546 return rc; |
|
547 } |
|
548 |
|
549 /* |
|
550 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is |
|
551 ** freed. If pFrom contains ephemeral data, a copy is made. |
|
552 ** |
|
553 ** pFrom contains an SQL NULL when this routine returns. |
|
554 */ |
|
555 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ |
|
556 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); |
|
557 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); |
|
558 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); |
|
559 |
|
560 sqlite3VdbeMemRelease(pTo); |
|
561 memcpy(pTo, pFrom, sizeof(Mem)); |
|
562 pFrom->flags = MEM_Null; |
|
563 pFrom->xDel = 0; |
|
564 pFrom->zMalloc = 0; |
|
565 } |
|
566 |
|
567 /* |
|
568 ** Change the value of a Mem to be a string or a BLOB. |
|
569 ** |
|
570 ** The memory management strategy depends on the value of the xDel |
|
571 ** parameter. If the value passed is SQLITE_TRANSIENT, then the |
|
572 ** string is copied into a (possibly existing) buffer managed by the |
|
573 ** Mem structure. Otherwise, any existing buffer is freed and the |
|
574 ** pointer copied. |
|
575 */ |
|
576 int sqlite3VdbeMemSetStr( |
|
577 Mem *pMem, /* Memory cell to set to string value */ |
|
578 const char *z, /* String pointer */ |
|
579 int n, /* Bytes in string, or negative */ |
|
580 u8 enc, /* Encoding of z. 0 for BLOBs */ |
|
581 void (*xDel)(void*) /* Destructor function */ |
|
582 ){ |
|
583 int nByte = n; /* New value for pMem->n */ |
|
584 int iLimit; /* Maximum allowed string or blob size */ |
|
585 int flags = 0; /* New value for pMem->flags */ |
|
586 |
|
587 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
|
588 |
|
589 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ |
|
590 if( !z ){ |
|
591 sqlite3VdbeMemSetNull(pMem); |
|
592 return SQLITE_OK; |
|
593 } |
|
594 |
|
595 if( pMem->db ){ |
|
596 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; |
|
597 }else{ |
|
598 iLimit = SQLITE_MAX_LENGTH; |
|
599 } |
|
600 flags = (enc==0?MEM_Blob:MEM_Str); |
|
601 if( nByte<0 ){ |
|
602 assert( enc!=0 ); |
|
603 if( enc==SQLITE_UTF8 ){ |
|
604 for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){} |
|
605 }else{ |
|
606 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} |
|
607 } |
|
608 flags |= MEM_Term; |
|
609 } |
|
610 if( nByte>iLimit ){ |
|
611 return SQLITE_TOOBIG; |
|
612 } |
|
613 |
|
614 /* The following block sets the new values of Mem.z and Mem.xDel. It |
|
615 ** also sets a flag in local variable "flags" to indicate the memory |
|
616 ** management (one of MEM_Dyn or MEM_Static). |
|
617 */ |
|
618 if( xDel==SQLITE_TRANSIENT ){ |
|
619 int nAlloc = nByte; |
|
620 if( flags&MEM_Term ){ |
|
621 nAlloc += (enc==SQLITE_UTF8?1:2); |
|
622 } |
|
623 if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){ |
|
624 return SQLITE_NOMEM; |
|
625 } |
|
626 memcpy(pMem->z, z, nAlloc); |
|
627 }else if( xDel==SQLITE_DYNAMIC ){ |
|
628 sqlite3VdbeMemRelease(pMem); |
|
629 pMem->zMalloc = pMem->z = (char *)z; |
|
630 pMem->xDel = 0; |
|
631 }else{ |
|
632 sqlite3VdbeMemRelease(pMem); |
|
633 pMem->z = (char *)z; |
|
634 pMem->xDel = xDel; |
|
635 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); |
|
636 } |
|
637 |
|
638 pMem->n = nByte; |
|
639 pMem->flags = flags; |
|
640 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); |
|
641 pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT); |
|
642 |
|
643 #ifndef SQLITE_OMIT_UTF16 |
|
644 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ |
|
645 return SQLITE_NOMEM; |
|
646 } |
|
647 #endif |
|
648 |
|
649 return SQLITE_OK; |
|
650 } |
|
651 |
|
