persistentstorage/sql/SQLite364/build.c
changeset 0 08ec8eefde2f
equal deleted inserted replaced
-1:000000000000 0:08ec8eefde2f
       
     1 /*
       
     2 ** 2001 September 15
       
     3 **
       
     4 ** The author disclaims copyright to this source code.  In place of
       
     5 ** a legal notice, here is a blessing:
       
     6 **
       
     7 **    May you do good and not evil.
       
     8 **    May you find forgiveness for yourself and forgive others.
       
     9 **    May you share freely, never taking more than you give.
       
    10 **
       
    11 *************************************************************************
       
    12 ** This file contains C code routines that are called by the SQLite parser
       
    13 ** when syntax rules are reduced.  The routines in this file handle the
       
    14 ** following kinds of SQL syntax:
       
    15 **
       
    16 **     CREATE TABLE
       
    17 **     DROP TABLE
       
    18 **     CREATE INDEX
       
    19 **     DROP INDEX
       
    20 **     creating ID lists
       
    21 **     BEGIN TRANSACTION
       
    22 **     COMMIT
       
    23 **     ROLLBACK
       
    24 **
       
    25 ** $Id: build.c,v 1.498 2008/10/06 16:18:40 danielk1977 Exp $
       
    26 */
       
    27 #include "sqliteInt.h"
       
    28 #include <ctype.h>
       
    29 
       
    30 /*
       
    31 ** This routine is called when a new SQL statement is beginning to
       
    32 ** be parsed.  Initialize the pParse structure as needed.
       
    33 */
       
    34 void sqlite3BeginParse(Parse *pParse, int explainFlag){
       
    35   pParse->explain = explainFlag;
       
    36   pParse->nVar = 0;
       
    37 }
       
    38 
       
    39 #ifndef SQLITE_OMIT_SHARED_CACHE
       
    40 /*
       
    41 ** The TableLock structure is only used by the sqlite3TableLock() and
       
    42 ** codeTableLocks() functions.
       
    43 */
       
    44 struct TableLock {
       
    45   int iDb;             /* The database containing the table to be locked */
       
    46   int iTab;            /* The root page of the table to be locked */
       
    47   u8 isWriteLock;      /* True for write lock.  False for a read lock */
       
    48   const char *zName;   /* Name of the table */
       
    49 };
       
    50 
       
    51 /*
       
    52 ** Record the fact that we want to lock a table at run-time.  
       
    53 **
       
    54 ** The table to be locked has root page iTab and is found in database iDb.
       
    55 ** A read or a write lock can be taken depending on isWritelock.
       
    56 **
       
    57 ** This routine just records the fact that the lock is desired.  The
       
    58 ** code to make the lock occur is generated by a later call to
       
    59 ** codeTableLocks() which occurs during sqlite3FinishCoding().
       
    60 */
       
    61 void sqlite3TableLock(
       
    62   Parse *pParse,     /* Parsing context */
       
    63   int iDb,           /* Index of the database containing the table to lock */
       
    64   int iTab,          /* Root page number of the table to be locked */
       
    65   u8 isWriteLock,    /* True for a write lock */
       
    66   const char *zName  /* Name of the table to be locked */
       
    67 ){
       
    68   int i;
       
    69   int nBytes;
       
    70   TableLock *p;
       
    71 
       
    72   if( iDb<0 ){
       
    73     return;
       
    74   }
       
    75 
       
    76   for(i=0; i<pParse->nTableLock; i++){
       
    77     p = &pParse->aTableLock[i];
       
    78     if( p->iDb==iDb && p->iTab==iTab ){
       
    79       p->isWriteLock = (p->isWriteLock || isWriteLock);
       
    80       return;
       
    81     }
       
    82   }
       
    83 
       
    84   nBytes = sizeof(TableLock) * (pParse->nTableLock+1);
       
    85   pParse->aTableLock = 
       
    86       sqlite3DbReallocOrFree(pParse->db, pParse->aTableLock, nBytes);
       
    87   if( pParse->aTableLock ){
       
    88     p = &pParse->aTableLock[pParse->nTableLock++];
       
    89     p->iDb = iDb;
       
    90     p->iTab = iTab;
       
    91     p->isWriteLock = isWriteLock;
       
    92     p->zName = zName;
       
    93   }else{
       
    94     pParse->nTableLock = 0;
       
    95     pParse->db->mallocFailed = 1;
       
    96   }
       
    97 }
       
    98 
       
    99 /*
       
   100 ** Code an OP_TableLock instruction for each table locked by the
       
   101 ** statement (configured by calls to sqlite3TableLock()).
       
   102 */
       
   103 static void codeTableLocks(Parse *pParse){
       
   104   int i;
       
   105   Vdbe *pVdbe; 
       
   106 
       
   107   if( 0==(pVdbe = sqlite3GetVdbe(pParse)) ){
       
   108     return;
       
   109   }
       
   110 
       
   111   for(i=0; i<pParse->nTableLock; i++){
       
   112     TableLock *p = &pParse->aTableLock[i];
       
   113     int p1 = p->iDb;
       
   114     sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
       
   115                       p->zName, P4_STATIC);
       
   116   }
       
   117 }
       
   118 #else
       
   119   #define codeTableLocks(x)
       
   120 #endif
       
   121 
       
   122 /*
       
   123 ** This routine is called after a single SQL statement has been
       
   124 ** parsed and a VDBE program to execute that statement has been
       
   125 ** prepared.  This routine puts the finishing touches on the
       
   126 ** VDBE program and resets the pParse structure for the next
       
   127 ** parse.
       
   128 **
       
   129 ** Note that if an error occurred, it might be the case that
       
   130 ** no VDBE code was generated.
       
   131 */
       
   132 void sqlite3FinishCoding(Parse *pParse){
       
   133   sqlite3 *db;
       
   134   Vdbe *v;
       
   135 
       
   136   db = pParse->db;
       
   137   if( db->mallocFailed ) return;
       
   138   if( pParse->nested ) return;
       
   139   if( pParse->nErr ) return;
       
   140 
       
   141   /* Begin by generating some termination code at the end of the
       
   142   ** vdbe program
       
   143   */
       
   144   v = sqlite3GetVdbe(pParse);
       
   145   if( v ){
       
   146     sqlite3VdbeAddOp0(v, OP_Halt);
       
   147 
       
   148     /* The cookie mask contains one bit for each database file open.
       
   149     ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
       
   150     ** set for each database that is used.  Generate code to start a
       
   151     ** transaction on each used database and to verify the schema cookie
       
   152     ** on each used database.
       
   153     */
       
   154     if( pParse->cookieGoto>0 ){
       
   155       u32 mask;
       
   156       int iDb;
       
   157       sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
       
   158       for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
       
   159         if( (mask & pParse->cookieMask)==0 ) continue;
       
   160         sqlite3VdbeUsesBtree(v, iDb);
       
   161         sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
       
   162         sqlite3VdbeAddOp2(v,OP_VerifyCookie, iDb, pParse->cookieValue[iDb]);
       
   163       }
       
   164 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
   165       {
       
   166         int i;
       
   167         for(i=0; i<pParse->nVtabLock; i++){
       
   168           char *vtab = (char *)pParse->apVtabLock[i]->pVtab;
       
   169           sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
       
   170         }
       
   171         pParse->nVtabLock = 0;
       
   172       }
       
   173 #endif
       
   174 
       
   175       /* Once all the cookies have been verified and transactions opened, 
       
   176       ** obtain the required table-locks. This is a no-op unless the 
       
   177       ** shared-cache feature is enabled.
       
   178       */
       
   179       codeTableLocks(pParse);
       
   180       sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
       
   181     }
       
   182 
       
   183 #ifndef SQLITE_OMIT_TRACE
       
   184     if( !db->init.busy ){
       
   185       /* Change the P4 argument of the first opcode (which will always be
       
   186       ** an OP_Trace) to be the complete text of the current SQL statement.
       
   187       */
       
   188       VdbeOp *pOp = sqlite3VdbeGetOp(v, 0);
       
   189       if( pOp && pOp->opcode==OP_Trace ){
       
   190         sqlite3VdbeChangeP4(v, 0, pParse->zSql, pParse->zTail-pParse->zSql);
       
   191       }
       
   192     }
       
   193 #endif /* SQLITE_OMIT_TRACE */
       
   194   }
       
   195 
       
   196 
       
   197   /* Get the VDBE program ready for execution
       
   198   */
       
   199   if( v && pParse->nErr==0 && !db->mallocFailed ){
       
   200 #ifdef SQLITE_DEBUG
       
   201     FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
       
   202     sqlite3VdbeTrace(v, trace);
       
   203 #endif
       
   204     assert( pParse->disableColCache==0 );  /* Disables and re-enables match */
       
   205     sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
       
   206                          pParse->nTab+3, pParse->explain);
       
   207     pParse->rc = SQLITE_DONE;
       
   208     pParse->colNamesSet = 0;
       
   209   }else if( pParse->rc==SQLITE_OK ){
       
   210     pParse->rc = SQLITE_ERROR;
       
   211   }
       
   212   pParse->nTab = 0;
       
   213   pParse->nMem = 0;
       
   214   pParse->nSet = 0;
       
   215   pParse->nVar = 0;
       
   216   pParse->cookieMask = 0;
       
   217   pParse->cookieGoto = 0;
       
   218 }
       
   219 
       
   220 /*
       
   221 ** Run the parser and code generator recursively in order to generate
       
   222 ** code for the SQL statement given onto the end of the pParse context
       
   223 ** currently under construction.  When the parser is run recursively
       
   224 ** this way, the final OP_Halt is not appended and other initialization
       
   225 ** and finalization steps are omitted because those are handling by the
       
   226 ** outermost parser.
       
   227 **
       
   228 ** Not everything is nestable.  This facility is designed to permit
       
   229 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER.  Use
       
   230 ** care if you decide to try to use this routine for some other purposes.
       
   231 */
       
   232 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
       
   233   va_list ap;
       
   234   char *zSql;
       
   235   char *zErrMsg = 0;
       
   236   sqlite3 *db = pParse->db;
       
   237 # define SAVE_SZ  (sizeof(Parse) - offsetof(Parse,nVar))
       
   238   char saveBuf[SAVE_SZ];
       
   239 
       
   240   if( pParse->nErr ) return;
       
   241   assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
       
   242   va_start(ap, zFormat);
       
   243   zSql = sqlite3VMPrintf(db, zFormat, ap);
       
   244   va_end(ap);
       
   245   if( zSql==0 ){
       
   246     return;   /* A malloc must have failed */
       
   247   }
       
   248   pParse->nested++;
       
   249   memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
       
   250   memset(&pParse->nVar, 0, SAVE_SZ);
       
   251   sqlite3RunParser(pParse, zSql, &zErrMsg);
       
   252   sqlite3DbFree(db, zErrMsg);
       
   253   sqlite3DbFree(db, zSql);
       
   254   memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
       
   255   pParse->nested--;
       
   256 }
       
   257 
       
   258 /*
       
   259 ** Locate the in-memory structure that describes a particular database
       
   260 ** table given the name of that table and (optionally) the name of the
       
   261 ** database containing the table.  Return NULL if not found.
       
   262 **
       
   263 ** If zDatabase is 0, all databases are searched for the table and the
       
   264 ** first matching table is returned.  (No checking for duplicate table
       
   265 ** names is done.)  The search order is TEMP first, then MAIN, then any
       
   266 ** auxiliary databases added using the ATTACH command.
       
   267 **
       
   268 ** See also sqlite3LocateTable().
       
   269 */
       
   270 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
       
   271   Table *p = 0;
       
   272   int i;
       
   273   int nName;
       
   274   assert( zName!=0 );
       
   275   nName = sqlite3Strlen(db, zName) + 1;
       
   276   for(i=OMIT_TEMPDB; i<db->nDb; i++){
       
   277     int j = (i<2) ? i^1 : i;   /* Search TEMP before MAIN */
       
   278     if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
       
   279     p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
       
   280     if( p ) break;
       
   281   }
       
   282   return p;
       
   283 }
       
   284 
       
   285 /*
       
   286 ** Locate the in-memory structure that describes a particular database
       
   287 ** table given the name of that table and (optionally) the name of the
       
   288 ** database containing the table.  Return NULL if not found.  Also leave an
       
   289 ** error message in pParse->zErrMsg.
       
   290 **
       
   291 ** The difference between this routine and sqlite3FindTable() is that this
       
   292 ** routine leaves an error message in pParse->zErrMsg where
       
   293 ** sqlite3FindTable() does not.
       
   294 */
       
   295 Table *sqlite3LocateTable(
       
   296   Parse *pParse,         /* context in which to report errors */
       
   297   int isView,            /* True if looking for a VIEW rather than a TABLE */
       
   298   const char *zName,     /* Name of the table we are looking for */
       
   299   const char *zDbase     /* Name of the database.  Might be NULL */
       
   300 ){
       
   301   Table *p;
       
   302 
       
   303   /* Read the database schema. If an error occurs, leave an error message
       
   304   ** and code in pParse and return NULL. */
       
   305   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
       
   306     return 0;
       
   307   }
       
   308 
       
   309   p = sqlite3FindTable(pParse->db, zName, zDbase);
       
   310   if( p==0 ){
       
   311     const char *zMsg = isView ? "no such view" : "no such table";
       
   312     if( zDbase ){
       
   313       sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
       
   314     }else{
       
   315       sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
       
   316     }
       
   317     pParse->checkSchema = 1;
       
   318   }
       
   319   return p;
       
   320 }
       
   321 
       
   322 /*
       
   323 ** Locate the in-memory structure that describes 
       
   324 ** a particular index given the name of that index
       
   325 ** and the name of the database that contains the index.
       
   326 ** Return NULL if not found.
       
   327 **
       
   328 ** If zDatabase is 0, all databases are searched for the
       
   329 ** table and the first matching index is returned.  (No checking
       
   330 ** for duplicate index names is done.)  The search order is
       
   331 ** TEMP first, then MAIN, then any auxiliary databases added
       
   332 ** using the ATTACH command.
       
   333 */
       
   334 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
       
   335   Index *p = 0;
       
   336   int i;
       
   337   int nName = sqlite3Strlen(db, zName)+1;
       
   338   for(i=OMIT_TEMPDB; i<db->nDb; i++){
       
   339     int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
       
   340     Schema *pSchema = db->aDb[j].pSchema;
       
   341     if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
       
   342     assert( pSchema || (j==1 && !db->aDb[1].pBt) );
       
   343     if( pSchema ){
       
   344       p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
       
   345     }
       
   346     if( p ) break;
       
   347   }
       
   348   return p;
       
   349 }
       
   350 
       
   351 /*
       
   352 ** Reclaim the memory used by an index
       
   353 */
       
   354 static void freeIndex(Index *p){
       
   355   sqlite3 *db = p->pTable->db;
       
   356   sqlite3DbFree(db, p->zColAff);
       
   357   sqlite3DbFree(db, p);
       
   358 }
       
   359 
       
   360 /*
       
   361 ** Remove the given index from the index hash table, and free
       
   362 ** its memory structures.
       
   363 **
       
   364 ** The index is removed from the database hash tables but
       
   365 ** it is not unlinked from the Table that it indexes.
       
   366 ** Unlinking from the Table must be done by the calling function.
       
   367 */
       
   368 static void sqliteDeleteIndex(Index *p){
       
   369   Index *pOld;
       
   370   const char *zName = p->zName;
       
   371 
       
   372   pOld = sqlite3HashInsert(&p->pSchema->idxHash, zName, strlen(zName)+1, 0);
       
   373   assert( pOld==0 || pOld==p );
       
   374   freeIndex(p);
       
   375 }
       
   376 
       
   377 /*
       
   378 ** For the index called zIdxName which is found in the database iDb,
       
   379 ** unlike that index from its Table then remove the index from
       
   380 ** the index hash table and free all memory structures associated
       
   381 ** with the index.
       
   382 */
       
   383 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
       
   384   Index *pIndex;
       
   385   int len;
       
   386   Hash *pHash = &db->aDb[iDb].pSchema->idxHash;
       
   387 
       
   388   len = sqlite3Strlen(db, zIdxName);
       
   389   pIndex = sqlite3HashInsert(pHash, zIdxName, len+1, 0);
       
   390   if( pIndex ){
       
   391     if( pIndex->pTable->pIndex==pIndex ){
       
   392       pIndex->pTable->pIndex = pIndex->pNext;
       
   393     }else{
       
   394       Index *p;
       
   395       for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
       
   396       if( p && p->pNext==pIndex ){
       
   397         p->pNext = pIndex->pNext;
       
   398       }
       
   399     }
       
   400     freeIndex(pIndex);
       
   401   }
       
   402   db->flags |= SQLITE_InternChanges;
       
   403 }
       
   404 
       
   405 /*
       
   406 ** Erase all schema information from the in-memory hash tables of
       
   407 ** a single database.  This routine is called to reclaim memory
       
   408 ** before the database closes.  It is also called during a rollback
       
   409 ** if there were schema changes during the transaction or if a
       
   410 ** schema-cookie mismatch occurs.
       
   411 **
       
   412 ** If iDb<=0 then reset the internal schema tables for all database
       
   413 ** files.  If iDb>=2 then reset the internal schema for only the
       
   414 ** single file indicated.
       
   415 */
       
   416 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
       
   417   int i, j;
       
   418   assert( iDb>=0 && iDb<db->nDb );
       
   419 
       
   420   if( iDb==0 ){
       
   421     sqlite3BtreeEnterAll(db);
       
   422   }
       
   423   for(i=iDb; i<db->nDb; i++){
       
   424     Db *pDb = &db->aDb[i];
       
   425     if( pDb->pSchema ){
       
   426       assert(i==1 || (pDb->pBt && sqlite3BtreeHoldsMutex(pDb->pBt)));
       
   427       sqlite3SchemaFree(pDb->pSchema);
       
   428     }
       
   429     if( iDb>0 ) return;
       
   430   }
       
   431   assert( iDb==0 );
       
   432   db->flags &= ~SQLITE_InternChanges;
       
   433   sqlite3BtreeLeaveAll(db);
       
   434 
       
   435   /* If one or more of the auxiliary database files has been closed,
       
   436   ** then remove them from the auxiliary database list.  We take the
       
   437   ** opportunity to do this here since we have just deleted all of the
       
   438   ** schema hash tables and therefore do not have to make any changes
       
   439   ** to any of those tables.
       
   440   */
       
   441   for(i=0; i<db->nDb; i++){
       
   442     struct Db *pDb = &db->aDb[i];
       
   443     if( pDb->pBt==0 ){
       
   444       if( pDb->pAux && pDb->xFreeAux ) pDb->xFreeAux(pDb->pAux);
       
   445       pDb->pAux = 0;
       
   446     }
       
   447   }
       
   448   for(i=j=2; i<db->nDb; i++){
       
   449     struct Db *pDb = &db->aDb[i];
       
   450     if( pDb->pBt==0 ){
       
   451       sqlite3DbFree(db, pDb->zName);
       
   452       pDb->zName = 0;
       
   453       continue;
       
   454     }
       
   455     if( j<i ){
       
   456       db->aDb[j] = db->aDb[i];
       
   457     }
       
   458     j++;
       
   459   }
       
   460   memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
       
   461   db->nDb = j;
       
   462   if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
       
   463     memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
       
   464     sqlite3DbFree(db, db->aDb);
       
   465     db->aDb = db->aDbStatic;
       
   466   }
       
   467 }
       
   468 
       
   469 /*
       
   470 ** This routine is called when a commit occurs.
       
