|
1 /* |
|
2 ** 2004 May 22 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ****************************************************************************** |
|
12 ** |
|
13 ** This file contains code that is specific to Unix systems. |
|
14 ** |
|
15 ** $Id: os_unix.c,v 1.205 2008/10/14 17:58:38 drh Exp $ |
|
16 */ |
|
17 #include "sqliteInt.h" |
|
18 #if SQLITE_OS_UNIX /* This file is used on unix only */ |
|
19 |
|
20 /* |
|
21 ** If SQLITE_ENABLE_LOCKING_STYLE is defined and is non-zero, then several |
|
22 ** alternative locking implementations are provided: |
|
23 ** |
|
24 ** * POSIX locking (the default), |
|
25 ** * No locking, |
|
26 ** * Dot-file locking, |
|
27 ** * flock() locking, |
|
28 ** * AFP locking (OSX only). |
|
29 ** |
|
30 ** SQLITE_ENABLE_LOCKING_STYLE only works on a Mac. It is turned on by |
|
31 ** default on a Mac and disabled on all other posix platforms. |
|
32 */ |
|
33 #if !defined(SQLITE_ENABLE_LOCKING_STYLE) |
|
34 # if defined(__DARWIN__) |
|
35 # define SQLITE_ENABLE_LOCKING_STYLE 1 |
|
36 # else |
|
37 # define SQLITE_ENABLE_LOCKING_STYLE 0 |
|
38 # endif |
|
39 #endif |
|
40 |
|
41 /* |
|
42 ** These #defines should enable >2GB file support on Posix if the |
|
43 ** underlying operating system supports it. If the OS lacks |
|
44 ** large file support, these should be no-ops. |
|
45 ** |
|
46 ** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch |
|
47 ** on the compiler command line. This is necessary if you are compiling |
|
48 ** on a recent machine (ex: RedHat 7.2) but you want your code to work |
|
49 ** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2 |
|
50 ** without this option, LFS is enable. But LFS does not exist in the kernel |
|
51 ** in RedHat 6.0, so the code won't work. Hence, for maximum binary |
|
52 ** portability you should omit LFS. |
|
53 */ |
|
54 #ifndef SQLITE_DISABLE_LFS |
|
55 # define _LARGE_FILE 1 |
|
56 # ifndef _FILE_OFFSET_BITS |
|
57 # define _FILE_OFFSET_BITS 64 |
|
58 # endif |
|
59 # define _LARGEFILE_SOURCE 1 |
|
60 #endif |
|
61 |
|
62 /* |
|
63 ** standard include files. |
|
64 */ |
|
65 #include <sys/types.h> |
|
66 #include <sys/stat.h> |
|
67 #include <fcntl.h> |
|
68 #include <unistd.h> |
|
69 #include <time.h> |
|
70 #include <sys/time.h> |
|
71 #include <errno.h> |
|
72 |
|
73 #if SQLITE_ENABLE_LOCKING_STYLE |
|
74 #include <sys/ioctl.h> |
|
75 #include <sys/param.h> |
|
76 #include <sys/mount.h> |
|
77 #endif /* SQLITE_ENABLE_LOCKING_STYLE */ |
|
78 |
|
79 /* |
|
80 ** If we are to be thread-safe, include the pthreads header and define |
|
81 ** the SQLITE_UNIX_THREADS macro. |
|
82 */ |
|
83 #if SQLITE_THREADSAFE |
|
84 # include <pthread.h> |
|
85 # define SQLITE_UNIX_THREADS 1 |
|
86 #endif |
|
87 |
|
88 /* |
|
89 ** Default permissions when creating a new file |
|
90 */ |
|
91 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS |
|
92 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644 |
|
93 #endif |
|
94 |
|
95 /* |
|
96 ** Maximum supported path-length. |
|
97 */ |
|
98 #define MAX_PATHNAME 512 |
|
99 |
|
100 |
|
101 /* |
|
102 ** The unixFile structure is subclass of sqlite3_file specific for the unix |
|
103 ** protability layer. |
|
104 */ |
|
105 typedef struct unixFile unixFile; |
|
106 struct unixFile { |
|
107 sqlite3_io_methods const *pMethod; /* Always the first entry */ |
|
108 #ifdef SQLITE_TEST |
|
109 /* In test mode, increase the size of this structure a bit so that |
|
110 ** it is larger than the struct CrashFile defined in test6.c. |
|
111 */ |
|
112 char aPadding[32]; |
|
113 #endif |
|
114 struct openCnt *pOpen; /* Info about all open fd's on this inode */ |
|
115 struct lockInfo *pLock; /* Info about locks on this inode */ |
|