652 /* |
|
653 ** Compare the values contained by the two memory cells, returning |
|
654 ** negative, zero or positive if pMem1 is less than, equal to, or greater |
|
655 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers |
|
656 ** and reals) sorted numerically, followed by text ordered by the collating |
|
657 ** sequence pColl and finally blob's ordered by memcmp(). |
|
658 ** |
|
659 ** Two NULL values are considered equal by this function. |
|
660 */ |
|
661 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ |
|
662 int rc; |
|
663 int f1, f2; |
|
664 int combined_flags; |
|
665 |
|
666 /* Interchange pMem1 and pMem2 if the collating sequence specifies |
|
667 ** DESC order. |
|
668 */ |
|
669 f1 = pMem1->flags; |
|
670 f2 = pMem2->flags; |
|
671 combined_flags = f1|f2; |
|
672 |
|
673 /* If one value is NULL, it is less than the other. If both values |
|
674 ** are NULL, return 0. |
|
675 */ |
|
676 if( combined_flags&MEM_Null ){ |
|
677 return (f2&MEM_Null) - (f1&MEM_Null); |
|
678 } |
|
679 |
|
680 /* If one value is a number and the other is not, the number is less. |
|
681 ** If both are numbers, compare as reals if one is a real, or as integers |
|
682 ** if both values are integers. |
|
683 */ |
|
684 if( combined_flags&(MEM_Int|MEM_Real) ){ |
|
685 if( !(f1&(MEM_Int|MEM_Real)) ){ |
|
686 return 1; |
|
687 } |
|
688 if( !(f2&(MEM_Int|MEM_Real)) ){ |
|
689 return -1; |
|
690 } |
|
691 if( (f1 & f2 & MEM_Int)==0 ){ |
|
692 double r1, r2; |
|
693 if( (f1&MEM_Real)==0 ){ |
|
694 r1 = pMem1->u.i; |
|
695 }else{ |
|
696 r1 = pMem1->r; |
|
697 } |
|
698 if( (f2&MEM_Real)==0 ){ |
|
699 r2 = pMem2->u.i; |
|
700 }else{ |
|
701 r2 = pMem2->r; |
|
702 } |
|
703 if( r1<r2 ) return -1; |
|
704 if( r1>r2 ) return 1; |
|
705 return 0; |
|
706 }else{ |
|
707 assert( f1&MEM_Int ); |
|
708 assert( f2&MEM_Int ); |
|
709 if( pMem1->u.i < pMem2->u.i ) return -1; |
|
710 if( pMem1->u.i > pMem2->u.i ) return 1; |
|
711 return 0; |
|
712 } |
|
713 } |
|
714 |
|
715 /* If one value is a string and the other is a blob, the string is less. |
|
716 ** If both are strings, compare using the collating functions. |
|
717 */ |
|
718 if( combined_flags&MEM_Str ){ |
|
719 if( (f1 & MEM_Str)==0 ){ |
|
720 return 1; |
|
721 } |
|
722 if( (f2 & MEM_Str)==0 ){ |
|
723 return -1; |
|
724 } |
|
725 |
|
726 assert( pMem1->enc==pMem2->enc ); |
|
727 assert( pMem1->enc==SQLITE_UTF8 || |
|
728 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); |
|
729 |
|
730 /* The collation sequence must be defined at this point, even if |
|
731 ** the user deletes the collation sequence after the vdbe program is |
|
732 ** compiled (this was not always the case). |
|
733 */ |
|
734 assert( !pColl || pColl->xCmp ); |
|
735 |
|
736 if( pColl ){ |
|
737 if( pMem1->enc==pColl->enc ){ |
|
738 /* The strings are already in the correct encoding. Call the |
|
739 ** comparison function directly */ |
|
740 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); |
|
741 }else{ |
|
742 u8 origEnc = pMem1->enc; |
|
743 const void *v1, *v2; |
|
744 int n1, n2; |
|
745 /* Convert the strings into the encoding that the comparison |
|
746 ** function expects */ |
|
747 v1 = sqlite3ValueText((sqlite3_value*)pMem1, pColl->enc); |
|
748 n1 = v1==0 ? 0 : pMem1->n; |
|
749 assert( n1==sqlite3ValueBytes((sqlite3_value*)pMem1, pColl->enc) ); |
|
750 v2 = sqlite3ValueText((sqlite3_value*)pMem2, pColl->enc); |
|
751 n2 = v2==0 ? 0 : pMem2->n; |
|
752 assert( n2==sqlite3ValueBytes((sqlite3_value*)pMem2, pColl->enc) ); |
|
753 /* Do the comparison */ |
|
754 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); |