   471 */
       
   472 void sqlite3CommitInternalChanges(sqlite3 *db){
       
   473   db->flags &= ~SQLITE_InternChanges;
       
   474 }
       
   475 
       
   476 /*
       
   477 ** Clear the column names from a table or view.
       
   478 */
       
   479 static void sqliteResetColumnNames(Table *pTable){
       
   480   int i;
       
   481   Column *pCol;
       
   482   sqlite3 *db = pTable->db;
       
   483   assert( pTable!=0 );
       
   484   if( (pCol = pTable->aCol)!=0 ){
       
   485     for(i=0; i<pTable->nCol; i++, pCol++){
       
   486       sqlite3DbFree(db, pCol->zName);
       
   487       sqlite3ExprDelete(db, pCol->pDflt);
       
   488       sqlite3DbFree(db, pCol->zType);
       
   489       sqlite3DbFree(db, pCol->zColl);
       
   490     }
       
   491     sqlite3DbFree(db, pTable->aCol);
       
   492   }
       
   493   pTable->aCol = 0;
       
   494   pTable->nCol = 0;
       
   495 }
       
   496 
       
   497 /*
       
   498 ** Remove the memory data structures associated with the given
       
   499 ** Table.  No changes are made to disk by this routine.
       
   500 **
       
   501 ** This routine just deletes the data structure.  It does not unlink
       
   502 ** the table data structure from the hash table.  Nor does it remove
       
   503 ** foreign keys from the sqlite.aFKey hash table.  But it does destroy
       
   504 ** memory structures of the indices and foreign keys associated with 
       
   505 ** the table.
       
   506 */
       
   507 void sqlite3DeleteTable(Table *pTable){
       
   508   Index *pIndex, *pNext;
       
   509   FKey *pFKey, *pNextFKey;
       
   510   sqlite3 *db;
       
   511 
       
   512   if( pTable==0 ) return;
       
   513   db = pTable->db;
       
   514 
       
   515   /* Do not delete the table until the reference count reaches zero. */
       
   516   pTable->nRef--;
       
   517   if( pTable->nRef>0 ){
       
   518     return;
       
   519   }
       
   520   assert( pTable->nRef==0 );
       
   521 
       
   522   /* Delete all indices associated with this table
       
   523   */
       
   524   for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
       
   525     pNext = pIndex->pNext;
       
   526     assert( pIndex->pSchema==pTable->pSchema );
       
   527     sqliteDeleteIndex(pIndex);
       
   528   }
       
   529 
       
   530 #ifndef SQLITE_OMIT_FOREIGN_KEY
       
   531   /* Delete all foreign keys associated with this table.  The keys
       
   532   ** should have already been unlinked from the pSchema->aFKey hash table 
       
   533   */
       
   534   for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
       
   535     pNextFKey = pFKey->pNextFrom;
       
   536     assert( sqlite3HashFind(&pTable->pSchema->aFKey,
       
   537                            pFKey->zTo, strlen(pFKey->zTo)+1)!=pFKey );
       
   538     sqlite3DbFree(db, pFKey);
       
   539   }
       
   540 #endif
       
   541 
       
   542   /* Delete the Table structure itself.
       
   543   */
       
   544   sqliteResetColumnNames(pTable);
       
   545   sqlite3DbFree(db, pTable->zName);
       
   546   sqlite3DbFree(db, pTable->zColAff);
       
   547   sqlite3SelectDelete(db, pTable->pSelect);
       
   548 #ifndef SQLITE_OMIT_CHECK
       
   549   sqlite3ExprDelete(db, pTable->pCheck);
       
   550 #endif
       
   551   sqlite3VtabClear(pTable);
       
   552   sqlite3DbFree(db, pTable);
       
   553 }
       
   554 
       
   555 /*
       
   556 ** Unlink the given table from the hash tables and the delete the
       
   557 ** table structure with all its indices and foreign keys.
       
   558 */
       
   559 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
       
   560   Table *p;
       
   561   FKey *pF1, *pF2;
       
   562   Db *pDb;
       
   563 
       
   564   assert( db!=0 );
       
   565   assert( iDb>=0 && iDb<db->nDb );
       
   566   assert( zTabName && zTabName[0] );
       
   567   pDb = &db->aDb[iDb];
       
   568   p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, strlen(zTabName)+1,0);
       
   569   if( p ){
       
   570 #ifndef SQLITE_OMIT_FOREIGN_KEY
       
   571     for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
       
   572       int nTo = strlen(pF1->zTo) + 1;
       
   573       pF2 = sqlite3HashFind(&pDb->pSchema->aFKey, pF1->zTo, nTo);
       
   574       if( pF2==pF1 ){
       
   575         sqlite3HashInsert(&pDb->pSchema->aFKey, pF1->zTo, nTo, pF1->pNextTo);
       
   576       }else{
       
   577         while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
       
   578         if( pF2 ){
       
   579           pF2->pNextTo = pF1->pNextTo;
       
   580         }
       
   581       }
       
   582     }
       
   583 #endif
       
   584     sqlite3DeleteTable(p);
       
   585   }
       
   586   db->flags |= SQLITE_InternChanges;
       
   587 }
       
   588 
       
   589 /*
       
   590 ** Given a token, return a string that consists of the text of that
       
   591 ** token with any quotations removed.  Space to hold the returned string
       
   592 ** is obtained from sqliteMalloc() and must be freed by the calling
       
   593 ** function.
       
   594 **
       
   595 ** Tokens are often just pointers into the original SQL text and so
       
   596 ** are not \000 terminated and are not persistent.  The returned string
       
   597 ** is \000 terminated and is persistent.
       
   598 */
       
   599 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
       
   600   char *zName;
       
   601   if( pName ){
       
   602     zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
       
   603     sqlite3Dequote(zName);
       
   604   }else{
       
   605     zName = 0;
       
   606   }
       
   607   return zName;
       
   608 }
       
   609 
       
   610 /*
       
   611 ** Open the sqlite_master table stored in database number iDb for
       
   612 ** writing. The table is opened using cursor 0.
       
   613 */
       
   614 void sqlite3OpenMasterTable(Parse *p, int iDb){
       
   615   Vdbe *v = sqlite3GetVdbe(p);
       
   616   sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
       
   617   sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, 5);/* sqlite_master has 5 columns */
       
   618   sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
       
   619 }
       
   620 
       
   621 /*
       
   622 ** The token *pName contains the name of a database (either "main" or
       
   623 ** "temp" or the name of an attached db). This routine returns the
       
   624 ** index of the named database in db->aDb[], or -1 if the named db 
       
   625 ** does not exist.
       
   626 */
       
   627 int sqlite3FindDb(sqlite3 *db, Token *pName){
       
   628   int i = -1;    /* Database number */
       
   629   int n;         /* Number of characters in the name */
       
   630   Db *pDb;       /* A database whose name space is being searched */
       
   631   char *zName;   /* Name we are searching for */
       
   632 
       
   633   zName = sqlite3NameFromToken(db, pName);
       
   634   if( zName ){
       
   635     n = strlen(zName);
       
   636     for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
       
   637       if( (!OMIT_TEMPDB || i!=1 ) && n==strlen(pDb->zName) && 
       
   638           0==sqlite3StrICmp(pDb->zName, zName) ){
       
   639         break;
       
   640       }
       
   641     }
       
   642     sqlite3DbFree(db, zName);
       
   643   }
       
   644   return i;
       
   645 }
       
   646 
       
   647 /* The table or view or trigger name is passed to this routine via tokens
       
   648 ** pName1 and pName2. If the table name was fully qualified, for example:
       
   649 **
       
   650 ** CREATE TABLE xxx.yyy (...);
       
   651 ** 
       
   652 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
       
   653 ** the table name is not fully qualified, i.e.:
       
   654 **
       
   655 ** CREATE TABLE yyy(...);
       
   656 **
       
   657 ** Then pName1 is set to "yyy" and pName2 is "".
       
   658 **
       
   659 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
       
   660 ** pName2) that stores the unqualified table name.  The index of the
       
   661 ** database "xxx" is returned.
       
   662 */
       
   663 int sqlite3TwoPartName(
       
   664   Parse *pParse,      /* Parsing and code generating context */
       
   665   Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
       
   666   Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
       
   667   Token **pUnqual     /* Write the unqualified object name here */
       
   668 ){
       
   669   int iDb;                    /* Database holding the object */
       
   670   sqlite3 *db = pParse->db;
       
   671 
       
   672   if( pName2 && pName2->n>0 ){
       
   673     if( db->init.busy ) {
       
   674       sqlite3ErrorMsg(pParse, "corrupt database");
       
   675       pParse->nErr++;
       
   676       return -1;
       
   677     }
       
   678     *pUnqual = pName2;
       
   679     iDb = sqlite3FindDb(db, pName1);
       
   680     if( iDb<0 ){
       
   681       sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
       
   682       pParse->nErr++;
       
   683       return -1;
       
   684     }
       
   685   }else{
       
   686     assert( db->init.iDb==0 || db->init.busy );
       
   687     iDb = db->init.iDb;
       
   688     *pUnqual = pName1;
       
   689   }
       
   690   return iDb;
       
   691 }
       
   692 
       
   693 /*
       
   694 ** This routine is used to check if the UTF-8 string zName is a legal
       
   695 ** unqualified name for a new schema object (table, index, view or
       
   696 ** trigger). All names are legal except those that begin with the string
       
   697 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
       
   698 ** is reserved for internal use.
       
   699 */
       
   700 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
       
   701   if( !pParse->db->init.busy && pParse->nested==0 
       
   702           && (pParse->db->flags & SQLITE_WriteSchema)==0
       
   703           && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
       
   704     sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
       
   705     return SQLITE_ERROR;
       
   706   }
       
   707   return SQLITE_OK;
       
   708 }
       
   709 
       
   710 /*
       
   711 ** Begin constructing a new table representation in memory.  This is
       
   712 ** the first of several action routines that get called in response
       
   713 ** to a CREATE TABLE statement.  In particular, this routine is called
       
   714 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
       
   715 ** flag is true if the table should be stored in the auxiliary database
       
   716 ** file instead of in the main database file.  This is normally the case
       
   717 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
       
   718 ** CREATE and TABLE.
       
   719 **
       
   720 ** The new table record is initialized and put in pParse->pNewTable.
       
   721 ** As more of the CREATE TABLE statement is parsed, additional action
       
   722 ** routines will be called to add more information to this record.
       
   723 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
       
   724 ** is called to complete the construction of the new table record.
       
   725 */
       
   726 void sqlite3StartTable(
       
   727   Parse *pParse,   /* Parser context */
       
   728   Token *pName1,   /* First part of the name of the table or view */
       
   729   Token *pName2,   /* Second part of the name of the table or view */
       
   730   int isTemp,      /* True if this is a TEMP table */
       
   731   int isView,      /* True if this is a VIEW */
       
   732   int isVirtual,   /* True if this is a VIRTUAL table */
       
   733   int noErr        /* Do nothing if table already exists */
       
   734 ){
       
   735   Table *pTable;
       
   736   char *zName = 0; /* The name of the new table */
       
   737   sqlite3 *db = pParse->db;
       
   738   Vdbe *v;
       
   739   int iDb;         /* Database number to create the table in */
       
   740   Token *pName;    /* Unqualified name of the table to create */
       
   741 
       
   742   /* The table or view name to create is passed to this routine via tokens
       
   743   ** pName1 and pName2. If the table name was fully qualified, for example:
       
   744   **
       
   745   ** CREATE TABLE xxx.yyy (...);
       
   746   ** 
       
   747   ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
       
   748   ** the table name is not fully qualified, i.e.:
       
   749   **
       
   750   ** CREATE TABLE yyy(...);
       
   751   **
       
   752   ** Then pName1 is set to "yyy" and pName2 is "".
       
   753   **
       
   754   ** The call below sets the pName pointer to point at the token (pName1 or
       
   755   ** pName2) that stores the unqualified table name. The variable iDb is
       
   756   ** set to the index of the database that the table or view is to be
       
   757   ** created in.
       
   758   */
       
   759   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
       
   760   if( iDb<0 ) return;
       
   761   if( !OMIT_TEMPDB && isTemp && iDb>1 ){
       
   762     /* If creating a temp table, the name may not be qualified */
       
   763     sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
       
   764     return;
       
   765   }
       
   766   if( !OMIT_TEMPDB && isTemp ) iDb = 1;
       
   767 
       
   768   pParse->sNameToken = *pName;
       
   769   zName = sqlite3NameFromToken(db, pName);
       
   770   if( zName==0 ) return;
       
   771   if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
       
   772     goto begin_table_error;
       
   773   }
       
   774   if( db->init.iDb==1 ) isTemp = 1;
       
   775 #ifndef SQLITE_OMIT_AUTHORIZATION
       
   776   assert( (isTemp & 1)==isTemp );
       
   777   {
       
   778     int code;
       
   779     char *zDb = db->aDb[iDb].zName;
       
   780     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
       
   781       goto begin_table_error;
       
   782     }
       
   783     if( isView ){
       
   784       if( !OMIT_TEMPDB && isTemp ){
       
   785         code = SQLITE_CREATE_TEMP_VIEW;
       
   786       }else{
       
   787         code = SQLITE_CREATE_VIEW;
       
   788       }
       
   789     }else{
       
   790       if( !OMIT_TEMPDB && isTemp ){
       
   791         code = SQLITE_CREATE_TEMP_TABLE;
       
   792       }else{
       
   793         code = SQLITE_CREATE_TABLE;
       
   794       }
       
   795     }
       
   796     if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
       
   797       goto begin_table_error;
       
   798     }
       
   799   }
       
   800 #endif
       
   801 
       
   802   /* Make sure the new table name does not collide with an existing
       
   803   ** index or table name in the same database.  Issue an error message if
       
   804   ** it does. The exception is if the statement being parsed was passed
       
   805   ** to an sqlite3_declare_vtab() call. In that case only the column names
       
   806   ** and types will be used, so there is no need to test for namespace
       
   807   ** collisions.
       
   808   */
       
   809   if( !IN_DECLARE_VTAB ){
       
   810     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
       
   811       goto begin_table_error;
       
   812     }
       
   813     pTable = sqlite3FindTable(db, zName, db->aDb[iDb].zName);
       
   814     if( pTable ){
       
   815       if( !noErr ){
       
   816         sqlite3ErrorMsg(pParse, "table %T already exists", pName);
       
   817       }
       
   818       goto begin_table_error;
       
   819     }
       
   820     if( sqlite3FindIndex(db, zName, 0)!=0 && (iDb==0 || !db->init.busy) ){
       
   821       sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
       
   822       goto begin_table_error;
       
   823     }
       
   824   }
       
   825 
       
   826   pTable = sqlite3DbMallocZero(db, sizeof(Table));
       
   827   if( pTable==0 ){
       
   828     db->mallocFailed = 1;
       
   829     pParse->rc = SQLITE_NOMEM;
       
   830     pParse->nErr++;
       
   831     goto begin_table_error;
       
   832   }
       
   833   pTable->zName = zName;
       
   834   pTable->iPKey = -1;
       
   835   pTable->pSchema = db->aDb[iDb].pSchema;
       
   836   pTable->nRef = 1;
       
   837   pTable->db = db;
       
   838   if( pParse->pNewTable ) sqlite3DeleteTable(pParse->pNewTable);
       
   839   pParse->pNewTable = pTable;
       
   840 
       
   841   /* If this is the magic sqlite_sequence table used by autoincrement,
       
   842   ** then record a pointer to this table in the main database structure
       
   843   ** so that INSERT can find the table easily.
       
   844   */
       
   845 #ifndef SQLITE_OMIT_AUTOINCREMENT
       
   846   if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
       
   847     pTable->pSchema->pSeqTab = pTable;
       
   848   }
       
   849 #endif
       
   850 
       
   851   /* Begin generating the code that will insert the table record into
       
   852   ** the SQLITE_MASTER table.  Note in particular that we must go ahead
       
   853   ** and allocate the record number for the table entry now.  Before any
       
   854   ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
       
   855   ** indices to be created and the table record must come before the 
       
   856   ** indices.  Hence, the record number for the table must be allocated
       
   857   ** now.
       
   858   */
       
   859   if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
       
   860     int j1;
       
   861     int fileFormat;
       
   862     int reg1, reg2, reg3;
       
   863     sqlite3BeginWriteOperation(pParse, 0, iDb);
       
   864 
       
   865 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
   866     if( isVirtual ){
       
   867       sqlite3VdbeAddOp0(v, OP_VBegin);
       
   868     }
       
   869 #endif
       
   870 
       
   871     /* If the file format and encoding in the database have not been set, 
       
   872     ** set them now.
       
   873     */
       
   874     reg1 = pParse->regRowid = ++pParse->nMem;
       
   875     reg2 = pParse->regRoot = ++pParse->nMem;
       
   876     reg3 = ++pParse->nMem;
       
   877     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, 1);   /* file_format */
       
   878     sqlite3VdbeUsesBtree(v, iDb);
       
   879     j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
       
   880     fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
       
   881                   1 : SQLITE_MAX_FILE_FORMAT;
       
   882     sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
       
   883     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, reg3);
       
   884     sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
       
   885     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 4, reg3);
       
   886     sqlite3VdbeJumpHere(v, j1);
       
   887 
       
   888     /* This just creates a place-holder record in the sqlite_master table.
       
   889     ** The record created does not contain anything yet.  It will be replaced
       
   890     ** by the real entry in code generated at sqlite3EndTable().
       
   891     **
       
   892     ** The rowid for the new entry is left on the top of the stack.
       
   893     ** The rowid value is needed by the code that sqlite3EndTable will
       
   894     ** generate.
       
   895     */
       
   896 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
       
   897     if( isView || isVirtual ){
       
   898       sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
       
   899     }else
       
   900 #endif
       
   901     {
       
   902       sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
       
   903     }
       
   904     sqlite3OpenMasterTable(pParse, iDb);
       
   905     sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
       
   906     sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
       
   907     sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
       
   908     sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
       
   909     sqlite3VdbeAddOp0(v, OP_Close);
       
   910   }
       
   911 
       
   912   /* Normal (non-error) return. */
       
   913   return;
       
   914 
       
   915   /* If an error occurs, we jump here */
       
   916 begin_table_error:
       
   917   sqlite3DbFree(db, zName);
       
   918   return;
       
   919 }
       
   920 
       
   921 /*
       
   922 ** This macro is used to compare two strings in a case-insensitive manner.
       
   923 ** It is slightly faster than calling sqlite3StrICmp() directly, but
       
   924 ** produces larger code.
       
   925 **
       
   926 ** WARNING: This macro is not compatible with the strcmp() family. It
       
   927 ** returns true if the two strings are equal, otherwise false.
       