116 #if SQLITE_ENABLE_LOCKING_STYLE |
|
117 void *lockingContext; /* Locking style specific state */ |
|
118 #endif |
|
119 int h; /* The file descriptor */ |
|
120 unsigned char locktype; /* The type of lock held on this fd */ |
|
121 int dirfd; /* File descriptor for the directory */ |
|
122 #if SQLITE_THREADSAFE |
|
123 pthread_t tid; /* The thread that "owns" this unixFile */ |
|
124 #endif |
|
125 int lastErrno; /* The unix errno from the last I/O error */ |
|
126 }; |
|
127 |
|
128 /* |
|
129 ** Include code that is common to all os_*.c files |
|
130 */ |
|
131 #include "os_common.h" |
|
132 |
|
133 /* |
|
134 ** Define various macros that are missing from some systems. |
|
135 */ |
|
136 #ifndef O_LARGEFILE |
|
137 # define O_LARGEFILE 0 |
|
138 #endif |
|
139 #ifdef SQLITE_DISABLE_LFS |
|
140 # undef O_LARGEFILE |
|
141 # define O_LARGEFILE 0 |
|
142 #endif |
|
143 #ifndef O_NOFOLLOW |
|
144 # define O_NOFOLLOW 0 |
|
145 #endif |
|
146 #ifndef O_BINARY |
|
147 # define O_BINARY 0 |
|
148 #endif |
|
149 |
|
150 /* |
|
151 ** The DJGPP compiler environment looks mostly like Unix, but it |
|
152 ** lacks the fcntl() system call. So redefine fcntl() to be something |
|
153 ** that always succeeds. This means that locking does not occur under |
|
154 ** DJGPP. But it is DOS - what did you expect? |
|
155 */ |
|
156 #ifdef __DJGPP__ |
|
157 # define fcntl(A,B,C) 0 |
|
158 #endif |
|
159 |
|
160 /* |
|
161 ** The threadid macro resolves to the thread-id or to 0. Used for |
|
162 ** testing and debugging only. |
|
163 */ |
|
164 #if SQLITE_THREADSAFE |
|
165 #define threadid pthread_self() |
|
166 #else |
|
167 #define threadid 0 |
|
168 #endif |
|
169 |
|
170 /* |
|
171 ** Set or check the unixFile.tid field. This field is set when an unixFile |
|
172 ** is first opened. All subsequent uses of the unixFile verify that the |
|
173 ** same thread is operating on the unixFile. Some operating systems do |
|
174 ** not allow locks to be overridden by other threads and that restriction |
|
175 ** means that sqlite3* database handles cannot be moved from one thread |
|
176 ** to another. This logic makes sure a user does not try to do that |
|
177 ** by mistake. |
|
178 ** |
|
179 ** Version 3.3.1 (2006-01-15): unixFile can be moved from one thread to |
|
180 ** another as long as we are running on a system that supports threads |
|
181 ** overriding each others locks (which now the most common behavior) |
|
182 ** or if no locks are held. But the unixFile.pLock field needs to be |
|
183 ** recomputed because its key includes the thread-id. See the |
|
184 ** transferOwnership() function below for additional information |
|
185 */ |
|
186 #if SQLITE_THREADSAFE |
|
187 # define SET_THREADID(X) (X)->tid = pthread_self() |
|
188 # define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \ |
|
189 !pthread_equal((X)->tid, pthread_self())) |
|
190 #else |
|
191 # define SET_THREADID(X) |
|
192 # define CHECK_THREADID(X) 0 |
|
193 #endif |
|
194 |
|
195 /* |
|
196 ** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996) |
|
197 ** section 6.5.2.2 lines 483 through 490 specify that when a process |
|
198 ** sets or clears a lock, that operation overrides any prior locks set |
|
199 ** by the same process. It does not explicitly say so, but this implies |
|
200 ** that it overrides locks set by the same process using a different |
|
201 ** file descriptor. Consider this test case: |
|
202 ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644); |
|
203 ** |
|
204 ** Suppose ./file1 and ./file2 are really the same file (because |
|
205 ** one is a hard or symbolic link to the other) then if you set |
|
206 ** an exclusive lock on fd1, then try to get an exclusive lock |
|