|
755 /* Convert the strings back into the database encoding */ |
|
756 sqlite3ValueText((sqlite3_value*)pMem1, origEnc); |
|
757 sqlite3ValueText((sqlite3_value*)pMem2, origEnc); |
|
758 return rc; |
|
759 } |
|
760 } |
|
761 /* If a NULL pointer was passed as the collate function, fall through |
|
762 ** to the blob case and use memcmp(). */ |
|
763 } |
|
764 |
|
765 /* Both values must be blobs. Compare using memcmp(). */ |
|
766 rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); |
|
767 if( rc==0 ){ |
|
768 rc = pMem1->n - pMem2->n; |
|
769 } |
|
770 return rc; |
|
771 } |
|
772 |
|
773 /* |
|
774 ** Move data out of a btree key or data field and into a Mem structure. |
|
775 ** The data or key is taken from the entry that pCur is currently pointing |
|
776 ** to. offset and amt determine what portion of the data or key to retrieve. |
|
777 ** key is true to get the key or false to get data. The result is written |
|
778 ** into the pMem element. |
|
779 ** |
|
780 ** The pMem structure is assumed to be uninitialized. Any prior content |
|
781 ** is overwritten without being freed. |
|
782 ** |
|
783 ** If this routine fails for any reason (malloc returns NULL or unable |
|
784 ** to read from the disk) then the pMem is left in an inconsistent state. |
|
785 */ |
|
786 int sqlite3VdbeMemFromBtree( |
|
787 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ |
|
788 int offset, /* Offset from the start of data to return bytes from. */ |
|
789 int amt, /* Number of bytes to return. */ |
|
790 int key, /* If true, retrieve from the btree key, not data. */ |
|
791 Mem *pMem /* OUT: Return data in this Mem structure. */ |
|
792 ){ |
|
793 char *zData; /* Data from the btree layer */ |
|
794 int available = 0; /* Number of bytes available on the local btree page */ |
|
795 sqlite3 *db; /* Database connection */ |
|
796 int rc = SQLITE_OK; |
|
797 |
|
798 db = sqlite3BtreeCursorDb(pCur); |
|
799 assert( sqlite3_mutex_held(db->mutex) ); |
|
800 if( key ){ |
|
801 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); |
|
802 }else{ |
|
803 zData = (char *)sqlite3BtreeDataFetch(pCur, &available); |
|
804 } |
|
805 assert( zData!=0 ); |
|
806 |
|
807 if( offset+amt<=available && ((pMem->flags&MEM_Dyn)==0 || pMem->xDel) ){ |
|
808 sqlite3VdbeMemRelease(pMem); |
|
809 pMem->z = &zData[offset]; |
|
810 pMem->flags = MEM_Blob|MEM_Ephem; |
|
811 }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){ |
|
812 pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; |
|
813 pMem->enc = 0; |
|
814 pMem->type = SQLITE_BLOB; |
|
815 if( key ){ |
|
816 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); |
|
817 }else{ |
|
818 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); |
|
819 } |
|
820 pMem->z[amt] = 0; |
|
821 pMem->z[amt+1] = 0; |
|
822 if( rc!=SQLITE_OK ){ |
|
823 sqlite3VdbeMemRelease(pMem); |
|
824 } |
|
825 } |
|
826 pMem->n = amt; |
|
827 |
|
828 return rc; |
|
829 } |
|
830 |
|
831 #if 0 |
|
832 /* |
|
833 ** Perform various checks on the memory cell pMem. An assert() will |
|
834 ** fail if pMem is internally inconsistent. |
|
835 */ |
|
836 void sqlite3VdbeMemSanity(Mem *pMem){ |
|
837 int flags = pMem->flags; |
|
838 assert( flags!=0 ); /* Must define some type */ |
|
839 if( flags & (MEM_Str|MEM_Blob) ){ |
|
840 int x = flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short); |
|
841 assert( x!=0 ); /* Strings must define a string subtype */ |
|
842 assert( (x & (x-1))==0 ); /* Only one string subtype can be defined */ |
|
843 assert( pMem->z!=0 ); /* Strings must have a value */ |
|
844 /* Mem.z points to Mem.zShort iff the subtype is MEM_Short */ |