   928 */
       
   929 #define STRICMP(x, y) (\
       
   930 sqlite3UpperToLower[*(unsigned char *)(x)]==   \
       
   931 sqlite3UpperToLower[*(unsigned char *)(y)]     \
       
   932 && sqlite3StrICmp((x)+1,(y)+1)==0 )
       
   933 
       
   934 /*
       
   935 ** Add a new column to the table currently being constructed.
       
   936 **
       
   937 ** The parser calls this routine once for each column declaration
       
   938 ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
       
   939 ** first to get things going.  Then this routine is called for each
       
   940 ** column.
       
   941 */
       
   942 void sqlite3AddColumn(Parse *pParse, Token *pName){
       
   943   Table *p;
       
   944   int i;
       
   945   char *z;
       
   946   Column *pCol;
       
   947   sqlite3 *db = pParse->db;
       
   948   if( (p = pParse->pNewTable)==0 ) return;
       
   949 #if SQLITE_MAX_COLUMN
       
   950   if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
       
   951     sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
       
   952     return;
       
   953   }
       
   954 #endif
       
   955   z = sqlite3NameFromToken(pParse->db, pName);
       
   956   if( z==0 ) return;
       
   957   for(i=0; i<p->nCol; i++){
       
   958     if( STRICMP(z, p->aCol[i].zName) ){
       
   959       sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
       
   960       sqlite3DbFree(db, z);
       
   961       return;
       
   962     }
       
   963   }
       
   964   if( (p->nCol & 0x7)==0 ){
       
   965     Column *aNew;
       
   966     aNew = sqlite3DbRealloc(pParse->db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
       
   967     if( aNew==0 ){
       
   968       sqlite3DbFree(db, z);
       
   969       return;
       
   970     }
       
   971     p->aCol = aNew;
       
   972   }
       
   973   pCol = &p->aCol[p->nCol];
       
   974   memset(pCol, 0, sizeof(p->aCol[0]));
       
   975   pCol->zName = z;
       
   976  
       
   977   /* If there is no type specified, columns have the default affinity
       
   978   ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
       
   979   ** be called next to set pCol->affinity correctly.
       
   980   */
       
   981   pCol->affinity = SQLITE_AFF_NONE;
       
   982   p->nCol++;
       
   983 }
       
   984 
       
   985 /*
       
   986 ** This routine is called by the parser while in the middle of
       
   987 ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
       
   988 ** been seen on a column.  This routine sets the notNull flag on
       
   989 ** the column currently under construction.
       
   990 */
       
   991 void sqlite3AddNotNull(Parse *pParse, int onError){
       
   992   Table *p;
       
   993   int i;
       
   994   if( (p = pParse->pNewTable)==0 ) return;
       
   995   i = p->nCol-1;
       
   996   if( i>=0 ) p->aCol[i].notNull = onError;
       
   997 }
       
   998 
       
   999 /*
       
  1000 ** Scan the column type name zType (length nType) and return the
       
  1001 ** associated affinity type.
       
  1002 **
       
  1003 ** This routine does a case-independent search of zType for the 
       
  1004 ** substrings in the following table. If one of the substrings is
       
  1005 ** found, the corresponding affinity is returned. If zType contains
       
  1006 ** more than one of the substrings, entries toward the top of 
       
  1007 ** the table take priority. For example, if zType is 'BLOBINT', 
       
  1008 ** SQLITE_AFF_INTEGER is returned.
       
  1009 **
       
  1010 ** Substring     | Affinity
       
  1011 ** --------------------------------
       
  1012 ** 'INT'         | SQLITE_AFF_INTEGER
       
  1013 ** 'CHAR'        | SQLITE_AFF_TEXT
       
  1014 ** 'CLOB'        | SQLITE_AFF_TEXT
       
  1015 ** 'TEXT'        | SQLITE_AFF_TEXT
       
  1016 ** 'BLOB'        | SQLITE_AFF_NONE
       
  1017 ** 'REAL'        | SQLITE_AFF_REAL
       
  1018 ** 'FLOA'        | SQLITE_AFF_REAL
       
  1019 ** 'DOUB'        | SQLITE_AFF_REAL
       
  1020 **
       
  1021 ** If none of the substrings in the above table are found,
       
  1022 ** SQLITE_AFF_NUMERIC is returned.
       
  1023 */
       
  1024 char sqlite3AffinityType(const Token *pType){
       
  1025   u32 h = 0;
       
  1026   char aff = SQLITE_AFF_NUMERIC;
       
  1027   const unsigned char *zIn = pType->z;
       
  1028   const unsigned char *zEnd = &pType->z[pType->n];
       
  1029 
       
  1030   while( zIn!=zEnd ){
       
  1031     h = (h<<8) + sqlite3UpperToLower[*zIn];
       
  1032     zIn++;
       
  1033     if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
       
  1034       aff = SQLITE_AFF_TEXT; 
       
  1035     }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
       
  1036       aff = SQLITE_AFF_TEXT;
       
  1037     }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
       
  1038       aff = SQLITE_AFF_TEXT;
       
  1039     }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
       
  1040         && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
       
  1041       aff = SQLITE_AFF_NONE;
       
  1042 #ifndef SQLITE_OMIT_FLOATING_POINT
       
  1043     }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
       
  1044         && aff==SQLITE_AFF_NUMERIC ){
       
  1045       aff = SQLITE_AFF_REAL;
       
  1046     }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
       
  1047         && aff==SQLITE_AFF_NUMERIC ){
       
  1048       aff = SQLITE_AFF_REAL;
       
  1049     }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
       
  1050         && aff==SQLITE_AFF_NUMERIC ){
       
  1051       aff = SQLITE_AFF_REAL;
       
  1052 #endif
       
  1053     }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
       
  1054       aff = SQLITE_AFF_INTEGER;
       
  1055       break;
       
  1056     }
       
  1057   }
       
  1058 
       
  1059   return aff;
       
  1060 }
       
  1061 
       
  1062 /*
       
  1063 ** This routine is called by the parser while in the middle of
       
  1064 ** parsing a CREATE TABLE statement.  The pFirst token is the first
       
  1065 ** token in the sequence of tokens that describe the type of the
       
  1066 ** column currently under construction.   pLast is the last token
       
  1067 ** in the sequence.  Use this information to construct a string
       
  1068 ** that contains the typename of the column and store that string
       
  1069 ** in zType.
       
  1070 */ 
       
  1071 void sqlite3AddColumnType(Parse *pParse, Token *pType){
       
  1072   Table *p;
       
  1073   int i;
       
  1074   Column *pCol;
       
  1075   sqlite3 *db;
       
  1076 
       
  1077   if( (p = pParse->pNewTable)==0 ) return;
       
  1078   i = p->nCol-1;
       
  1079   if( i<0 ) return;
       
  1080   pCol = &p->aCol[i];
       
  1081   db = pParse->db;
       
  1082   sqlite3DbFree(db, pCol->zType);
       
  1083   pCol->zType = sqlite3NameFromToken(db, pType);
       
  1084   pCol->affinity = sqlite3AffinityType(pType);
       
  1085 }
       
  1086 
       
  1087 /*
       
  1088 ** The expression is the default value for the most recently added column
       
  1089 ** of the table currently under construction.
       
  1090 **
       
  1091 ** Default value expressions must be constant.  Raise an exception if this
       
  1092 ** is not the case.
       
  1093 **
       
  1094 ** This routine is called by the parser while in the middle of
       
  1095 ** parsing a CREATE TABLE statement.
       
  1096 */
       
  1097 void sqlite3AddDefaultValue(Parse *pParse, Expr *pExpr){
       
  1098   Table *p;
       
  1099   Column *pCol;
       
  1100   sqlite3 *db = pParse->db;
       
  1101   if( (p = pParse->pNewTable)!=0 ){
       
  1102     pCol = &(p->aCol[p->nCol-1]);
       
  1103     if( !sqlite3ExprIsConstantOrFunction(pExpr) ){
       
  1104       sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
       
  1105           pCol->zName);
       
  1106     }else{
       
  1107       Expr *pCopy;
       
  1108       sqlite3ExprDelete(db, pCol->pDflt);
       
  1109       pCol->pDflt = pCopy = sqlite3ExprDup(db, pExpr);
       
  1110       if( pCopy ){
       
  1111         sqlite3TokenCopy(db, &pCopy->span, &pExpr->span);
       
  1112       }
       
  1113     }
       
  1114   }
       
  1115   sqlite3ExprDelete(db, pExpr);
       
  1116 }
       
  1117 
       
  1118 /*
       
  1119 ** Designate the PRIMARY KEY for the table.  pList is a list of names 
       
  1120 ** of columns that form the primary key.  If pList is NULL, then the
       
  1121 ** most recently added column of the table is the primary key.
       
  1122 **
       
  1123 ** A table can have at most one primary key.  If the table already has
       
  1124 ** a primary key (and this is the second primary key) then create an
       
  1125 ** error.
       
  1126 **
       
  1127 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
       
  1128 ** then we will try to use that column as the rowid.  Set the Table.iPKey
       
  1129 ** field of the table under construction to be the index of the
       
  1130 ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
       
  1131 ** no INTEGER PRIMARY KEY.
       
  1132 **
       
  1133 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
       
  1134 ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
       
  1135 */
       
  1136 void sqlite3AddPrimaryKey(
       
  1137   Parse *pParse,    /* Parsing context */
       
  1138   ExprList *pList,  /* List of field names to be indexed */
       
  1139   int onError,      /* What to do with a uniqueness conflict */
       
  1140   int autoInc,      /* True if the AUTOINCREMENT keyword is present */
       
  1141   int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
       
  1142 ){
       
  1143   Table *pTab = pParse->pNewTable;
       
  1144   char *zType = 0;
       
  1145   int iCol = -1, i;
       
  1146   if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
       
  1147   if( pTab->tabFlags & TF_HasPrimaryKey ){
       
  1148     sqlite3ErrorMsg(pParse, 
       
  1149       "table \"%s\" has more than one primary key", pTab->zName);
       
  1150     goto primary_key_exit;
       
  1151   }
       
  1152   pTab->tabFlags |= TF_HasPrimaryKey;
       
  1153   if( pList==0 ){
       
  1154     iCol = pTab->nCol - 1;
       
  1155     pTab->aCol[iCol].isPrimKey = 1;
       
  1156   }else{
       
  1157     for(i=0; i<pList->nExpr; i++){
       
  1158       for(iCol=0; iCol<pTab->nCol; iCol++){
       
  1159         if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
       
  1160           break;
       
  1161         }
       
  1162       }
       
  1163       if( iCol<pTab->nCol ){
       
  1164         pTab->aCol[iCol].isPrimKey = 1;
       
  1165       }
       
  1166     }
       
  1167     if( pList->nExpr>1 ) iCol = -1;
       
  1168   }
       
  1169   if( iCol>=0 && iCol<pTab->nCol ){
       
  1170     zType = pTab->aCol[iCol].zType;
       
  1171   }
       
  1172   if( zType && sqlite3StrICmp(zType, "INTEGER")==0
       
  1173         && sortOrder==SQLITE_SO_ASC ){
       
  1174     pTab->iPKey = iCol;
       
  1175     pTab->keyConf = onError;
       
  1176     assert( autoInc==0 || autoInc==1 );
       
  1177     pTab->tabFlags |= autoInc*TF_Autoincrement;
       
  1178   }else if( autoInc ){
       
  1179 #ifndef SQLITE_OMIT_AUTOINCREMENT
       
  1180     sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
       
  1181        "INTEGER PRIMARY KEY");
       
  1182 #endif
       
  1183   }else{
       
  1184     sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
       
  1185     pList = 0;
       
  1186   }
       
  1187 
       
  1188 primary_key_exit:
       
  1189   sqlite3ExprListDelete(pParse->db, pList);
       
  1190   return;
       
  1191 }
       
  1192 
       
  1193 /*
       
  1194 ** Add a new CHECK constraint to the table currently under construction.
       
  1195 */
       
  1196 void sqlite3AddCheckConstraint(
       
  1197   Parse *pParse,    /* Parsing context */
       
  1198   Expr *pCheckExpr  /* The check expression */
       
  1199 ){
       
  1200   sqlite3 *db = pParse->db;
       
  1201 #ifndef SQLITE_OMIT_CHECK
       
  1202   Table *pTab = pParse->pNewTable;
       
  1203   if( pTab && !IN_DECLARE_VTAB ){
       
  1204     /* The CHECK expression must be duplicated so that tokens refer
       
  1205     ** to malloced space and not the (ephemeral) text of the CREATE TABLE
       
  1206     ** statement */
       
  1207     pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, 
       
  1208                                   sqlite3ExprDup(db, pCheckExpr));
       
  1209   }
       
  1210 #endif
       
  1211   sqlite3ExprDelete(db, pCheckExpr);
       
  1212 }
       
  1213 
       
  1214 /*
       
  1215 ** Set the collation function of the most recently parsed table column
       
  1216 ** to the CollSeq given.
       
  1217 */
       
  1218 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
       
  1219   Table *p;
       
  1220   int i;
       
  1221   char *zColl;              /* Dequoted name of collation sequence */
       
  1222   sqlite3 *db;
       
  1223 
       
  1224   if( (p = pParse->pNewTable)==0 ) return;
       
  1225   i = p->nCol-1;
       
  1226   db = pParse->db;
       
  1227   zColl = sqlite3NameFromToken(db, pToken);
       
  1228   if( !zColl ) return;
       
  1229 
       
  1230   if( sqlite3LocateCollSeq(pParse, zColl, -1) ){
       
  1231     Index *pIdx;
       
  1232     p->aCol[i].zColl = zColl;
       
  1233   
       
  1234     /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
       
  1235     ** then an index may have been created on this column before the
       
  1236     ** collation type was added. Correct this if it is the case.
       
  1237     */
       
  1238     for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
       
  1239       assert( pIdx->nColumn==1 );
       
  1240       if( pIdx->aiColumn[0]==i ){
       
  1241         pIdx->azColl[0] = p->aCol[i].zColl;
       
  1242       }
       
  1243     }
       
  1244   }else{
       
  1245     sqlite3DbFree(db, zColl);
       
  1246   }
       
  1247 }
       
  1248 
       
  1249 /*
       
  1250 ** This function returns the collation sequence for database native text
       
  1251 ** encoding identified by the string zName, length nName.
       
  1252 **
       
  1253 ** If the requested collation sequence is not available, or not available
       
  1254 ** in the database native encoding, the collation factory is invoked to
       
  1255 ** request it. If the collation factory does not supply such a sequence,
       
  1256 ** and the sequence is available in another text encoding, then that is
       
  1257 ** returned instead.
       
  1258 **
       
  1259 ** If no versions of the requested collations sequence are available, or
       
  1260 ** another error occurs, NULL is returned and an error message written into
       
  1261 ** pParse.
       
  1262 **
       
  1263 ** This routine is a wrapper around sqlite3FindCollSeq().  This routine
       
  1264 ** invokes the collation factory if the named collation cannot be found
       
  1265 ** and generates an error message.
       
  1266 */
       
  1267 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName, int nName){
       
  1268   sqlite3 *db = pParse->db;
       
  1269   u8 enc = ENC(db);
       
  1270   u8 initbusy = db->init.busy;
       
  1271   CollSeq *pColl;
       
  1272 
       
  1273   pColl = sqlite3FindCollSeq(db, enc, zName, nName, initbusy);
       
  1274   if( !initbusy && (!pColl || !pColl->xCmp) ){
       
  1275     pColl = sqlite3GetCollSeq(db, pColl, zName, nName);
       
  1276     if( !pColl ){
       
  1277       if( nName<0 ){
       
  1278         nName = sqlite3Strlen(db, zName);
       
  1279       }
       
  1280       sqlite3ErrorMsg(pParse, "no such collation sequence: %.*s", nName, zName);
       
  1281       pColl = 0;
       
  1282     }
       
  1283   }
       
  1284 
       
  1285   return pColl;
       
  1286 }
       
  1287 
       
  1288 
       
  1289 /*
       
  1290 ** Generate code that will increment the schema cookie.
       
  1291 **
       
  1292 ** The schema cookie is used to determine when the schema for the
       
  1293 ** database changes.  After each schema change, the cookie value
       
  1294 ** changes.  When a process first reads the schema it records the
       
  1295 ** cookie.  Thereafter, whenever it goes to access the database,
       
  1296 ** it checks the cookie to make sure the schema has not changed
       
  1297 ** since it was last read.
       
  1298 **
       
  1299 ** This plan is not completely bullet-proof.  It is possible for
       
  1300 ** the schema to change multiple times and for the cookie to be
       
  1301 ** set back to prior value.  But schema changes are infrequent
       
  1302 ** and the probability of hitting the same cookie value is only
       
  1303 ** 1 chance in 2^32.  So we're safe enough.
       
  1304 */
       
  1305 void sqlite3ChangeCookie(Parse *pParse, int iDb){
       
  1306   int r1 = sqlite3GetTempReg(pParse);
       
  1307   sqlite3 *db = pParse->db;
       
  1308   Vdbe *v = pParse->pVdbe;
       
  1309   sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
       
  1310   sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 0, r1);
       
  1311   sqlite3ReleaseTempReg(pParse, r1);
       
  1312 }
       
  1313 
       
  1314 /*
       
  1315 ** Measure the number of characters needed to output the given
       
  1316 ** identifier.  The number returned includes any quotes used
       
  1317 ** but does not include the null terminator.
       
  1318 **
       
  1319 ** The estimate is conservative.  It might be larger that what is
       
  1320 ** really needed.
       
  1321 */
       
  1322 static int identLength(const char *z){
       
  1323   int n;
       
  1324   for(n=0; *z; n++, z++){
       
  1325     if( *z=='"' ){ n++; }
       
  1326   }
       
  1327   return n + 2;
       
  1328 }
       
  1329 
       
  1330 /*
       
  1331 ** Write an identifier onto the end of the given string.  Add
       
  1332 ** quote characters as needed.
       
  1333 */
       
  1334 static void identPut(char *z, int *pIdx, char *zSignedIdent){
       
  1335   unsigned char *zIdent = (unsigned char*)zSignedIdent;
       
  1336   int i, j, needQuote;
       
  1337   i = *pIdx;
       
  1338   for(j=0; zIdent[j]; j++){
       
  1339     if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
       
  1340   }
       
  1341   needQuote =  zIdent[j]!=0 || isdigit(zIdent[0])
       
  1342                   || sqlite3KeywordCode(zIdent, j)!=TK_ID;
       
  1343   if( needQuote ) z[i++] = '"';
       
  1344   for(j=0; zIdent[j]; j++){
       
  1345     z[i++] = zIdent[j];
       
  1346     if( zIdent[j]=='"' ) z[i++] = '"';
       
  1347   }
       
  1348   if( needQuote ) z[i++] = '"';
       
  1349   z[i] = 0;
       
  1350   *pIdx = i;
       
  1351 }
       
  1352 
       
  1353 /*
       
  1354 ** Generate a CREATE TABLE statement appropriate for the given
       
  1355 ** table.  Memory to hold the text of the statement is obtained
       
  1356 ** from sqliteMalloc() and must be freed by the calling function.
       