207 ** on fd2, it works. I would have expected the second lock to |
|
208 ** fail since there was already a lock on the file due to fd1. |
|
209 ** But not so. Since both locks came from the same process, the |
|
210 ** second overrides the first, even though they were on different |
|
211 ** file descriptors opened on different file names. |
|
212 ** |
|
213 ** Bummer. If you ask me, this is broken. Badly broken. It means |
|
214 ** that we cannot use POSIX locks to synchronize file access among |
|
215 ** competing threads of the same process. POSIX locks will work fine |
|
216 ** to synchronize access for threads in separate processes, but not |
|
217 ** threads within the same process. |
|
218 ** |
|
219 ** To work around the problem, SQLite has to manage file locks internally |
|
220 ** on its own. Whenever a new database is opened, we have to find the |
|
221 ** specific inode of the database file (the inode is determined by the |
|
222 ** st_dev and st_ino fields of the stat structure that fstat() fills in) |
|
223 ** and check for locks already existing on that inode. When locks are |
|
224 ** created or removed, we have to look at our own internal record of the |
|
225 ** locks to see if another thread has previously set a lock on that same |
|
226 ** inode. |
|
227 ** |
|
228 ** The sqlite3_file structure for POSIX is no longer just an integer file |
|
229 ** descriptor. It is now a structure that holds the integer file |
|
230 ** descriptor and a pointer to a structure that describes the internal |
|
231 ** locks on the corresponding inode. There is one locking structure |
|
232 ** per inode, so if the same inode is opened twice, both unixFile structures |
|
233 ** point to the same locking structure. The locking structure keeps |
|
234 ** a reference count (so we will know when to delete it) and a "cnt" |
|
235 ** field that tells us its internal lock status. cnt==0 means the |
|
236 ** file is unlocked. cnt==-1 means the file has an exclusive lock. |
|
237 ** cnt>0 means there are cnt shared locks on the file. |
|
238 ** |
|
239 ** Any attempt to lock or unlock a file first checks the locking |
|
240 ** structure. The fcntl() system call is only invoked to set a |
|
241 ** POSIX lock if the internal lock structure transitions between |
|
242 ** a locked and an unlocked state. |
|
243 ** |
|
244 ** 2004-Jan-11: |
|
245 ** More recent discoveries about POSIX advisory locks. (The more |
|
246 ** I discover, the more I realize the a POSIX advisory locks are |
|
247 ** an abomination.) |
|
248 ** |
|
249 ** If you close a file descriptor that points to a file that has locks, |
|
250 ** all locks on that file that are owned by the current process are |
|
251 ** released. To work around this problem, each unixFile structure contains |
|
252 ** a pointer to an openCnt structure. There is one openCnt structure |
|
253 ** per open inode, which means that multiple unixFile can point to a single |
|
254 ** openCnt. When an attempt is made to close an unixFile, if there are |
|
255 ** other unixFile open on the same inode that are holding locks, the call |
|
256 ** to close() the file descriptor is deferred until all of the locks clear. |
|
257 ** The openCnt structure keeps a list of file descriptors that need to |
|
258 ** be closed and that list is walked (and cleared) when the last lock |
|
259 ** clears. |
|
260 ** |
|
261 ** First, under Linux threads, because each thread has a separate |
|
262 ** process ID, lock operations in one thread do not override locks |
|
263 ** to the same file in other threads. Linux threads behave like |
|
264 ** separate processes in this respect. But, if you close a file |
|
265 ** descriptor in linux threads, all locks are cleared, even locks |