|
845 assert( (x & MEM_Short)==0 || pMem->z==pMem->zShort ); |
|
846 assert( (x & MEM_Short)!=0 || pMem->z!=pMem->zShort ); |
|
847 /* No destructor unless there is MEM_Dyn */ |
|
848 assert( pMem->xDel==0 || (pMem->flags & MEM_Dyn)!=0 ); |
|
849 |
|
850 if( (flags & MEM_Str) ){ |
|
851 assert( pMem->enc==SQLITE_UTF8 || |
|
852 pMem->enc==SQLITE_UTF16BE || |
|
853 pMem->enc==SQLITE_UTF16LE |
|
854 ); |
|
855 /* If the string is UTF-8 encoded and nul terminated, then pMem->n |
|
856 ** must be the length of the string. (Later:) If the database file |
|
857 ** has been corrupted, '\000' characters might have been inserted |
|
858 ** into the middle of the string. In that case, the strlen() might |
|
859 ** be less. |
|
860 */ |
|
861 if( pMem->enc==SQLITE_UTF8 && (flags & MEM_Term) ){ |
|
862 assert( strlen(pMem->z)<=pMem->n ); |
|
863 assert( pMem->z[pMem->n]==0 ); |
|
864 } |
|
865 } |
|
866 }else{ |
|
867 /* Cannot define a string subtype for non-string objects */ |
|
868 assert( (pMem->flags & (MEM_Static|MEM_Dyn|MEM_Ephem|MEM_Short))==0 ); |
|
869 assert( pMem->xDel==0 ); |
|
870 } |
|
871 /* MEM_Null excludes all other types */ |
|
872 assert( (pMem->flags&(MEM_Str|MEM_Int|MEM_Real|MEM_Blob))==0 |
|
873 || (pMem->flags&MEM_Null)==0 ); |
|
874 /* If the MEM is both real and integer, the values are equal */ |
|
875 assert( (pMem->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) |
|
876 || pMem->r==pMem->u.i ); |
|
877 } |
|
878 #endif |
|
879 |
|
880 /* This function is only available internally, it is not part of the |
|
881 ** external API. It works in a similar way to sqlite3_value_text(), |
|
882 ** except the data returned is in the encoding specified by the second |
|
883 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or |
|
884 ** SQLITE_UTF8. |
|
885 ** |
|
886 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. |
|
887 ** If that is the case, then the result must be aligned on an even byte |
|
888 ** boundary. |
|
889 */ |
|
890 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ |
|
891 if( !pVal ) return 0; |
|
892 |
|
893 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); |
|
894 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); |
|
895 |
|
896 if( pVal->flags&MEM_Null ){ |
|
897 return 0; |
|
898 } |
|
899 assert( (MEM_Blob>>3) == MEM_Str ); |
|
900 pVal->flags |= (pVal->flags & MEM_Blob)>>3; |
|
901 expandBlob(pVal); |
|
902 if( pVal->flags&MEM_Str ){ |
|
903 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); |
|
904 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ |
|
905 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); |
|
906 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ |
|
907 return 0; |
|
908 } |
|
909 } |
|
910 sqlite3VdbeMemNulTerminate(pVal); |
|
911 }else{ |
|
912 assert( (pVal->flags&MEM_Blob)==0 ); |
|
913 sqlite3VdbeMemStringify(pVal, enc); |
|
914 assert( 0==(1&(int)pVal->z) ); |
|
915 } |
|
916 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 |
|
917 || pVal->db->mallocFailed ); |
|
918 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ |
|
919 return pVal->z; |
|
920 }else{ |
|
921 return 0; |
|
922 } |
|
923 } |
|
924 |
|
925 /* |
|
926 ** Create a new sqlite3_value object. |
|
927 */ |
|
928 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ |
|
929 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); |
|
930 if( p ){ |
|
931 p->flags = MEM_Null; |
|
932 p->type = SQLITE_NULL; |
|
933 p->db = db; |
|
934 } |
|
935 return p; |
|
936 } |
|
937 |
|
938 /* |
|
939 ** Create a new sqlite3_value object, containing the value of pExpr. |
|