  1357 */
       
  1358 static char *createTableStmt(sqlite3 *db, Table *p, int isTemp){
       
  1359   int i, k, n;
       
  1360   char *zStmt;
       
  1361   char *zSep, *zSep2, *zEnd, *z;
       
  1362   Column *pCol;
       
  1363   n = 0;
       
  1364   for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
       
  1365     n += identLength(pCol->zName);
       
  1366     z = pCol->zType;
       
  1367     if( z ){
       
  1368       n += (strlen(z) + 1);
       
  1369     }
       
  1370   }
       
  1371   n += identLength(p->zName);
       
  1372   if( n<50 ){
       
  1373     zSep = "";
       
  1374     zSep2 = ",";
       
  1375     zEnd = ")";
       
  1376   }else{
       
  1377     zSep = "\n  ";
       
  1378     zSep2 = ",\n  ";
       
  1379     zEnd = "\n)";
       
  1380   }
       
  1381   n += 35 + 6*p->nCol;
       
  1382   zStmt = sqlite3Malloc( n );
       
  1383   if( zStmt==0 ){
       
  1384     db->mallocFailed = 1;
       
  1385     return 0;
       
  1386   }
       
  1387   sqlite3_snprintf(n, zStmt,
       
  1388                   !OMIT_TEMPDB&&isTemp ? "CREATE TEMP TABLE ":"CREATE TABLE ");
       
  1389   k = strlen(zStmt);
       
  1390   identPut(zStmt, &k, p->zName);
       
  1391   zStmt[k++] = '(';
       
  1392   for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
       
  1393     sqlite3_snprintf(n-k, &zStmt[k], zSep);
       
  1394     k += strlen(&zStmt[k]);
       
  1395     zSep = zSep2;
       
  1396     identPut(zStmt, &k, pCol->zName);
       
  1397     if( (z = pCol->zType)!=0 ){
       
  1398       zStmt[k++] = ' ';
       
  1399       assert( strlen(z)+k+1<=n );
       
  1400       sqlite3_snprintf(n-k, &zStmt[k], "%s", z);
       
  1401       k += strlen(z);
       
  1402     }
       
  1403   }
       
  1404   sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
       
  1405   return zStmt;
       
  1406 }
       
  1407 
       
  1408 /*
       
  1409 ** This routine is called to report the final ")" that terminates
       
  1410 ** a CREATE TABLE statement.
       
  1411 **
       
  1412 ** The table structure that other action routines have been building
       
  1413 ** is added to the internal hash tables, assuming no errors have
       
  1414 ** occurred.
       
  1415 **
       
  1416 ** An entry for the table is made in the master table on disk, unless
       
  1417 ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
       
  1418 ** it means we are reading the sqlite_master table because we just
       
  1419 ** connected to the database or because the sqlite_master table has
       
  1420 ** recently changed, so the entry for this table already exists in
       
  1421 ** the sqlite_master table.  We do not want to create it again.
       
  1422 **
       
  1423 ** If the pSelect argument is not NULL, it means that this routine
       
  1424 ** was called to create a table generated from a 
       
  1425 ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
       
  1426 ** the new table will match the result set of the SELECT.
       
  1427 */
       
  1428 void sqlite3EndTable(
       
  1429   Parse *pParse,          /* Parse context */
       
  1430   Token *pCons,           /* The ',' token after the last column defn. */
       
  1431   Token *pEnd,            /* The final ')' token in the CREATE TABLE */
       
  1432   Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
       
  1433 ){
       
  1434   Table *p;
       
  1435   sqlite3 *db = pParse->db;
       
  1436   int iDb;
       
  1437 
       
  1438   if( (pEnd==0 && pSelect==0) || pParse->nErr || db->mallocFailed ) {
       
  1439     return;
       
  1440   }
       
  1441   p = pParse->pNewTable;
       
  1442   if( p==0 ) return;
       
  1443 
       
  1444   assert( !db->init.busy || !pSelect );
       
  1445 
       
  1446   iDb = sqlite3SchemaToIndex(db, p->pSchema);
       
  1447 
       
  1448 #ifndef SQLITE_OMIT_CHECK
       
  1449   /* Resolve names in all CHECK constraint expressions.
       
  1450   */
       
  1451   if( p->pCheck ){
       
  1452     SrcList sSrc;                   /* Fake SrcList for pParse->pNewTable */
       
  1453     NameContext sNC;                /* Name context for pParse->pNewTable */
       
  1454 
       
  1455     memset(&sNC, 0, sizeof(sNC));
       
  1456     memset(&sSrc, 0, sizeof(sSrc));
       
  1457     sSrc.nSrc = 1;
       
  1458     sSrc.a[0].zName = p->zName;
       
  1459     sSrc.a[0].pTab = p;
       
  1460     sSrc.a[0].iCursor = -1;
       
  1461     sNC.pParse = pParse;
       
  1462     sNC.pSrcList = &sSrc;
       
  1463     sNC.isCheck = 1;
       
  1464     if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
       
  1465       return;
       
  1466     }
       
  1467   }
       
  1468 #endif /* !defined(SQLITE_OMIT_CHECK) */
       
  1469 
       
  1470   /* If the db->init.busy is 1 it means we are reading the SQL off the
       
  1471   ** "sqlite_master" or "sqlite_temp_master" table on the disk.
       
  1472   ** So do not write to the disk again.  Extract the root page number
       
  1473   ** for the table from the db->init.newTnum field.  (The page number
       
  1474   ** should have been put there by the sqliteOpenCb routine.)
       
  1475   */
       
  1476   if( db->init.busy ){
       
  1477     p->tnum = db->init.newTnum;
       
  1478   }
       
  1479 
       
  1480   /* If not initializing, then create a record for the new table
       
  1481   ** in the SQLITE_MASTER table of the database.  The record number
       
  1482   ** for the new table entry should already be on the stack.
       
  1483   **
       
  1484   ** If this is a TEMPORARY table, write the entry into the auxiliary
       
  1485   ** file instead of into the main database file.
       
  1486   */
       
  1487   if( !db->init.busy ){
       
  1488     int n;
       
  1489     Vdbe *v;
       
  1490     char *zType;    /* "view" or "table" */
       
  1491     char *zType2;   /* "VIEW" or "TABLE" */
       
  1492     char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
       
  1493 
       
  1494     v = sqlite3GetVdbe(pParse);
       
  1495     if( v==0 ) return;
       
  1496 
       
  1497     sqlite3VdbeAddOp1(v, OP_Close, 0);
       
  1498 
       
  1499     /* Create the rootpage for the new table and push it onto the stack.
       
  1500     ** A view has no rootpage, so just push a zero onto the stack for
       
  1501     ** views.  Initialize zType at the same time.
       
  1502     */
       
  1503     if( p->pSelect==0 ){
       
  1504       /* A regular table */
       
  1505       zType = "table";
       
  1506       zType2 = "TABLE";
       
  1507 #ifndef SQLITE_OMIT_VIEW
       
  1508     }else{
       
  1509       /* A view */
       
  1510       zType = "view";
       
  1511       zType2 = "VIEW";
       
  1512 #endif
       
  1513     }
       
  1514 
       
  1515     /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
       
  1516     ** statement to populate the new table. The root-page number for the
       
  1517     ** new table is on the top of the vdbe stack.
       
  1518     **
       
  1519     ** Once the SELECT has been coded by sqlite3Select(), it is in a
       
  1520     ** suitable state to query for the column names and types to be used
       
  1521     ** by the new table.
       
  1522     **
       
  1523     ** A shared-cache write-lock is not required to write to the new table,
       
  1524     ** as a schema-lock must have already been obtained to create it. Since
       
  1525     ** a schema-lock excludes all other database users, the write-lock would
       
  1526     ** be redundant.
       
  1527     */
       
  1528     if( pSelect ){
       
  1529       SelectDest dest;
       
  1530       Table *pSelTab;
       
  1531 
       
  1532       assert(pParse->nTab==0);
       
  1533       sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
       
  1534       sqlite3VdbeChangeP5(v, 1);
       
  1535       pParse->nTab = 2;
       
  1536       sqlite3SelectDestInit(&dest, SRT_Table, 1);
       
  1537       sqlite3Select(pParse, pSelect, &dest);
       
  1538       sqlite3VdbeAddOp1(v, OP_Close, 1);
       
  1539       if( pParse->nErr==0 ){
       
  1540         pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
       
  1541         if( pSelTab==0 ) return;
       
  1542         assert( p->aCol==0 );
       
  1543         p->nCol = pSelTab->nCol;
       
  1544         p->aCol = pSelTab->aCol;
       
  1545         pSelTab->nCol = 0;
       
  1546         pSelTab->aCol = 0;
       
  1547         sqlite3DeleteTable(pSelTab);
       
  1548       }
       
  1549     }
       
  1550 
       
  1551     /* Compute the complete text of the CREATE statement */
       
  1552     if( pSelect ){
       
  1553       zStmt = createTableStmt(db, p, p->pSchema==db->aDb[1].pSchema);
       
  1554     }else{
       
  1555       n = pEnd->z - pParse->sNameToken.z + 1;
       
  1556       zStmt = sqlite3MPrintf(db, 
       
  1557           "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
       
  1558       );
       
  1559     }
       
  1560 
       
  1561     /* A slot for the record has already been allocated in the 
       
  1562     ** SQLITE_MASTER table.  We just need to update that slot with all
       
  1563     ** the information we've collected.  The rowid for the preallocated
       
  1564     ** slot is the 2nd item on the stack.  The top of the stack is the
       
  1565     ** root page for the new table (or a 0 if this is a view).
       
  1566     */
       
  1567     sqlite3NestedParse(pParse,
       
  1568       "UPDATE %Q.%s "
       
  1569          "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
       
  1570        "WHERE rowid=#%d",
       
  1571       db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
       
  1572       zType,
       
  1573       p->zName,
       
  1574       p->zName,
       
  1575       pParse->regRoot,
       
  1576       zStmt,
       
  1577       pParse->regRowid
       
  1578     );
       
  1579     sqlite3DbFree(db, zStmt);
       
  1580     sqlite3ChangeCookie(pParse, iDb);
       
  1581 
       
  1582 #ifndef SQLITE_OMIT_AUTOINCREMENT
       
  1583     /* Check to see if we need to create an sqlite_sequence table for
       
  1584     ** keeping track of autoincrement keys.
       
  1585     */
       
  1586     if( p->tabFlags & TF_Autoincrement ){
       
  1587       Db *pDb = &db->aDb[iDb];
       
  1588       if( pDb->pSchema->pSeqTab==0 ){
       
  1589         sqlite3NestedParse(pParse,
       
  1590           "CREATE TABLE %Q.sqlite_sequence(name,seq)",
       
  1591           pDb->zName
       
  1592         );
       
  1593       }
       
  1594     }
       
  1595 #endif
       
  1596 
       
  1597     /* Reparse everything to update our internal data structures */
       
  1598     sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
       
  1599         sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
       
  1600   }
       
  1601 
       
  1602 
       
  1603   /* Add the table to the in-memory representation of the database.
       
  1604   */
       
  1605   if( db->init.busy && pParse->nErr==0 ){
       
  1606     Table *pOld;
       
  1607     FKey *pFKey; 
       
  1608     Schema *pSchema = p->pSchema;
       
  1609     pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, strlen(p->zName)+1,p);
       
  1610     if( pOld ){
       
  1611       assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
       
  1612       db->mallocFailed = 1;
       
  1613       return;
       
  1614     }
       
  1615 #ifndef SQLITE_OMIT_FOREIGN_KEY
       
  1616     for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
       
  1617       void *data;
       
  1618       int nTo = strlen(pFKey->zTo) + 1;
       
  1619       pFKey->pNextTo = sqlite3HashFind(&pSchema->aFKey, pFKey->zTo, nTo);
       
  1620       data = sqlite3HashInsert(&pSchema->aFKey, pFKey->zTo, nTo, pFKey);
       
  1621       if( data==(void *)pFKey ){
       
  1622         db->mallocFailed = 1;
       
  1623       }
       
  1624     }
       
  1625 #endif
       
  1626     pParse->pNewTable = 0;
       
  1627     db->nTable++;
       
  1628     db->flags |= SQLITE_InternChanges;
       
  1629 
       
  1630 #ifndef SQLITE_OMIT_ALTERTABLE
       
  1631     if( !p->pSelect ){
       
  1632       const char *zName = (const char *)pParse->sNameToken.z;
       
  1633       int nName;
       
  1634       assert( !pSelect && pCons && pEnd );
       
  1635       if( pCons->z==0 ){
       
  1636         pCons = pEnd;
       
  1637       }
       
  1638       nName = (const char *)pCons->z - zName;
       
  1639       p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
       
  1640     }
       
  1641 #endif
       
  1642   }
       
  1643 }
       
  1644 
       
  1645 #ifndef SQLITE_OMIT_VIEW
       
  1646 /*
       
  1647 ** The parser calls this routine in order to create a new VIEW
       
  1648 */
       
  1649 void sqlite3CreateView(
       
  1650   Parse *pParse,     /* The parsing context */
       
  1651   Token *pBegin,     /* The CREATE token that begins the statement */
       
  1652   Token *pName1,     /* The token that holds the name of the view */
       
  1653   Token *pName2,     /* The token that holds the name of the view */
       
  1654   Select *pSelect,   /* A SELECT statement that will become the new view */
       
  1655   int isTemp,        /* TRUE for a TEMPORARY view */
       
  1656   int noErr          /* Suppress error messages if VIEW already exists */
       
  1657 ){
       
  1658   Table *p;
       
  1659   int n;
       
  1660   const unsigned char *z;
       
  1661   Token sEnd;
       
  1662   DbFixer sFix;
       
  1663   Token *pName;
       
  1664   int iDb;
       
  1665   sqlite3 *db = pParse->db;
       
  1666 
       
  1667   if( pParse->nVar>0 ){
       
  1668     sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
       
  1669     sqlite3SelectDelete(db, pSelect);
       
  1670     return;
       
  1671   }
       
  1672   sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
       
  1673   p = pParse->pNewTable;
       
  1674   if( p==0 || pParse->nErr ){
       
  1675     sqlite3SelectDelete(db, pSelect);
       
  1676     return;
       
  1677   }
       
  1678   sqlite3TwoPartName(pParse, pName1, pName2, &pName);
       
  1679   iDb = sqlite3SchemaToIndex(db, p->pSchema);
       
  1680   if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
       
  1681     && sqlite3FixSelect(&sFix, pSelect)
       
  1682   ){
       
  1683     sqlite3SelectDelete(db, pSelect);
       
  1684     return;
       
  1685   }
       
  1686 
       
  1687   /* Make a copy of the entire SELECT statement that defines the view.
       
  1688   ** This will force all the Expr.token.z values to be dynamically
       
  1689   ** allocated rather than point to the input string - which means that
       
  1690   ** they will persist after the current sqlite3_exec() call returns.
       
  1691   */
       
  1692   p->pSelect = sqlite3SelectDup(db, pSelect);
       
  1693   sqlite3SelectDelete(db, pSelect);
       
  1694   if( db->mallocFailed ){
       
  1695     return;
       
  1696   }
       
  1697   if( !db->init.busy ){
       
  1698     sqlite3ViewGetColumnNames(pParse, p);
       
  1699   }
       
  1700 
       
  1701   /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
       
  1702   ** the end.
       
  1703   */
       
  1704   sEnd = pParse->sLastToken;
       
  1705   if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
       
  1706     sEnd.z += sEnd.n;
       
  1707   }
       
  1708   sEnd.n = 0;
       
  1709   n = sEnd.z - pBegin->z;
       
  1710   z = (const unsigned char*)pBegin->z;
       
  1711   while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
       
  1712   sEnd.z = &z[n-1];
       
  1713   sEnd.n = 1;
       
  1714 
       
  1715   /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
       
  1716   sqlite3EndTable(pParse, 0, &sEnd, 0);
       
  1717   return;
       
  1718 }
       
  1719 #endif /* SQLITE_OMIT_VIEW */
       
  1720 
       
  1721 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
       
  1722 /*
       
  1723 ** The Table structure pTable is really a VIEW.  Fill in the names of
       
  1724 ** the columns of the view in the pTable structure.  Return the number
       
  1725 ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
       
  1726 */
       
  1727 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
       
  1728   Table *pSelTab;   /* A fake table from which we get the result set */
       
  1729   Select *pSel;     /* Copy of the SELECT that implements the view */
       
  1730   int nErr = 0;     /* Number of errors encountered */
       
  1731   int n;            /* Temporarily holds the number of cursors assigned */
       
  1732   sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
       
  1733   int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
       
  1734 
       
  1735   assert( pTable );
       
  1736 
       
  1737 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  1738   if( sqlite3VtabCallConnect(pParse, pTable) ){
       
  1739     return SQLITE_ERROR;
       
  1740   }
       
  1741   if( IsVirtual(pTable) ) return 0;
       
  1742 #endif
       
  1743 
       
  1744 #ifndef SQLITE_OMIT_VIEW
       
  1745   /* A positive nCol means the columns names for this view are
       
  1746   ** already known.
       
  1747   */
       
  1748   if( pTable->nCol>0 ) return 0;
       
  1749 
       
  1750   /* A negative nCol is a special marker meaning that we are currently
       
  1751   ** trying to compute the column names.  If we enter this routine with
       
  1752   ** a negative nCol, it means two or more views form a loop, like this:
       
  1753   **
       
  1754   **     CREATE VIEW one AS SELECT * FROM two;
       
  1755   **     CREATE VIEW two AS SELECT * FROM one;
       
  1756   **
       
  1757   ** Actually, this error is caught previously and so the following test
       
  1758   ** should always fail.  But we will leave it in place just to be safe.
       
  1759   */
       
  1760   if( pTable->nCol<0 ){
       
  1761     sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
       
  1762     return 1;
       
  1763   }
       
  1764   assert( pTable->nCol>=0 );
       
  1765 
       
  1766   /* If we get this far, it means we need to compute the table names.
       
  1767   ** Note that the call to sqlite3ResultSetOfSelect() will expand any
       
  1768   ** "*" elements in the results set of the view and will assign cursors
       
  1769   ** to the elements of the FROM clause.  But we do not want these changes
       
  1770   ** to be permanent.  So the computation is done on a copy of the SELECT
       
  1771   ** statement that defines the view.
       