|
266 ** on other threads and even though the other threads have different |
|
267 ** process IDs. Linux threads is inconsistent in this respect. |
|
268 ** (I'm beginning to think that linux threads is an abomination too.) |
|
269 ** The consequence of this all is that the hash table for the lockInfo |
|
270 ** structure has to include the process id as part of its key because |
|
271 ** locks in different threads are treated as distinct. But the |
|
272 ** openCnt structure should not include the process id in its |
|
273 ** key because close() clears lock on all threads, not just the current |
|
274 ** thread. Were it not for this goofiness in linux threads, we could |
|
275 ** combine the lockInfo and openCnt structures into a single structure. |
|
276 ** |
|
277 ** 2004-Jun-28: |
|
278 ** On some versions of linux, threads can override each others locks. |
|
279 ** On others not. Sometimes you can change the behavior on the same |
|
280 ** system by setting the LD_ASSUME_KERNEL environment variable. The |
|
281 ** POSIX standard is silent as to which behavior is correct, as far |
|
282 ** as I can tell, so other versions of unix might show the same |
|
283 ** inconsistency. There is no little doubt in my mind that posix |
|
284 ** advisory locks and linux threads are profoundly broken. |
|
285 ** |
|
286 ** To work around the inconsistencies, we have to test at runtime |
|
287 ** whether or not threads can override each others locks. This test |
|
288 ** is run once, the first time any lock is attempted. A static |
|
289 ** variable is set to record the results of this test for future |
|
290 ** use. |
|
291 */ |
|
292 |
|
293 /* |
|
294 ** An instance of the following structure serves as the key used |
|
295 ** to locate a particular lockInfo structure given its inode. |
|
296 ** |
|
297 ** If threads cannot override each others locks, then we set the |
|
298 ** lockKey.tid field to the thread ID. If threads can override |
|
299 ** each others locks then tid is always set to zero. tid is omitted |
|
300 ** if we compile without threading support. |
|
301 */ |
|
302 struct lockKey { |
|
303 dev_t dev; /* Device number */ |
|
304 ino_t ino; /* Inode number */ |
|
305 #if SQLITE_THREADSAFE |
|
306 pthread_t tid; /* Thread ID or zero if threads can override each other */ |
|
307 #endif |
|
308 }; |
|
309 |
|
310 /* |
|
311 ** An instance of the following structure is allocated for each open |
|
312 ** inode on each thread with a different process ID. (Threads have |
|
313 ** different process IDs on linux, but not on most other unixes.) |
|
314 ** |
|
315 ** A single inode can have multiple file descriptors, so each unixFile |
|
316 ** structure contains a pointer to an instance of this object and this |
|
317 ** object keeps a count of the number of unixFile pointing to it. |
|
318 */ |
|
319 struct lockInfo { |
|
320 struct lockKey key; /* The lookup key */ |
|
321 int cnt; /* Number of SHARED locks held */ |
|
322 int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ |
|
323 int nRef; /* Number of pointers to this structure */ |
|
324 struct lockInfo *pNext, *pPrev; /* List of all lockInfo objects */ |
|
325 }; |
|
326 |
|
327 /* |
|
328 ** An instance of the following structure serves as the key used |
|
329 ** to locate a particular openCnt structure given its inode. This |
|
330 ** is the same as the lockKey except that the thread ID is omitted. |
|
331 */ |
|
332 struct openKey { |
|
333 dev_t dev; /* Device number */ |
|
334 ino_t ino; /* Inode number */ |
|
335 }; |
|
336 |
|
337 /* |
|
338 ** An instance of the following structure is allocated for each open |
|
339 ** inode. This structure keeps track of the number of locks on that |
|