940 ** |
|
941 ** This only works for very simple expressions that consist of one constant |
|
942 ** token (i.e. "5", "5.1", "'a string'"). If the expression can |
|
943 ** be converted directly into a value, then the value is allocated and |
|
944 ** a pointer written to *ppVal. The caller is responsible for deallocating |
|
945 ** the value by passing it to sqlite3ValueFree() later on. If the expression |
|
946 ** cannot be converted to a value, then *ppVal is set to NULL. |
|
947 */ |
|
948 int sqlite3ValueFromExpr( |
|
949 sqlite3 *db, /* The database connection */ |
|
950 Expr *pExpr, /* The expression to evaluate */ |
|
951 u8 enc, /* Encoding to use */ |
|
952 u8 affinity, /* Affinity to use */ |
|
953 sqlite3_value **ppVal /* Write the new value here */ |
|
954 ){ |
|
955 int op; |
|
956 char *zVal = 0; |
|
957 sqlite3_value *pVal = 0; |
|
958 |
|
959 if( !pExpr ){ |
|
960 *ppVal = 0; |
|
961 return SQLITE_OK; |
|
962 } |
|
963 op = pExpr->op; |
|
964 |
|
965 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ |
|
966 zVal = sqlite3DbStrNDup(db, (char*)pExpr->token.z, pExpr->token.n); |
|
967 pVal = sqlite3ValueNew(db); |
|
968 if( !zVal || !pVal ) goto no_mem; |
|
969 sqlite3Dequote(zVal); |
|
970 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); |
|
971 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ |
|
972 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, enc); |
|
973 }else{ |
|
974 sqlite3ValueApplyAffinity(pVal, affinity, enc); |
|
975 } |
|
976 }else if( op==TK_UMINUS ) { |
|
977 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ |
|
978 pVal->u.i = -1 * pVal->u.i; |
|
979 pVal->r = -1.0 * pVal->r; |
|
980 } |
|
981 } |
|
982 #ifndef SQLITE_OMIT_BLOB_LITERAL |
|
983 else if( op==TK_BLOB ){ |
|
984 int nVal; |
|
985 assert( pExpr->token.n>=3 ); |
|
986 assert( pExpr->token.z[0]=='x' || pExpr->token.z[0]=='X' ); |
|
987 assert( pExpr->token.z[1]=='\'' ); |
|
988 assert( pExpr->token.z[pExpr->token.n-1]=='\'' ); |
|
989 pVal = sqlite3ValueNew(db); |
|
990 nVal = pExpr->token.n - 3; |
|
991 zVal = (char*)pExpr->token.z + 2; |
|
992 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, |
|
993 0, SQLITE_DYNAMIC); |
|
994 } |
|
995 #endif |
|
996 |
|
997 *ppVal = pVal; |
|
998 return SQLITE_OK; |
|
999 |
|
1000 no_mem: |
|
1001 db->mallocFailed = 1; |
|
1002 sqlite3DbFree(db, zVal); |
|
1003 sqlite3ValueFree(pVal); |
|
1004 *ppVal = 0; |
|
1005 return SQLITE_NOMEM; |
|
1006 } |
|
1007 |
|
1008 /* |
|
1009 ** Change the string value of an sqlite3_value object |
|
1010 */ |
|
1011 void sqlite3ValueSetStr( |
|
1012 sqlite3_value *v, /* Value to be set */ |
|
1013 int n, /* Length of string z */ |
|
1014 const void *z, /* Text of the new string */ |
|
1015 u8 enc, /* Encoding to use */ |
|
1016 void (*xDel)(void*) /* Destructor for the string */ |
|
1017 ){ |
|
1018 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); |
|
1019 } |
|
1020 |
|
1021 /* |
|
1022 ** Free an sqlite3_value object |
|
1023 */ |
|
1024 void sqlite3ValueFree(sqlite3_value *v){ |
|
1025 if( !v ) return; |
|
1026 sqlite3VdbeMemRelease((Mem *)v); |
|
1027 sqlite3DbFree(((Mem*)v)->db, v); |
|
1028 } |
|
1029 |
|
1030 /* |
|
1031 ** Return the number of bytes in the sqlite3_value object assuming |
|
1032 ** that it uses the encoding "enc" |
|
1033 */ |
|
1034 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ |
|
1035 Mem *p = (Mem*)pVal; |
|
1036 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ |
|
1037 if( p->flags & MEM_Zero ){ |
|
1038 return p->n+p->u.i; |
|
1039 }else{ |
|
1040 return p->n; |
|
1041 } |
|
1042 } |
|
1043 return 0; |
|
1044 } |