  1772   */
       
  1773   assert( pTable->pSelect );
       
  1774   pSel = sqlite3SelectDup(db, pTable->pSelect);
       
  1775   if( pSel ){
       
  1776     n = pParse->nTab;
       
  1777     sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
       
  1778     pTable->nCol = -1;
       
  1779 #ifndef SQLITE_OMIT_AUTHORIZATION
       
  1780     xAuth = db->xAuth;
       
  1781     db->xAuth = 0;
       
  1782     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
       
  1783     db->xAuth = xAuth;
       
  1784 #else
       
  1785     pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
       
  1786 #endif
       
  1787     pParse->nTab = n;
       
  1788     if( pSelTab ){
       
  1789       assert( pTable->aCol==0 );
       
  1790       pTable->nCol = pSelTab->nCol;
       
  1791       pTable->aCol = pSelTab->aCol;
       
  1792       pSelTab->nCol = 0;
       
  1793       pSelTab->aCol = 0;
       
  1794       sqlite3DeleteTable(pSelTab);
       
  1795       pTable->pSchema->flags |= DB_UnresetViews;
       
  1796     }else{
       
  1797       pTable->nCol = 0;
       
  1798       nErr++;
       
  1799     }
       
  1800     sqlite3SelectDelete(db, pSel);
       
  1801   } else {
       
  1802     nErr++;
       
  1803   }
       
  1804 #endif /* SQLITE_OMIT_VIEW */
       
  1805   return nErr;  
       
  1806 }
       
  1807 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
       
  1808 
       
  1809 #ifndef SQLITE_OMIT_VIEW
       
  1810 /*
       
  1811 ** Clear the column names from every VIEW in database idx.
       
  1812 */
       
  1813 static void sqliteViewResetAll(sqlite3 *db, int idx){
       
  1814   HashElem *i;
       
  1815   if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
       
  1816   for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
       
  1817     Table *pTab = sqliteHashData(i);
       
  1818     if( pTab->pSelect ){
       
  1819       sqliteResetColumnNames(pTab);
       
  1820     }
       
  1821   }
       
  1822   DbClearProperty(db, idx, DB_UnresetViews);
       
  1823 }
       
  1824 #else
       
  1825 # define sqliteViewResetAll(A,B)
       
  1826 #endif /* SQLITE_OMIT_VIEW */
       
  1827 
       
  1828 /*
       
  1829 ** This function is called by the VDBE to adjust the internal schema
       
  1830 ** used by SQLite when the btree layer moves a table root page. The
       
  1831 ** root-page of a table or index in database iDb has changed from iFrom
       
  1832 ** to iTo.
       
  1833 **
       
  1834 ** Ticket #1728:  The symbol table might still contain information
       
  1835 ** on tables and/or indices that are the process of being deleted.
       
  1836 ** If you are unlucky, one of those deleted indices or tables might
       
  1837 ** have the same rootpage number as the real table or index that is
       
  1838 ** being moved.  So we cannot stop searching after the first match 
       
  1839 ** because the first match might be for one of the deleted indices
       
  1840 ** or tables and not the table/index that is actually being moved.
       
  1841 ** We must continue looping until all tables and indices with
       
  1842 ** rootpage==iFrom have been converted to have a rootpage of iTo
       
  1843 ** in order to be certain that we got the right one.
       
  1844 */
       
  1845 #ifndef SQLITE_OMIT_AUTOVACUUM
       
  1846 void sqlite3RootPageMoved(Db *pDb, int iFrom, int iTo){
       
  1847   HashElem *pElem;
       
  1848   Hash *pHash;
       
  1849 
       
  1850   pHash = &pDb->pSchema->tblHash;
       
  1851   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
       
  1852     Table *pTab = sqliteHashData(pElem);
       
  1853     if( pTab->tnum==iFrom ){
       
  1854       pTab->tnum = iTo;
       
  1855     }
       
  1856   }
       
  1857   pHash = &pDb->pSchema->idxHash;
       
  1858   for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
       
  1859     Index *pIdx = sqliteHashData(pElem);
       
  1860     if( pIdx->tnum==iFrom ){
       
  1861       pIdx->tnum = iTo;
       
  1862     }
       
  1863   }
       
  1864 }
       
  1865 #endif
       
  1866 
       
  1867 /*
       
  1868 ** Write code to erase the table with root-page iTable from database iDb.
       
  1869 ** Also write code to modify the sqlite_master table and internal schema
       
  1870 ** if a root-page of another table is moved by the btree-layer whilst
       
  1871 ** erasing iTable (this can happen with an auto-vacuum database).
       
  1872 */ 
       
  1873 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
       
  1874   Vdbe *v = sqlite3GetVdbe(pParse);
       
  1875   int r1 = sqlite3GetTempReg(pParse);
       
  1876   sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
       
  1877 #ifndef SQLITE_OMIT_AUTOVACUUM
       
  1878   /* OP_Destroy stores an in integer r1. If this integer
       
  1879   ** is non-zero, then it is the root page number of a table moved to
       
  1880   ** location iTable. The following code modifies the sqlite_master table to
       
  1881   ** reflect this.
       
  1882   **
       
  1883   ** The "#%d" in the SQL is a special constant that means whatever value
       
  1884   ** is on the top of the stack.  See sqlite3RegisterExpr().
       
  1885   */
       
  1886   sqlite3NestedParse(pParse, 
       
  1887      "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
       
  1888      pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
       
  1889 #endif
       
  1890   sqlite3ReleaseTempReg(pParse, r1);
       
  1891 }
       
  1892 
       
  1893 /*
       
  1894 ** Write VDBE code to erase table pTab and all associated indices on disk.
       
  1895 ** Code to update the sqlite_master tables and internal schema definitions
       
  1896 ** in case a root-page belonging to another table is moved by the btree layer
       
  1897 ** is also added (this can happen with an auto-vacuum database).
       
  1898 */
       
  1899 static void destroyTable(Parse *pParse, Table *pTab){
       
  1900 #ifdef SQLITE_OMIT_AUTOVACUUM
       
  1901   Index *pIdx;
       
  1902   int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
       
  1903   destroyRootPage(pParse, pTab->tnum, iDb);
       
  1904   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
       
  1905     destroyRootPage(pParse, pIdx->tnum, iDb);
       
  1906   }
       
  1907 #else
       
  1908   /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
       
  1909   ** is not defined), then it is important to call OP_Destroy on the
       
  1910   ** table and index root-pages in order, starting with the numerically 
       
  1911   ** largest root-page number. This guarantees that none of the root-pages
       
  1912   ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
       
  1913   ** following were coded:
       
  1914   **
       
  1915   ** OP_Destroy 4 0
       
  1916   ** ...
       
  1917   ** OP_Destroy 5 0
       
  1918   **
       
  1919   ** and root page 5 happened to be the largest root-page number in the
       
  1920   ** database, then root page 5 would be moved to page 4 by the 
       
  1921   ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
       
  1922   ** a free-list page.
       
  1923   */
       
  1924   int iTab = pTab->tnum;
       
  1925   int iDestroyed = 0;
       
  1926 
       
  1927   while( 1 ){
       
  1928     Index *pIdx;
       
  1929     int iLargest = 0;
       
  1930 
       
  1931     if( iDestroyed==0 || iTab<iDestroyed ){
       
  1932       iLargest = iTab;
       
  1933     }
       
  1934     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
       
  1935       int iIdx = pIdx->tnum;
       
  1936       assert( pIdx->pSchema==pTab->pSchema );
       
  1937       if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
       
  1938         iLargest = iIdx;
       
  1939       }
       
  1940     }
       
  1941     if( iLargest==0 ){
       
  1942       return;
       
  1943     }else{
       
  1944       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
       
  1945       destroyRootPage(pParse, iLargest, iDb);
       
  1946       iDestroyed = iLargest;
       
  1947     }
       
  1948   }
       
  1949 #endif
       
  1950 }
       
  1951 
       
  1952 /*
       
  1953 ** This routine is called to do the work of a DROP TABLE statement.
       
  1954 ** pName is the name of the table to be dropped.
       
  1955 */
       
  1956 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
       
  1957   Table *pTab;
       
  1958   Vdbe *v;
       
  1959   sqlite3 *db = pParse->db;
       
  1960   int iDb;
       
  1961 
       
  1962   if( pParse->nErr || db->mallocFailed ){
       
  1963     goto exit_drop_table;
       
  1964   }
       
  1965   assert( pName->nSrc==1 );
       
  1966   pTab = sqlite3LocateTable(pParse, isView, 
       
  1967                             pName->a[0].zName, pName->a[0].zDatabase);
       
  1968 
       
  1969   if( pTab==0 ){
       
  1970     if( noErr ){
       
  1971       sqlite3ErrorClear(pParse);
       
  1972     }
       
  1973     goto exit_drop_table;
       
  1974   }
       
  1975   iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
       
  1976   assert( iDb>=0 && iDb<db->nDb );
       
  1977 
       
  1978   /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
       
  1979   ** it is initialized.
       
  1980   */
       
  1981   if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
       
  1982     goto exit_drop_table;
       
  1983   }
       
  1984 #ifndef SQLITE_OMIT_AUTHORIZATION
       
  1985   {
       
  1986     int code;
       
  1987     const char *zTab = SCHEMA_TABLE(iDb);
       
  1988     const char *zDb = db->aDb[iDb].zName;
       
  1989     const char *zArg2 = 0;
       
  1990     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
       
  1991       goto exit_drop_table;
       
  1992     }
       
  1993     if( isView ){
       
  1994       if( !OMIT_TEMPDB && iDb==1 ){
       
  1995         code = SQLITE_DROP_TEMP_VIEW;
       
  1996       }else{
       
  1997         code = SQLITE_DROP_VIEW;
       
  1998       }
       
  1999 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  2000     }else if( IsVirtual(pTab) ){
       
  2001       code = SQLITE_DROP_VTABLE;
       
  2002       zArg2 = pTab->pMod->zName;
       
  2003 #endif
       
  2004     }else{
       
  2005       if( !OMIT_TEMPDB && iDb==1 ){
       
  2006         code = SQLITE_DROP_TEMP_TABLE;
       
  2007       }else{
       
  2008         code = SQLITE_DROP_TABLE;
       
  2009       }
       
  2010     }
       
  2011     if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
       
  2012       goto exit_drop_table;
       
  2013     }
       
  2014     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
       
  2015       goto exit_drop_table;
       
  2016     }
       
  2017   }
       
  2018 #endif
       
  2019   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
       
  2020     sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
       
  2021     goto exit_drop_table;
       
  2022   }
       
  2023 
       
  2024 #ifndef SQLITE_OMIT_VIEW
       
  2025   /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
       
  2026   ** on a table.
       
  2027   */
       
  2028   if( isView && pTab->pSelect==0 ){
       
  2029     sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
       
  2030     goto exit_drop_table;
       
  2031   }
       
  2032   if( !isView && pTab->pSelect ){
       
  2033     sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
       
  2034     goto exit_drop_table;
       
  2035   }
       
  2036 #endif
       
  2037 
       
  2038   /* Generate code to remove the table from the master table
       
  2039   ** on disk.
       
  2040   */
       
  2041   v = sqlite3GetVdbe(pParse);
       
  2042   if( v ){
       
  2043     Trigger *pTrigger;
       
  2044     Db *pDb = &db->aDb[iDb];
       
  2045     sqlite3BeginWriteOperation(pParse, 1, iDb);
       
  2046 
       
  2047 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  2048     if( IsVirtual(pTab) ){
       
  2049       Vdbe *v = sqlite3GetVdbe(pParse);
       
  2050       if( v ){
       
  2051         sqlite3VdbeAddOp0(v, OP_VBegin);
       
  2052       }
       
  2053     }
       
  2054 #endif
       
  2055 
       
  2056     /* Drop all triggers associated with the table being dropped. Code
       
  2057     ** is generated to remove entries from sqlite_master and/or
       
  2058     ** sqlite_temp_master if required.
       
  2059     */
       
  2060     pTrigger = pTab->pTrigger;
       
  2061     while( pTrigger ){
       
  2062       assert( pTrigger->pSchema==pTab->pSchema || 
       
  2063           pTrigger->pSchema==db->aDb[1].pSchema );
       
  2064       sqlite3DropTriggerPtr(pParse, pTrigger);
       
  2065       pTrigger = pTrigger->pNext;
       
  2066     }
       
  2067 
       
  2068 #ifndef SQLITE_OMIT_AUTOINCREMENT
       
  2069     /* Remove any entries of the sqlite_sequence table associated with
       
  2070     ** the table being dropped. This is done before the table is dropped
       
  2071     ** at the btree level, in case the sqlite_sequence table needs to
       
  2072     ** move as a result of the drop (can happen in auto-vacuum mode).
       
  2073     */
       
  2074     if( pTab->tabFlags & TF_Autoincrement ){
       
  2075       sqlite3NestedParse(pParse,
       
  2076         "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
       
  2077         pDb->zName, pTab->zName
       
  2078       );
       
  2079     }
       
  2080 #endif
       
  2081 
       
  2082     /* Drop all SQLITE_MASTER table and index entries that refer to the
       
  2083     ** table. The program name loops through the master table and deletes
       
  2084     ** every row that refers to a table of the same name as the one being
       
  2085     ** dropped. Triggers are handled seperately because a trigger can be
       
  2086     ** created in the temp database that refers to a table in another
       
  2087     ** database.
       
  2088     */
       
  2089     sqlite3NestedParse(pParse, 
       
  2090         "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
       
  2091         pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
       
  2092 
       
  2093     /* Drop any statistics from the sqlite_stat1 table, if it exists */
       
  2094     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
       
  2095       sqlite3NestedParse(pParse,
       
  2096         "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
       
  2097       );
       
  2098     }
       
  2099 
       
  2100     if( !isView && !IsVirtual(pTab) ){
       
  2101       destroyTable(pParse, pTab);
       
  2102     }
       
  2103 
       
  2104     /* Remove the table entry from SQLite's internal schema and modify
       
  2105     ** the schema cookie.
       
  2106     */
       
  2107     if( IsVirtual(pTab) ){
       
  2108       sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
       
  2109     }
       
  2110     sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
       
  2111     sqlite3ChangeCookie(pParse, iDb);
       
  2112   }
       
  2113   sqliteViewResetAll(db, iDb);
       
  2114 
       
  2115 exit_drop_table:
       
  2116   sqlite3SrcListDelete(db, pName);
       
  2117 }
       
  2118 
       
  2119 /*
       
  2120 ** This routine is called to create a new foreign key on the table
       
  2121 ** currently under construction.  pFromCol determines which columns
       
  2122 ** in the current table point to the foreign key.  If pFromCol==0 then
       
  2123 ** connect the key to the last column inserted.  pTo is the name of
       
  2124 ** the table referred to.  pToCol is a list of tables in the other
       
  2125 ** pTo table that the foreign key points to.  flags contains all
       
  2126 ** information about the conflict resolution algorithms specified
       
  2127 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
       
  2128 **
       
  2129 ** An FKey structure is created and added to the table currently
       
  2130 ** under construction in the pParse->pNewTable field.  The new FKey
       
  2131 ** is not linked into db->aFKey at this point - that does not happen
       
  2132 ** until sqlite3EndTable().
       
  2133 **
       
  2134 ** The foreign key is set for IMMEDIATE processing.  A subsequent call
       
  2135 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
       
  2136 */
       
  2137 void sqlite3CreateForeignKey(
       
  2138   Parse *pParse,       /* Parsing context */
       
  2139   ExprList *pFromCol,  /* Columns in this table that point to other table */
       
  2140   Token *pTo,          /* Name of the other table */
       
  2141   ExprList *pToCol,    /* Columns in the other table */
       
  2142   int flags            /* Conflict resolution algorithms. */
       
  2143 ){
       
  2144   sqlite3 *db = pParse->db;
       
  2145 #ifndef SQLITE_OMIT_FOREIGN_KEY
       
  2146   FKey *pFKey = 0;
       
  2147   Table *p = pParse->pNewTable;
       
  2148   int nByte;
       
  2149   int i;
       
  2150   int nCol;
       
  2151   char *z;
       
  2152 
       
  2153   assert( pTo!=0 );
       
  2154   if( p==0 || pParse->nErr || IN_DECLARE_VTAB ) goto fk_end;
       
  2155   if( pFromCol==0 ){
       
  2156     int iCol = p->nCol-1;
       
  2157     if( iCol<0 ) goto fk_end;
       
  2158     if( pToCol && pToCol->nExpr!=1 ){
       
  2159       sqlite3ErrorMsg(pParse, "foreign key on %s"
       
  2160          " should reference only one column of table %T",
       
  2161          p->aCol[iCol].zName, pTo);
       
  2162       goto fk_end;
       
  2163     }
       
  2164     nCol = 1;
       
  2165   }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
       
  2166     sqlite3ErrorMsg(pParse,
       
  2167         "number of columns in foreign key does not match the number of "
       
  2168         "columns in the referenced table");
       
  2169     goto fk_end;
       
  2170   }else{
       
  2171     nCol = pFromCol->nExpr;
       
  2172   }
       
  2173   nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
       
  2174   if( pToCol ){
       
  2175     for(i=0; i<pToCol->nExpr; i++){
       
  2176       nByte += strlen(pToCol->a[i].zName) + 1;
       
  2177     }
       
  2178   }
       
  2179   pFKey = sqlite3DbMallocZero(db, nByte );
       
  2180   if( pFKey==0 ){
       
  2181     goto fk_end;
       
  2182   }
       
  2183   pFKey->pFrom = p;
       
  2184   pFKey->pNextFrom = p->pFKey;
       
  2185   z = (char*)&pFKey[1];
       
  2186   pFKey->aCol = (struct sColMap*)z;
       
  2187   z += sizeof(struct sColMap)*nCol;
       
  2188   pFKey->zTo = z;
       
  2189   memcpy(z, pTo->z, pTo->n);
       
  2190   z[pTo->n] = 0;
       
  2191   z += pTo->n+1;
       
  2192   pFKey->pNextTo = 0;
       
  2193   pFKey->nCol = nCol;
       
  2194   if( pFromCol==0 ){
       
  2195     pFKey->aCol[0].iFrom = p->nCol-1;
       
  2196   }else{
       
  2197     for(i=0; i<nCol; i++){
       
  2198       int j;
       
  2199       for(j=0; j<p->nCol; j++){
       
  2200         if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
       
  2201           pFKey->aCol[i].iFrom = j;
       
  2202           break;
       
  2203         }
       
  2204       }
       
  2205       if( j>=p->nCol ){
       
  2206         sqlite3ErrorMsg(pParse, 
       
  2207           "unknown column \"%s\" in foreign key definition", 
       
  2208           pFromCol->a[i].zName);
       
  2209         goto fk_end;
       
  2210       }
       
  2211     }
       
  2212   }
       
  2213   if( pToCol ){
       
  2214     for(i=0; i<nCol; i++){
       
  2215       int n = strlen(pToCol->a[i].zName);
       
  2216       pFKey->aCol[i].zCol = z;
       
  2217       memcpy(z, pToCol->a[i].zName, n);
       
  2218       z[n] = 0;
       
  2219       z += n+1;
       
  2220     }
       
  2221   }
       
  2222   pFKey->isDeferred = 0;
       
  2223   pFKey->deleteConf = flags & 0xff;
       
  2224   pFKey->updateConf = (flags >> 8 ) & 0xff;
       
  2225   pFKey->insertConf = (flags >> 16 ) & 0xff;
       
  2226 
       
  2227   /* Link the foreign key to the table as the last step.
       
  2228   */
       
  2229   p->pFKey = pFKey;
       
  2230   pFKey = 0;
       
  2231 
       
  2232 fk_end:
       
  2233   sqlite3DbFree(db, pFKey);
       
  2234 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
       
  2235   sqlite3ExprListDelete(db, pFromCol);
       
  2236   sqlite3ExprListDelete(db, pToCol);
       
  2237 }
       
  2238 
       
  2239 /*
       
  2240 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
       
  2241 ** clause is seen as part of a foreign key definition.  The isDeferred
       
  2242 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
       
  2243 ** The behavior of the most recently created foreign key is adjusted
       
  2244 ** accordingly.
       
  2245 */
       
  2246 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
       
  2247 #ifndef SQLITE_OMIT_FOREIGN_KEY
       
  2248   Table *pTab;
       
  2249   FKey *pFKey;
       
  2250   if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
       
  2251   pFKey->isDeferred = isDeferred;
       
  2252 #endif
       
  2253 }
       
  2254 
       
  2255 /*
       
  2256 ** Generate code that will erase and refill index *pIdx.  This is
       
  2257 ** used to initialize a newly created index or to recompute the
       
  2258 ** content of an index in response to a REINDEX command.
       
  2259 **
       
  2260 ** if memRootPage is not negative, it means that the index is newly
       
  2261 ** created.  The register specified by memRootPage contains the
       
  2262 ** root page number of the index.  If memRootPage is negative, then
       
  2263 ** the index already exists and must be cleared before being refilled and
       
  2264 ** the root page number of the index is taken from pIndex->tnum.
       
  2265 */
       
  2266 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
       
  2267   Table *pTab = pIndex->pTable;  /* The table that is indexed */
       
  2268   int iTab = pParse->nTab;       /* Btree cursor used for pTab */
       
  2269   int iIdx = pParse->nTab+1;     /* Btree cursor used for pIndex */
       
  2270   int addr1;                     /* Address of top of loop */
       
  2271   int tnum;                      /* Root page of index */
       
  2272   Vdbe *v;                       /* Generate code into this virtual machine */
       
  2273   KeyInfo *pKey;                 /* KeyInfo for index */
       
  2274   int regIdxKey;                 /* Registers containing the index key */
       
  2275   int regRecord;                 /* Register holding assemblied index record */
       
  2276   sqlite3 *db = pParse->db;      /* The database connection */
       
  2277   int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
       
  2278 
       
  2279 #ifndef SQLITE_OMIT_AUTHORIZATION
       
  2280   if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
       
  2281       db->aDb[iDb].zName ) ){
       
  2282     return;
       
  2283   }
       
  2284 #endif
       
  2285 
       
  2286   /* Require a write-lock on the table to perform this operation */
       
  2287   sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
       
  2288 
       
  2289   v = sqlite3GetVdbe(pParse);
       
  2290   if( v==0 ) return;
       
  2291   if( memRootPage>=0 ){
       
  2292     tnum = memRootPage;
       
  2293   }else{
       
  2294     tnum = pIndex->tnum;
       
  2295     sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
       
  2296   }
       
  2297   pKey = sqlite3IndexKeyinfo(pParse, pIndex);
       
  2298   sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 
       
  2299                     (char *)pKey, P4_KEYINFO_HANDOFF);
       
  2300   if( memRootPage>=0 ){
       
  2301     sqlite3VdbeChangeP5(v, 1);
       
  2302   }
       
  2303   sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
       
  2304   addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
       
  2305   regRecord = sqlite3GetTempReg(pParse);
       
  2306   regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
       
  2307   if( pIndex->onError!=OE_None ){
       
  2308     int j1, j2;
       
  2309     int regRowid;
       
  2310 
       
  2311     regRowid = regIdxKey + pIndex->nColumn;
       
  2312     j1 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdxKey, 0, pIndex->nColumn);
       
  2313     j2 = sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx,
       
  2314                            0, regRowid, SQLITE_INT_TO_PTR(regRecord), P4_INT32);
       
  2315     sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, OE_Abort, 0,
       
  2316                     "indexed columns are not unique", P4_STATIC);
       
  2317     sqlite3VdbeJumpHere(v, j1);
       
  2318     sqlite3VdbeJumpHere(v, j2);
       
  2319   }
       
  2320   sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
       
  2321   sqlite3ReleaseTempReg(pParse, regRecord);
       
  2322   sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
       
  2323   sqlite3VdbeJumpHere(v, addr1);
       
  2324   sqlite3VdbeAddOp1(v, OP_Close, iTab);
       
  2325   sqlite3VdbeAddOp1(v, OP_Close, iIdx);
       
  2326 }
       
  2327 
       
  2328 /*
       
  2329 ** Create a new index for an SQL table.  pName1.pName2 is the name of the index 
       
  2330 ** and pTblList is the name of the table that is to be indexed.  Both will 
       
  2331 ** be NULL for a primary key or an index that is created to satisfy a
       
  2332 ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
       
  2333 ** as the table to be indexed.  pParse->pNewTable is a table that is
       
  2334 ** currently being constructed by a CREATE TABLE statement.
       
  2335 **
       
  2336 ** pList is a list of columns to be indexed.  pList will be NULL if this
       
  2337 ** is a primary key or unique-constraint on the most recent column added
       
  2338 ** to the table currently under construction.  
       
  2339 */
       
  2340 void sqlite3CreateIndex(
       
  2341   Parse *pParse,     /* All information about this parse */
       
  2342   Token *pName1,     /* First part of index name. May be NULL */
       
  2343   Token *pName2,     /* Second part of index name. May be NULL */
       
  2344   SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
       
  2345   ExprList *pList,   /* A list of columns to be indexed */
       
  2346   int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
       
  2347   Token *pStart,     /* The CREATE token that begins this statement */
       
  2348   Token *pEnd,       /* The ")" that closes the CREATE INDEX statement */
       
  2349   int sortOrder,     /* Sort order of primary key when pList==NULL */
       
  2350   int ifNotExist     /* Omit error if index already exists */
       
  2351 ){
       
  2352   Table *pTab = 0;     /* Table to be indexed */
       
  2353   Index *pIndex = 0;   /* The index to be created */
       
  2354   char *zName = 0;     /* Name of the index */
       
  2355   int nName;           /* Number of characters in zName */
       
  2356   int i, j;
       
  2357   Token nullId;        /* Fake token for an empty ID list */
       
  2358   DbFixer sFix;        /* For assigning database names to pTable */
       
  2359   int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
       
  2360   sqlite3 *db = pParse->db;
       
  2361   Db *pDb;             /* The specific table containing the indexed database */
       
  2362   int iDb;             /* Index of the database that is being written */
       
  2363   Token *pName = 0;    /* Unqualified name of the index to create */
       
  2364   struct ExprList_item *pListItem; /* For looping over pList */
       
  2365   int nCol;
       
  2366   int nExtra = 0;
       
  2367   char *zExtra;
       
  2368 
       
  2369   if( pParse->nErr || db->mallocFailed || IN_DECLARE_VTAB ){
       
  2370     goto exit_create_index;
       
  2371   }
       
  2372 
       
  2373   /*
       
  2374   ** Find the table that is to be indexed.  Return early if not found.
       
  2375   */
       
  2376   if( pTblName!=0 ){
       
  2377 
       
  2378     /* Use the two-part index name to determine the database 
       
  2379     ** to search for the table. 'Fix' the table name to this db
       
  2380     ** before looking up the table.
       
  2381     */
       
  2382     assert( pName1 && pName2 );
       
  2383     iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
       
  2384     if( iDb<0 ) goto exit_create_index;
       
  2385 
       
  2386 #ifndef SQLITE_OMIT_TEMPDB
       
  2387     /* If the index name was unqualified, check if the the table
       
  2388     ** is a temp table. If so, set the database to 1. Do not do this
       
  2389     ** if initialising a database schema.
       
  2390     */
       
  2391     if( !db->init.busy ){
       
  2392       pTab = sqlite3SrcListLookup(pParse, pTblName);
       
  2393       if( pName2 && pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
       
  2394         iDb = 1;
       
  2395       }
       
  2396     }
       
  2397 #endif
       
  2398 
       
  2399     if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
       
  2400         sqlite3FixSrcList(&sFix, pTblName)
       
  2401     ){
       
  2402       /* Because the parser constructs pTblName from a single identifier,
       
  2403       ** sqlite3FixSrcList can never fail. */
       
  2404       assert(0);
       
  2405     }
       
  2406     pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName, 
       
  2407         pTblName->a[0].zDatabase);
       
  2408     if( !pTab || db->mallocFailed ) goto exit_create_index;
       
  2409     assert( db->aDb[iDb].pSchema==pTab->pSchema );
       
  2410   }else{
       
  2411     assert( pName==0 );
       
  2412     pTab = pParse->pNewTable;
       
  2413     if( !pTab ) goto exit_create_index;
       
  2414     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
       
  2415   }
       
  2416   pDb = &db->aDb[iDb];
       
  2417 
       
  2418   if( pTab==0 || pParse->nErr ) goto exit_create_index;
       
  2419   if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
       
  2420     sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
       
  2421     goto exit_create_index;
       
  2422   }
       
  2423 #ifndef SQLITE_OMIT_VIEW
       
  2424   if( pTab->pSelect ){
       
  2425     sqlite3ErrorMsg(pParse, "views may not be indexed");
       
  2426     goto exit_create_index;
       
  2427   }
       
  2428 #endif
       
  2429 #ifndef SQLITE_OMIT_VIRTUALTABLE
       
  2430   if( IsVirtual(pTab) ){
       
  2431     sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
       
  2432     goto exit_create_index;
       
  2433   }
       
  2434 #endif
       
  2435 
       
  2436   /*
       
  2437   ** Find the name of the index.  Make sure there is not already another
       
  2438   ** index or table with the same name.  
       
  2439   **
       
  2440   ** Exception:  If we are reading the names of permanent indices from the
       
  2441   ** sqlite_master table (because some other process changed the schema) and
       
  2442   ** one of the index names collides with the name of a temporary table or
       
  2443   ** index, then we will continue to process this index.
       
  2444   **
       
  2445   ** If pName==0 it means that we are
       
  2446   ** dealing with a primary key or UNIQUE constraint.  We have to invent our
       
  2447   ** own name.
       
  2448   */
       
  2449   if( pName ){
       
  2450     zName = sqlite3NameFromToken(db, pName);
       
  2451     if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
       
  2452     if( zName==0 ) goto exit_create_index;
       
  2453     if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
       
  2454       goto exit_create_index;
       
  2455     }
       
  2456     if( !db->init.busy ){
       
  2457       if( SQLITE_OK!=sqlite3ReadSchema(pParse) ) goto exit_create_index;
       
  2458       if( sqlite3FindTable(db, zName, 0)!=0 ){
       
  2459         sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
       
  2460         goto exit_create_index;
       
  2461       }
       
  2462     }
       
  2463     if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
       
  2464       if( !ifNotExist ){
       
  2465         sqlite3ErrorMsg(pParse, "index %s already exists", zName);
       
  2466       }
       
  2467       goto exit_create_index;
       
  2468     }
       
  2469   }else{
       
  2470     int n;
       
  2471     Index *pLoop;
       
  2472     for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
       
  2473     zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
       
  2474     if( zName==0 ){
       
  2475       goto exit_create_index;
       
  2476     }
       
  2477   }
       
  2478 
       
  2479   /* Check for authorization to create an index.
       
  2480   */
       
  2481 #ifndef SQLITE_OMIT_AUTHORIZATION
       
  2482   {
       
  2483     const char *zDb = pDb->zName;
       
  2484     if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
       
  2485       goto exit_create_index;
       
  2486     }
       
  2487     i = SQLITE_CREATE_INDEX;
       
  2488     if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
       
  2489     if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
       
  2490       goto exit_create_index;
       
  2491     }
       
  2492   }
       
  2493 #endif
       
  2494 
       
  2495   /* If pList==0, it means this routine was called to make a primary
       
  2496   ** key out of the last column added to the table under construction.
       
  2497   ** So create a fake list to simulate this.
       
  2498   */
       
  2499   if( pList==0 ){
       
  2500     nullId.z = (u8*)pTab->aCol[pTab->nCol-1].zName;
       
  2501     nullId.n = strlen((char*)nullId.z);
       
  2502     pList = sqlite3ExprListAppend(pParse, 0, 0, &nullId);
       
  2503     if( pList==0 ) goto exit_create_index;
       
  2504     pList->a[0].sortOrder = sortOrder;
       
  2505   }
       
  2506 
       
  2507   /* Figure out how many bytes of space are required to store explicitly
       
  2508   ** specified collation sequence names.
       
  2509   */
       
  2510   for(i=0; i<pList->nExpr; i++){
       
  2511     Expr *pExpr;
       
  2512     CollSeq *pColl;
       
  2513     if( (pExpr = pList->a[i].pExpr)!=0 && (pColl = pExpr->pColl)!=0 ){
       
  2514       nExtra += (1 + strlen(pColl->zName));
       
  2515     }
       
  2516   }
       
  2517 
       
  2518   /* 
       
  2519   ** Allocate the index structure. 
       
  2520   */
       
  2521   nName = strlen(zName);
       
  2522   nCol = pList->nExpr;
       
  2523   pIndex = sqlite3DbMallocZero(db, 
       
  2524       sizeof(Index) +              /* Index structure  */
       
  2525       sizeof(int)*nCol +           /* Index.aiColumn   */
       
  2526       sizeof(int)*(nCol+1) +       /* Index.aiRowEst   */
       
  2527       sizeof(char *)*nCol +        /* Index.azColl     */
       
  2528       sizeof(u8)*nCol +            /* Index.aSortOrder */
       
  2529       nName + 1 +                  /* Index.zName      */
       
  2530       nExtra                       /* Collation sequence names */
       
  2531   );
       
  2532   if( db->mallocFailed ){
       
  2533     goto exit_create_index;
       
  2534   }
       
  2535   pIndex->azColl = (char**)(&pIndex[1]);
       
  2536   pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
       
  2537   pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
       
  2538   pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
       
  2539   pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
       
  2540   zExtra = (char *)(&pIndex->zName[nName+1]);
       
  2541   memcpy(pIndex->zName, zName, nName+1);
       
  2542   pIndex->pTable = pTab;
       
  2543   pIndex->nColumn = pList->nExpr;
       
  2544   pIndex->onError = onError;
       
  2545   pIndex->autoIndex = pName==0;
       
  2546   pIndex->pSchema = db->aDb[iDb].pSchema;
       
  2547 
       
  2548   /* Check to see if we should honor DESC requests on index columns
       
  2549   */
       
  2550   if( pDb->pSchema->file_format>=4 ){
       
  2551     sortOrderMask = -1;   /* Honor DESC */
       
  2552   }else{
       
  2553     sortOrderMask = 0;    /* Ignore DESC */
       
  2554   }
       
  2555 
       
  2556   /* Scan the names of the columns of the table to be indexed and
       
  2557   ** load the column indices into the Index structure.  Report an error
       
  2558   ** if any column is not found.
       
  2559   */
       
  2560   for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
       
  2561     const char *zColName = pListItem->zName;
       
  2562     Column *pTabCol;
       
  2563     int requestedSortOrder;
       
  2564     char *zColl;                   /* Collation sequence name */
       
  2565 
       
  2566     for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
       
  2567       if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
       
  2568     }
       
  2569     if( j>=pTab->nCol ){
       
  2570       sqlite3ErrorMsg(pParse, "table %s has no column named %s",
       
  2571         pTab->zName, zColName);
       
  2572       goto exit_create_index;
       
  2573     }
       
  2574     /* TODO:  Add a test to make sure that the same column is not named
       
  2575     ** more than once within the same index.  Only the first instance of
       
  2576     ** the column will ever be used by the optimizer.  Note that using the
       
  2577     ** same column more than once cannot be an error because that would 
       
  2578     ** break backwards compatibility - it needs to be a warning.
       
  2579     */
       
  2580     pIndex->aiColumn[i] = j;
       
  2581     if( pListItem->pExpr && pListItem->pExpr->pColl ){
       
  2582       assert( pListItem->pExpr->pColl );
       
  2583       zColl = zExtra;
       
  2584       sqlite3_snprintf(nExtra, zExtra, "%s", pListItem->pExpr->pColl->zName);
       
  2585       zExtra += (strlen(zColl) + 1);
       
  2586     }else{
       
  2587       zColl = pTab->aCol[j].zColl;
       
  2588       if( !zColl ){
       
  2589         zColl = db->pDfltColl->zName;
       
  2590       }
       
  2591     }
       
  2592     if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl, -1) ){
       
  2593       goto exit_create_index;
       
  2594     }
       
  2595     pIndex->azColl[i] = zColl;
       
  2596     requestedSortOrder = pListItem->sortOrder & sortOrderMask;
       
  2597     pIndex->aSortOrder[i] = requestedSortOrder;
       
  2598   }
       
  2599   sqlite3DefaultRowEst(pIndex);
       
  2600 
       
  2601   if( pTab==pParse->pNewTable ){
       
  2602     /* This routine has been called to create an automatic index as a
       
  2603     ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
       
  2604     ** a PRIMARY KEY or UNIQUE clause following the column definitions.
       
  2605     ** i.e. one of:
       
  2606     **
       
  2607     ** CREATE TABLE t(x PRIMARY KEY, y);
       
  2608     ** CREATE TABLE t(x, y, UNIQUE(x, y));
       
  2609     **
       
  2610     ** Either way, check to see if the table already has such an index. If
       
  2611     ** so, don't bother creating this one. This only applies to
       
  2612     ** automatically created indices. Users can do as they wish with
       
  2613     ** explicit indices.
       
  2614     */
       
  2615     Index *pIdx;
       
  2616     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
       
  2617       int k;
       
  2618       assert( pIdx->onError!=OE_None );
       
  2619       assert( pIdx->autoIndex );
       
  2620       assert( pIndex->onError!=OE_None );
       
  2621 
       
  2622       if( pIdx->nColumn!=pIndex->nColumn ) continue;
       
  2623       for(k=0; k<pIdx->nColumn; k++){
       
  2624         const char *z1 = pIdx->azColl[k];
       
  2625         const char *z2 = pIndex->azColl[k];
       
  2626         if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
       
  2627         if( pIdx->aSortOrder[k]!=pIndex->aSortOrder[k] ) break;
       
  2628         if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
       
  2629       }
       
  2630       if( k==pIdx->nColumn ){
       
  2631         if( pIdx->onError!=pIndex->onError ){
       
  2632           /* This constraint creates the same index as a previous
       
  2633           ** constraint specified somewhere in the CREATE TABLE statement.
       
  2634           ** However the ON CONFLICT clauses are different. If both this 
       
  2635           ** constraint and the previous equivalent constraint have explicit
       
  2636           ** ON CONFLICT clauses this is an error. Otherwise, use the
       
  2637           ** explicitly specified behaviour for the index.
       
  2638           */
       
  2639           if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
       
  2640             sqlite3ErrorMsg(pParse, 
       
  2641                 "conflicting ON CONFLICT clauses specified", 0);
       
  2642           }
       
  2643           if( pIdx->onError==OE_Default ){
       
  2644             pIdx->onError = pIndex->onError;
       
  2645           }
       
  2646         }
       
  2647         goto exit_create_index;
       
  2648       }
       
  2649     }
       
  2650   }
       
  2651 
       
  2652   /* Link the new Index structure to its table and to the other
       
  2653   ** in-memory database structures. 
       
  2654   */
       
  2655   if( db->init.busy ){
       
  2656     Index *p;
       
  2657     p = sqlite3HashInsert(&pIndex->pSchema->idxHash, 
       
  2658                          pIndex->zName, strlen(pIndex->zName)+1, pIndex);
       
  2659     if( p ){
       
  2660       assert( p==pIndex );  /* Malloc must have failed */
       
  2661       db->mallocFailed = 1;
       
  2662       goto exit_create_index;
       
  2663     }
       
  2664     db->flags |= SQLITE_InternChanges;
       
  2665     if( pTblName!=0 ){
       
  2666       pIndex->tnum = db->init.newTnum;
       
  2667     }
       
  2668   }
       
  2669 
       
  2670   /* If the db->init.busy is 0 then create the index on disk.  This
       
  2671   ** involves writing the index into the master table and filling in the
       
  2672   ** index with the current table contents.
       
  2673   **
       
  2674   ** The db->init.busy is 0 when the user first enters a CREATE INDEX 
       
  2675   ** command.  db->init.busy is 1 when a database is opened and 
       
  2676   ** CREATE INDEX statements are read out of the master table.  In
       
  2677   ** the latter case the index already exists on disk, which is why
       
  2678   ** we don't want to recreate it.
       
  2679   **
       
  2680   ** If pTblName==0 it means this index is generated as a primary key
       
  2681   ** or UNIQUE constraint of a CREATE TABLE statement.  Since the table
       
  2682   ** has just been created, it contains no data and the index initialization
       
  2683   ** step can be skipped.
       
  2684   */
       
  2685   else if( db->init.busy==0 ){
       
  2686     Vdbe *v;
       
  2687     char *zStmt;
       
  2688     int iMem = ++pParse->nMem;
       
  2689 
       
  2690     v = sqlite3GetVdbe(pParse);
       
  2691     if( v==0 ) goto exit_create_index;
       
  2692 
       
  2693 
       
  2694     /* Create the rootpage for the index
       
  2695     */
       
  2696     sqlite3BeginWriteOperation(pParse, 1, iDb);
       
  2697     sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
       
  2698 
       
  2699     /* Gather the complete text of the CREATE INDEX statement into
       
  2700     ** the zStmt variable
       
  2701     */
       
  2702     if( pStart && pEnd ){
       
  2703       /* A named index with an explicit CREATE INDEX statement */
       
  2704       zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
       
  2705         onError==OE_None ? "" : " UNIQUE",
       
  2706         pEnd->z - pName->z + 1,
       
  2707         pName->z);
       
  2708     }else{
       
  2709       /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
       
  2710       /* zStmt = sqlite3MPrintf(""); */
       
  2711       zStmt = 0;
       
  2712     }
       
  2713 
       
  2714     /* Add an entry in sqlite_master for this index
       
  2715     */
       
  2716     sqlite3NestedParse(pParse, 
       
  2717         "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
       
  2718         db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
       
  2719         pIndex->zName,
       
  2720         pTab->zName,
       
  2721         iMem,
       
  2722         zStmt
       
  2723     );
       
  2724     sqlite3DbFree(db, zStmt);
       
  2725 
       
  2726     /* Fill the index with data and reparse the schema. Code an OP_Expire
       
  2727     ** to invalidate all pre-compiled statements.
       
  2728     */
       
  2729     if( pTblName ){
       
  2730       sqlite3RefillIndex(pParse, pIndex, iMem);
       
  2731       sqlite3ChangeCookie(pParse, iDb);
       
  2732       sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
       
  2733          sqlite3MPrintf(db, "name='%q'", pIndex->zName), P4_DYNAMIC);
       
  2734       sqlite3VdbeAddOp1(v, OP_Expire, 0);
       
  2735     }
       
  2736   }
       
  2737 
       
  2738   /* When adding an index to the list of indices for a table, make
       
  2739   ** sure all indices labeled OE_Replace come after all those labeled
       
  2740   ** OE_Ignore.  This is necessary for the correct operation of UPDATE
       
  2741   ** and INSERT.
       
  2742   */
       
  2743   if( db->init.busy || pTblName==0 ){
       
  2744     if( onError!=OE_Replace || pTab->pIndex==0
       
  2745          || pTab->pIndex->onError==OE_Replace){
       
  2746       pIndex->pNext = pTab->pIndex;
       
  2747       pTab->pIndex = pIndex;
       
  2748     }else{
       
  2749       Index *pOther = pTab->pIndex;
       
  2750       while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
       
  2751         pOther = pOther->pNext;
       
  2752       }
       
  2753       pIndex->pNext = pOther->pNext;
       
  2754       pOther->pNext = pIndex;
       
  2755     }
       
  2756     pIndex = 0;
       
  2757   }
       
  2758 
       
  2759   /* Clean up before exiting */
       
  2760 exit_create_index:
       
  2761   if( pIndex ){
       
  2762     freeIndex(pIndex);
       
  2763   }
       
  2764   sqlite3ExprListDelete(db, pList);
       
  2765   sqlite3SrcListDelete(db, pTblName);
       
  2766   sqlite3DbFree(db, zName);
       
  2767   return;
       
  2768 }
       
  2769 
       
  2770 /*
       
  2771 ** Generate code to make sure the file format number is at least minFormat.
       
  2772 ** The generated code will increase the file format number if necessary.
       
  2773 */
       
  2774 void sqlite3MinimumFileFormat(Parse *pParse, int iDb, int minFormat){
       
  2775   Vdbe *v;
       
  2776   v = sqlite3GetVdbe(pParse);
       
  2777   if( v ){
       
  2778     int r1 = sqlite3GetTempReg(pParse);
       
  2779     int r2 = sqlite3GetTempReg(pParse);
       
  2780     int j1;
       
  2781     sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, r1, 1);
       
  2782     sqlite3VdbeUsesBtree(v, iDb);
       
  2783     sqlite3VdbeAddOp2(v, OP_Integer, minFormat, r2);
       
  2784     j1 = sqlite3VdbeAddOp3(v, OP_Ge, r2, 0, r1);
       
  2785     sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, 1, r2);
       
  2786     sqlite3VdbeJumpHere(v, j1);
       
  2787     sqlite3ReleaseTempReg(pParse, r1);
       
  2788     sqlite3ReleaseTempReg(pParse, r2);
       
  2789   }
       
  2790 }
       
  2791 
       
  2792 /*
       
  2793 ** Fill the Index.aiRowEst[] array with default information - information
       
  2794 ** to be used when we have not run the ANALYZE command.
       
  2795 **
       
  2796 ** aiRowEst[0] is suppose to contain the number of elements in the index.
       
  2797 ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
       
  2798 ** number of rows in the table that match any particular value of the
       
  2799 ** first column of the index.  aiRowEst[2] is an estimate of the number
       
  2800 ** of rows that match any particular combiniation of the first 2 columns
       
  2801 ** of the index.  And so forth.  It must always be the case that
       
  2802 *
       
  2803 **           aiRowEst[N]<=aiRowEst[N-1]
       
  2804 **           aiRowEst[N]>=1
       
  2805 **
       
  2806 ** Apart from that, we have little to go on besides intuition as to
       
  2807 ** how aiRowEst[] should be initialized.  The numbers generated here
       
  2808 ** are based on typical values found in actual indices.
       
  2809 */
       
  2810 void sqlite3DefaultRowEst(Index *pIdx){
       
  2811   unsigned *a = pIdx->aiRowEst;
       
  2812   int i;
       
  2813   assert( a!=0 );
       
  2814   a[0] = 1000000;
       
  2815   for(i=pIdx->nColumn; i>=5; i--){
       
  2816     a[i] = 5;
       
  2817   }
       
  2818   while( i>=1 ){
       
  2819     a[i] = 11 - i;
       
  2820     i--;
       
  2821   }
       
  2822   if( pIdx->onError!=OE_None ){
       
  2823     a[pIdx->nColumn] = 1;
       
  2824   }
       
  2825 }
       
  2826 
       
  2827 /*
       
  2828 ** This routine will drop an existing named index.  This routine
       
  2829 ** implements the DROP INDEX statement.
       
  2830 */
       
  2831 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
       
  2832   Index *pIndex;
       
  2833   Vdbe *v;
       
  2834   sqlite3 *db = pParse->db;
       
  2835   int iDb;
       
  2836 
       
  2837   if( pParse->nErr || db->mallocFailed ){
       
  2838     goto exit_drop_index;
       
  2839   }
       
  2840   assert( pName->nSrc==1 );
       
  2841   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
       
  2842     goto exit_drop_index;
       
  2843   }
       
  2844   pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
       
  2845   if( pIndex==0 ){
       
  2846     if( !ifExists ){
       
  2847       sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
       
  2848     }
       
  2849     pParse->checkSchema = 1;
       
  2850     goto exit_drop_index;
       
  2851   }
       
  2852   if( pIndex->autoIndex ){
       
  2853     sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
       
  2854       "or PRIMARY KEY constraint cannot be dropped", 0);
       
  2855     goto exit_drop_index;
       
  2856   }
       
  2857   iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
       
  2858 #ifndef SQLITE_OMIT_AUTHORIZATION
       
  2859   {
       
  2860     int code = SQLITE_DROP_INDEX;
       
  2861     Table *pTab = pIndex->pTable;
       
  2862     const char *zDb = db->aDb[iDb].zName;
       
  2863     const char *zTab = SCHEMA_TABLE(iDb);
       
  2864     if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
       
  2865       goto exit_drop_index;
       
  2866     }
       
  2867     if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
       
  2868     if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
       
  2869       goto exit_drop_index;
       
  2870     }
       
  2871   }
       
  2872 #endif
       
  2873 
       
  2874   /* Generate code to remove the index and from the master table */
       
  2875   v = sqlite3GetVdbe(pParse);
       
  2876   if( v ){
       
  2877     sqlite3BeginWriteOperation(pParse, 1, iDb);
       
  2878     sqlite3NestedParse(pParse,
       
  2879        "DELETE FROM %Q.%s WHERE name=%Q",
       
  2880        db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
       
  2881        pIndex->zName
       
  2882     );
       
  2883     if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
       
  2884       sqlite3NestedParse(pParse,
       
  2885         "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
       
  2886         db->aDb[iDb].zName, pIndex->zName
       
  2887       );
       
  2888     }
       
  2889     sqlite3ChangeCookie(pParse, iDb);
       
  2890     destroyRootPage(pParse, pIndex->tnum, iDb);
       
  2891     sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
       
  2892   }
       
  2893 
       
  2894 exit_drop_index:
       
  2895   sqlite3SrcListDelete(db, pName);
       
  2896 }
       
  2897 
       
  2898 /*
       
  2899 ** pArray is a pointer to an array of objects.  Each object in the
       
  2900 ** array is szEntry bytes in size.  This routine allocates a new
       
  2901 ** object on the end of the array.
       
  2902 **
       
  2903 ** *pnEntry is the number of entries already in use.  *pnAlloc is
       
  2904 ** the previously allocated size of the array.  initSize is the
       
  2905 ** suggested initial array size allocation.
       
  2906 **
       
  2907 ** The index of the new entry is returned in *pIdx.
       
  2908 **
       
  2909 ** This routine returns a pointer to the array of objects.  This
       
  2910 ** might be the same as the pArray parameter or it might be a different
       
  2911 ** pointer if the array was resized.
       
  2912 */
       
  2913 void *sqlite3ArrayAllocate(
       
  2914   sqlite3 *db,      /* Connection to notify of malloc failures */
       
  2915   void *pArray,     /* Array of objects.  Might be reallocated */
       
  2916   int szEntry,      /* Size of each object in the array */
       
  2917   int initSize,     /* Suggested initial allocation, in elements */
       
  2918   int *pnEntry,     /* Number of objects currently in use */
       
  2919   int *pnAlloc,     /* Current size of the allocation, in elements */
       
  2920   int *pIdx         /* Write the index of a new slot here */
       
  2921 ){
       
  2922   char *z;
       
  2923   if( *pnEntry >= *pnAlloc ){
       
  2924     void *pNew;
       
  2925     int newSize;
       
  2926     newSize = (*pnAlloc)*2 + initSize;
       
  2927     pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
       
  2928     if( pNew==0 ){
       
  2929       *pIdx = -1;
       
  2930       return pArray;
       
  2931     }
       
  2932     *pnAlloc = newSize;
       
  2933     pArray = pNew;
       
  2934   }
       
  2935   z = (char*)pArray;
       
  2936   memset(&z[*pnEntry * szEntry], 0, szEntry);
       
  2937   *pIdx = *pnEntry;
       
  2938   ++*pnEntry;
       
  2939   return pArray;
       
  2940 }
       
  2941 
       
  2942 /*
       
  2943 ** Append a new element to the given IdList.  Create a new IdList if
       
  2944 ** need be.
       
  2945 **
       
  2946 ** A new IdList is returned, or NULL if malloc() fails.
       
  2947 */
       
  2948 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
       
  2949   int i;
       
  2950   if( pList==0 ){
       
  2951     pList = sqlite3DbMallocZero(db, sizeof(IdList) );
       
  2952     if( pList==0 ) return 0;
       
  2953     pList->nAlloc = 0;
       
  2954   }
       
  2955   pList->a = sqlite3ArrayAllocate(
       
  2956       db,
       
  2957       pList->a,
       
  2958       sizeof(pList->a[0]),
       
  2959       5,
       
  2960       &pList->nId,
       
  2961       &pList->nAlloc,
       
  2962       &i
       
  2963   );
       
  2964   if( i<0 ){
       
  2965     sqlite3IdListDelete(db, pList);
       
  2966     return 0;
       
  2967   }
       
  2968   pList->a[i].zName = sqlite3NameFromToken(db, pToken);
       
  2969   return pList;
       
  2970 }
       
  2971 
       
  2972 /*
       
  2973 ** Delete an IdList.
       
  2974 */
       
  2975 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
       
  2976   int i;
       
  2977   if( pList==0 ) return;
       
  2978   for(i=0; i<pList->nId; i++){
       
  2979     sqlite3DbFree(db, pList->a[i].zName);
       
  2980   }
       
  2981   sqlite3DbFree(db, pList->a);
       
  2982   sqlite3DbFree(db, pList);
       
  2983 }
       
  2984 
       
  2985 /*
       
  2986 ** Return the index in pList of the identifier named zId.  Return -1
       
  2987 ** if not found.
       
  2988 */
       
  2989 int sqlite3IdListIndex(IdList *pList, const char *zName){
       
  2990   int i;
       
  2991   if( pList==0 ) return -1;
       
  2992   for(i=0; i<pList->nId; i++){
       
  2993     if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
       
  2994   }
       
  2995   return -1;
       
  2996 }
       
  2997 
       
  2998 /*
       
  2999 ** Append a new table name to the given SrcList.  Create a new SrcList if
       
  3000 ** need be.  A new entry is created in the SrcList even if pToken is NULL.
       
  3001 **
       
  3002 ** A new SrcList is returned, or NULL if malloc() fails.
       
  3003 **
       
  3004 ** If pDatabase is not null, it means that the table has an optional
       
  3005 ** database name prefix.  Like this:  "database.table".  The pDatabase
       
  3006 ** points to the table name and the pTable points to the database name.
       
  3007 ** The SrcList.a[].zName field is filled with the table name which might
       
  3008 ** come from pTable (if pDatabase is NULL) or from pDatabase.  
       
  3009 ** SrcList.a[].zDatabase is filled with the database name from pTable,
       
  3010 ** or with NULL if no database is specified.
       
  3011 **
       
  3012 ** In other words, if call like this:
       
  3013 **
       
  3014 **         sqlite3SrcListAppend(D,A,B,0);
       
  3015 **
       
  3016 ** Then B is a table name and the database name is unspecified.  If called
       
  3017 ** like this:
       
  3018 **
       
  3019 **         sqlite3SrcListAppend(D,A,B,C);
       
  3020 **
       
  3021 ** Then C is the table name and B is the database name.
       
  3022 */
       
  3023 SrcList *sqlite3SrcListAppend(
       
  3024   sqlite3 *db,        /* Connection to notify of malloc failures */
       
  3025   SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
       
  3026   Token *pTable,      /* Table to append */
       
  3027   Token *pDatabase    /* Database of the table */
       
  3028 ){
       
  3029   struct SrcList_item *pItem;
       
  3030   if( pList==0 ){
       
  3031     pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
       
  3032     if( pList==0 ) return 0;
       
  3033     pList->nAlloc = 1;
       
  3034   }
       
  3035   if( pList->nSrc>=pList->nAlloc ){
       
  3036     SrcList *pNew;
       
  3037     pList->nAlloc *= 2;
       
  3038     pNew = sqlite3DbRealloc(db, pList,
       
  3039                sizeof(*pList) + (pList->nAlloc-1)*sizeof(pList->a[0]) );
       
  3040     if( pNew==0 ){
       
  3041       sqlite3SrcListDelete(db, pList);
       
  3042       return 0;
       
  3043     }
       
  3044     pList = pNew;
       
  3045   }
       
  3046   pItem = &pList->a[pList->nSrc];
       
  3047   memset(pItem, 0, sizeof(pList->a[0]));
       
  3048   if( pDatabase && pDatabase->z==0 ){
       
  3049     pDatabase = 0;
       
  3050   }
       
  3051   if( pDatabase && pTable ){
       
  3052     Token *pTemp = pDatabase;
       
  3053     pDatabase = pTable;
       
  3054     pTable = pTemp;
       
  3055   }
       
  3056   pItem->zName = sqlite3NameFromToken(db, pTable);
       
  3057   pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
       
  3058   pItem->iCursor = -1;
       
  3059   pList->nSrc++;
       
  3060   return pList;
       
  3061 }
       
  3062 
       
  3063 /*
       
  3064 ** Assign cursors to all tables in a SrcList
       
  3065 */
       
  3066 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
       
  3067   int i;
       
  3068   struct SrcList_item *pItem;
       
  3069   assert(pList || pParse->db->mallocFailed );
       
  3070   if( pList ){
       
  3071     for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
       
  3072       if( pItem->iCursor>=0 ) break;
       
  3073       pItem->iCursor = pParse->nTab++;
       
  3074       if( pItem->pSelect ){
       
  3075         sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
       
  3076       }
       
  3077     }
       
  3078   }
       
  3079 }
       
  3080 
       
  3081 /*
       
  3082 ** Delete an entire SrcList including all its substructure.
       
  3083 */
       
  3084 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
       
  3085   int i;
       
  3086   struct SrcList_item *pItem;
       
  3087   if( pList==0 ) return;
       
  3088   for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
       
  3089     sqlite3DbFree(db, pItem->zDatabase);
       
  3090     sqlite3DbFree(db, pItem->zName);
       
  3091     sqlite3DbFree(db, pItem->zAlias);
       
  3092     sqlite3DbFree(db, pItem->zIndex);
       
  3093     sqlite3DeleteTable(pItem->pTab);
       
  3094     sqlite3SelectDelete(db, pItem->pSelect);
       
  3095     sqlite3ExprDelete(db, pItem->pOn);
       
  3096     sqlite3IdListDelete(db, pItem->pUsing);
       
  3097   }
       
  3098   sqlite3DbFree(db, pList);
       
  3099 }
       
  3100 
       
  3101 /*
       
  3102 ** This routine is called by the parser to add a new term to the
       
  3103 ** end of a growing FROM clause.  The "p" parameter is the part of
       
  3104 ** the FROM clause that has already been constructed.  "p" is NULL
       
  3105 ** if this is the first term of the FROM clause.  pTable and pDatabase
       
  3106 ** are the name of the table and database named in the FROM clause term.
       
  3107 ** pDatabase is NULL if the database name qualifier is missing - the
       
  3108 ** usual case.  If the term has a alias, then pAlias points to the
       
  3109 ** alias token.  If the term is a subquery, then pSubquery is the
       
  3110 ** SELECT statement that the subquery encodes.  The pTable and
       
  3111 ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
       
  3112 ** parameters are the content of the ON and USING clauses.
       
  3113 **
       
  3114 ** Return a new SrcList which encodes is the FROM with the new
       
  3115 ** term added.
       
  3116 */
       
  3117 SrcList *sqlite3SrcListAppendFromTerm(
       
  3118   Parse *pParse,          /* Parsing context */
       
  3119   SrcList *p,             /* The left part of the FROM clause already seen */
       
  3120   Token *pTable,          /* Name of the table to add to the FROM clause */
       
  3121   Token *pDatabase,       /* Name of the database containing pTable */
       
  3122   Token *pAlias,          /* The right-hand side of the AS subexpression */
       
  3123   Select *pSubquery,      /* A subquery used in place of a table name */
       
  3124   Expr *pOn,              /* The ON clause of a join */
       
  3125   IdList *pUsing          /* The USING clause of a join */
       
  3126 ){
       
  3127   struct SrcList_item *pItem;
       
  3128   sqlite3 *db = pParse->db;
       
  3129   p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
       
  3130   if( p==0 || p->nSrc==0 ){
       
  3131     sqlite3ExprDelete(db, pOn);
       
  3132     sqlite3IdListDelete(db, pUsing);
       
  3133     sqlite3SelectDelete(db, pSubquery);
       
  3134     return p;
       
  3135   }
       
  3136   pItem = &p->a[p->nSrc-1];
       
  3137   if( pAlias && pAlias->n ){
       
  3138     pItem->zAlias = sqlite3NameFromToken(db, pAlias);
       
  3139   }
       
  3140   pItem->pSelect = pSubquery;
       
  3141   pItem->pOn = pOn;
       
  3142   pItem->pUsing = pUsing;
       
  3143   return p;
       
  3144 }
       
  3145 
       
  3146 /*
       
  3147 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added 
       
  3148 ** element of the source-list passed as the second argument.
       
  3149 */
       
  3150 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
       
  3151   if( pIndexedBy && p && p->nSrc>0 ){
       
  3152     struct SrcList_item *pItem = &p->a[p->nSrc-1];
       
  3153     assert( pItem->notIndexed==0 && pItem->zIndex==0 );
       
  3154     if( pIndexedBy->n==1 && !pIndexedBy->z ){
       
  3155       /* A "NOT INDEXED" clause was supplied. See parse.y 
       
  3156       ** construct "indexed_opt" for details. */
       
  3157       pItem->notIndexed = 1;
       
  3158     }else{
       
  3159       pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
       
  3160     }
       
  3161   }
       
  3162 }
       
  3163 
       
  3164 /*
       
  3165 ** When building up a FROM clause in the parser, the join operator
       
  3166 ** is initially attached to the left operand.  But the code generator
       
  3167 ** expects the join operator to be on the right operand.  This routine
       
  3168 ** Shifts all join operators from left to right for an entire FROM
       
  3169 ** clause.
       
  3170 **
       
  3171 ** Example: Suppose the join is like this:
       
  3172 **
       
  3173 **           A natural cross join B
       
  3174 **
       
  3175 ** The operator is "natural cross join".  The A and B operands are stored
       
  3176 ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
       
  3177 ** operator with A.  This routine shifts that operator over to B.
       
  3178 */
       
  3179 void sqlite3SrcListShiftJoinType(SrcList *p){
       
  3180   if( p && p->a ){
       
  3181     int i;
       
  3182     for(i=p->nSrc-1; i>0; i--){
       
  3183       p->a[i].jointype = p->a[i-1].jointype;
       
  3184     }
       
  3185     p->a[0].jointype = 0;
       
  3186   }
       
  3187 }
       
  3188 
       
  3189 /*
       
  3190 ** Begin a transaction
       
  3191 */
       
  3192 void sqlite3BeginTransaction(Parse *pParse, int type){
       
  3193   sqlite3 *db;
       
  3194   Vdbe *v;
       
  3195   int i;
       
  3196 
       
  3197   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
       
  3198   if( pParse->nErr || db->mallocFailed ) return;
       
  3199   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ) return;
       
  3200 
       
  3201   v = sqlite3GetVdbe(pParse);
       
  3202   if( !v ) return;
       
  3203   if( type!=TK_DEFERRED ){
       
  3204     for(i=0; i<db->nDb; i++){
       
  3205       sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
       
  3206       sqlite3VdbeUsesBtree(v, i);
       
  3207     }
       
  3208   }
       
  3209   sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
       
  3210 }
       
  3211 
       
  3212 /*
       
  3213 ** Commit a transaction
       
  3214 */
       
  3215 void sqlite3CommitTransaction(Parse *pParse){
       
  3216   sqlite3 *db;
       
  3217   Vdbe *v;
       
  3218 
       
  3219   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
       
  3220   if( pParse->nErr || db->mallocFailed ) return;
       
  3221   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ) return;
       
  3222 
       
  3223   v = sqlite3GetVdbe(pParse);
       
  3224   if( v ){
       
  3225     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
       
  3226   }
       
  3227 }
       
  3228 
       
  3229 /*
       
  3230 ** Rollback a transaction
       
  3231 */
       
  3232 void sqlite3RollbackTransaction(Parse *pParse){
       
  3233   sqlite3 *db;
       
  3234   Vdbe *v;
       
  3235 
       
  3236   if( pParse==0 || (db=pParse->db)==0 || db->aDb[0].pBt==0 ) return;
       
  3237   if( pParse->nErr || db->mallocFailed ) return;
       
  3238   if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ) return;
       
  3239 
       
  3240   v = sqlite3GetVdbe(pParse);
       
  3241   if( v ){
       
  3242     sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
       
  3243   }
       
  3244 }
       
  3245 
       
  3246 /*
       
  3247 ** Make sure the TEMP database is open and available for use.  Return
       
  3248 ** the number of errors.  Leave any error messages in the pParse structure.
       
  3249 */
       
  3250 int sqlite3OpenTempDatabase(Parse *pParse){
       
  3251   sqlite3 *db = pParse->db;
       
  3252   if( db->aDb[1].pBt==0 && !pParse->explain ){
       
  3253     int rc;
       
  3254     static const int flags = 
       
  3255           SQLITE_OPEN_READWRITE |
       
  3256           SQLITE_OPEN_CREATE |
       
  3257           SQLITE_OPEN_EXCLUSIVE |
       
  3258           SQLITE_OPEN_DELETEONCLOSE |
       
  3259           SQLITE_OPEN_TEMP_DB;
       
  3260 
       
  3261     rc = sqlite3BtreeFactory(db, 0, 0, SQLITE_DEFAULT_CACHE_SIZE, flags,
       
  3262                                  &db->aDb[1].pBt);
       
  3263     if( rc!=SQLITE_OK ){
       
  3264       sqlite3ErrorMsg(pParse, "unable to open a temporary database "
       
  3265         "file for storing temporary tables");
       
  3266       pParse->rc = rc;
       
  3267       return 1;
       
  3268     }
       
  3269     assert( (db->flags & SQLITE_InTrans)==0 || db->autoCommit );
       
  3270     assert( db->aDb[1].pSchema );
       
  3271     sqlite3PagerJournalMode(sqlite3BtreePager(db->aDb[1].pBt),
       
  3272                             db->dfltJournalMode);
       
  3273   }
       
  3274   return 0;
       
  3275 }
       
  3276 
       
  3277 /*
       
  3278 ** Generate VDBE code that will verify the schema cookie and start
       
  3279 ** a read-transaction for all named database files.
       
  3280 **
       
  3281 ** It is important that all schema cookies be verified and all
       
  3282 ** read transactions be started before anything else happens in
       
  3283 ** the VDBE program.  But this routine can be called after much other
       
  3284 ** code has been generated.  So here is what we do:
       
  3285 **
       
  3286 ** The first time this routine is called, we code an OP_Goto that
       
  3287 ** will jump to a subroutine at the end of the program.  Then we
       
  3288 ** record every database that needs its schema verified in the
       
  3289 ** pParse->cookieMask field.  Later, after all other code has been
       
  3290 ** generated, the subroutine that does the cookie verifications and
       
  3291 ** starts the transactions will be coded and the OP_Goto P2 value
       
  3292 ** will be made to point to that subroutine.  The generation of the
       
  3293 ** cookie verification subroutine code happens in sqlite3FinishCoding().
       
  3294 **
       
  3295 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
       
  3296 ** schema on any databases.  This can be used to position the OP_Goto
       
  3297 ** early in the code, before we know if any database tables will be used.
       
  3298 */
       
  3299 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
       
  3300   sqlite3 *db;
       
  3301   Vdbe *v;
       
  3302   int mask;
       
  3303 
       
  3304   v = sqlite3GetVdbe(pParse);
       
  3305   if( v==0 ) return;  /* This only happens if there was a prior error */
       
  3306   db = pParse->db;
       
  3307   if( pParse->cookieGoto==0 ){
       
  3308     pParse->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
       
  3309   }
       
  3310   if( iDb>=0 ){
       
  3311     assert( iDb<db->nDb );
       
  3312     assert( db->aDb[iDb].pBt!=0 || iDb==1 );
       
  3313     assert( iDb<SQLITE_MAX_ATTACHED+2 );
       
  3314     mask = 1<<iDb;
       
  3315     if( (pParse->cookieMask & mask)==0 ){
       
  3316       pParse->cookieMask |= mask;
       
  3317       pParse->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
       
  3318       if( !OMIT_TEMPDB && iDb==1 ){
       
  3319         sqlite3OpenTempDatabase(pParse);
       
  3320       }
       
  3321     }
       
  3322   }
       
  3323 }
       
  3324 
       
  3325 /*
       
  3326 ** Generate VDBE code that prepares for doing an operation that
       
  3327 ** might change the database.
       
  3328 **
       
  3329 ** This routine starts a new transaction if we are not already within
       
  3330 ** a transaction.  If we are already within a transaction, then a checkpoint
       
  3331 ** is set if the setStatement parameter is true.  A checkpoint should
       
  3332 ** be set for operations that might fail (due to a constraint) part of
       
  3333 ** the way through and which will need to undo some writes without having to
       
  3334 ** rollback the whole transaction.  For operations where all constraints
       
  3335 ** can be checked before any changes are made to the database, it is never
       
  3336 ** necessary to undo a write and the checkpoint should not be set.
       
  3337 **
       
  3338 ** Only database iDb and the temp database are made writable by this call.
       
  3339 ** If iDb==0, then the main and temp databases are made writable.   If
       
  3340 ** iDb==1 then only the temp database is made writable.  If iDb>1 then the
       
  3341 ** specified auxiliary database and the temp database are made writable.
       
  3342 */
       
  3343 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
       
  3344   Vdbe *v = sqlite3GetVdbe(pParse);
       
  3345   if( v==0 ) return;
       
  3346   sqlite3CodeVerifySchema(pParse, iDb);
       
  3347   pParse->writeMask |= 1<<iDb;
       
  3348   if( setStatement && pParse->nested==0 ){
       
  3349     sqlite3VdbeAddOp1(v, OP_Statement, iDb);
       
  3350   }
       
  3351   if( (OMIT_TEMPDB || iDb!=1) && pParse->db->aDb[1].pBt!=0 ){
       
  3352     sqlite3BeginWriteOperation(pParse, setStatement, 1);
       
  3353   }
       
  3354 }
       
  3355 
       
  3356 /*
       
  3357 ** Check to see if pIndex uses the collating sequence pColl.  Return
       
  3358 ** true if it does and false if it does not.
       
  3359 */
       
  3360 #ifndef SQLITE_OMIT_REINDEX
       
  3361 static int collationMatch(const char *zColl, Index *pIndex){
       
  3362   int i;
       
  3363   for(i=0; i<pIndex->nColumn; i++){
       
  3364     const char *z = pIndex->azColl[i];
       
  3365     if( z==zColl || (z && zColl && 0==sqlite3StrICmp(z, zColl)) ){
       
  3366       return 1;
       
  3367     }
       
  3368   }
       
  3369   return 0;
       
  3370 }
       
  3371 #endif
       
  3372 
       
  3373 /*
       
  3374 ** Recompute all indices of pTab that use the collating sequence pColl.
       
  3375 ** If pColl==0 then recompute all indices of pTab.
       
  3376 */
       
  3377 #ifndef SQLITE_OMIT_REINDEX
       
  3378 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
       
  3379   Index *pIndex;              /* An index associated with pTab */
       
  3380 
       
  3381   for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
       
  3382     if( zColl==0 || collationMatch(zColl, pIndex) ){
       
  3383       int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
       
  3384       sqlite3BeginWriteOperation(pParse, 0, iDb);
       
  3385       sqlite3RefillIndex(pParse, pIndex, -1);
       
  3386     }
       
  3387   }
       
  3388 }
       
  3389 #endif
       
  3390 
       
  3391 /*
       
  3392 ** Recompute all indices of all tables in all databases where the
       
  3393 ** indices use the collating sequence pColl.  If pColl==0 then recompute
       
  3394 ** all indices everywhere.
       
  3395 */
       
  3396 #ifndef SQLITE_OMIT_REINDEX
       
  3397 static void reindexDatabases(Parse *pParse, char const *zColl){
       
  3398   Db *pDb;                    /* A single database */
       
  3399   int iDb;                    /* The database index number */
       
  3400   sqlite3 *db = pParse->db;   /* The database connection */
       
  3401   HashElem *k;                /* For looping over tables in pDb */
       
  3402   Table *pTab;                /* A table in the database */
       
  3403 
       
  3404   for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
       
  3405     assert( pDb!=0 );
       
  3406     for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
       
  3407       pTab = (Table*)sqliteHashData(k);
       
  3408       reindexTable(pParse, pTab, zColl);
       
  3409     }
       
  3410   }
       
  3411 }
       
  3412 #endif
       
  3413 
       
  3414 /*
       
  3415 ** Generate code for the REINDEX command.
       
  3416 **
       
  3417 **        REINDEX                            -- 1
       
  3418 **        REINDEX  <collation>               -- 2
       
  3419 **        REINDEX  ?<database>.?<tablename>  -- 3
       
  3420 **        REINDEX  ?<database>.?<indexname>  -- 4
       
  3421 **
       
  3422 ** Form 1 causes all indices in all attached databases to be rebuilt.
       
  3423 ** Form 2 rebuilds all indices in all databases that use the named
       
  3424 ** collating function.  Forms 3 and 4 rebuild the named index or all
       
  3425 ** indices associated with the named table.
       
  3426 */
       
  3427 #ifndef SQLITE_OMIT_REINDEX
       
  3428 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
       
  3429   CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
       
  3430   char *z;                    /* Name of a table or index */
       
  3431   const char *zDb;            /* Name of the database */
       
  3432   Table *pTab;                /* A table in the database */
       
  3433   Index *pIndex;              /* An index associated with pTab */
       
  3434   int iDb;                    /* The database index number */
       
  3435   sqlite3 *db = pParse->db;   /* The database connection */
       
  3436   Token *pObjName;            /* Name of the table or index to be reindexed */
       
  3437 
       
  3438   /* Read the database schema. If an error occurs, leave an error message
       
  3439   ** and code in pParse and return NULL. */
       
  3440   if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
       
  3441     return;
       
  3442   }
       
  3443 
       
  3444   if( pName1==0 || pName1->z==0 ){
       
  3445     reindexDatabases(pParse, 0);
       
  3446     return;
       
  3447   }else if( pName2==0 || pName2->z==0 ){
       
  3448     char *zColl;
       
  3449     assert( pName1->z );
       
  3450     zColl = sqlite3NameFromToken(pParse->db, pName1);
       
  3451     if( !zColl ) return;
       
  3452     pColl = sqlite3FindCollSeq(db, ENC(db), zColl, -1, 0);
       
  3453     if( pColl ){
       
  3454       if( zColl ){
       
  3455         reindexDatabases(pParse, zColl);
       
  3456         sqlite3DbFree(db, zColl);
       
  3457       }
       
  3458       return;
       
  3459     }
       
  3460     sqlite3DbFree(db, zColl);
       
  3461   }
       
  3462   iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
       
  3463   if( iDb<0 ) return;
       
  3464   z = sqlite3NameFromToken(db, pObjName);
       
  3465   if( z==0 ) return;
       
  3466   zDb = db->aDb[iDb].zName;
       
  3467   pTab = sqlite3FindTable(db, z, zDb);
       
  3468   if( pTab ){
       
  3469     reindexTable(pParse, pTab, 0);
       
  3470     sqlite3DbFree(db, z);
       
  3471     return;
       
  3472   }
       
  3473   pIndex = sqlite3FindIndex(db, z, zDb);
       
  3474   sqlite3DbFree(db, z);
       
  3475   if( pIndex ){
       
  3476     sqlite3BeginWriteOperation(pParse, 0, iDb);
       
  3477     sqlite3RefillIndex(pParse, pIndex, -1);
       
  3478     return;
       
  3479   }
       
  3480   sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
       
  3481 }
       
  3482 #endif
       
  3483 
       
  3484 /*
       
  3485 ** Return a dynamicly allocated KeyInfo structure that can be used
       
  3486 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
       
  3487 **
       
  3488 ** If successful, a pointer to the new structure is returned. In this case
       
  3489 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned 
       
  3490 ** pointer. If an error occurs (out of memory or missing collation 
       
  3491 ** sequence), NULL is returned and the state of pParse updated to reflect
       
  3492 ** the error.
       
  3493 */
       
  3494 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
       
  3495   int i;
       
  3496   int nCol = pIdx->nColumn;
       
  3497   int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
       
  3498   sqlite3 *db = pParse->db;
       
  3499   KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
       
  3500 
       
  3501   if( pKey ){
       
  3502     pKey->db = pParse->db;
       
  3503     pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
       
  3504     assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
       
  3505     for(i=0; i<nCol; i++){
       
  3506       char *zColl = pIdx->azColl[i];
       
  3507       assert( zColl );
       
  3508       pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl, -1);
       
  3509       pKey->aSortOrder[i] = pIdx->aSortOrder[i];
       
  3510     }
       
  3511     pKey->nField = nCol;
       
  3512   }
       
  3513 
       
  3514   if( pParse->nErr ){
       
  3515     sqlite3DbFree(db, pKey);
       
  3516     pKey = 0;
       
  3517   }
       
  3518   return pKey;
       
  3519 }