340 ** inode. If a close is attempted against an inode that is holding |
|
341 ** locks, the close is deferred until all locks clear by adding the |
|
342 ** file descriptor to be closed to the pending list. |
|
343 */ |
|
344 struct openCnt { |
|
345 struct openKey key; /* The lookup key */ |
|
346 int nRef; /* Number of pointers to this structure */ |
|
347 int nLock; /* Number of outstanding locks */ |
|
348 int nPending; /* Number of pending close() operations */ |
|
349 int *aPending; /* Malloced space holding fd's awaiting a close() */ |
|
350 struct openCnt *pNext, *pPrev; /* List of all openCnt objects */ |
|
351 }; |
|
352 |
|
353 /* |
|
354 ** List of all lockInfo and openCnt objects. This used to be a hash |
|
355 ** table. But the number of objects is rarely more than a dozen and |
|
356 ** never exceeds a few thousand. And lookup is not on a critical |
|
357 ** path oo a simple linked list will suffice. |
|
358 */ |
|
359 static struct lockInfo *lockList = 0; |
|
360 static struct openCnt *openList = 0; |
|
361 |
|
362 /* |
|
363 ** The locking styles are associated with the different file locking |
|
364 ** capabilities supported by different file systems. |
|
365 ** |
|
366 ** POSIX locking style fully supports shared and exclusive byte-range locks |
|
367 ** AFP locking only supports exclusive byte-range locks |
|
368 ** FLOCK only supports a single file-global exclusive lock |
|
369 ** DOTLOCK isn't a true locking style, it refers to the use of a special |
|
370 ** file named the same as the database file with a '.lock' extension, this |
|
371 ** can be used on file systems that do not offer any reliable file locking |
|
372 ** NO locking means that no locking will be attempted, this is only used for |
|
373 ** read-only file systems currently |
|
374 ** UNSUPPORTED means that no locking will be attempted, this is only used for |
|
375 ** file systems that are known to be unsupported |
|
376 */ |
|
377 #define LOCKING_STYLE_POSIX 1 |
|
378 #define LOCKING_STYLE_NONE 2 |
|
379 #define LOCKING_STYLE_DOTFILE 3 |
|
380 #define LOCKING_STYLE_FLOCK 4 |
|
381 #define LOCKING_STYLE_AFP 5 |
|
382 |
|
383 /* |
|
384 ** Only set the lastErrno if the error code is a real error and not |
|
385 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK |
|
386 */ |
|
387 #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) |
|
388 |
|
389 /* |
|
390 ** Helper functions to obtain and relinquish the global mutex. |
|
391 */ |
|
392 static void enterMutex(void){ |
|
393 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
|
394 } |
|
395 static void leaveMutex(void){ |
|
396 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); |
|
397 } |
|
398 |
|
399 #if SQLITE_THREADSAFE |
|
400 /* |
|
401 ** This variable records whether or not threads can override each others |
|
402 ** locks. |
|
403 ** |
|
404 ** 0: No. Threads cannot override each others locks. |
|
405 ** 1: Yes. Threads can override each others locks. |
|
406 ** -1: We don't know yet. |
|
407 ** |
|
408 ** On some systems, we know at compile-time if threads can override each |
|
409 ** others locks. On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro |
|
410 ** will be set appropriately. On other systems, we have to check at |
|
411 ** runtime. On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is |
|
412 ** undefined. |
|
413 ** |
|
414 ** This variable normally has file scope only. But during testing, we make |
|
415 ** it a global so that the test code can change its value in order to verify |
|
416 ** that the right stuff happens in either case. |
|
417 */ |
|
418 #ifndef SQLITE_THREAD_OVERRIDE_LOCK |
|
419 # define SQLITE_THREAD_OVERRIDE_LOCK -1 |
|
420 #endif |
|
421 #ifdef SQLITE_TEST |
|
422 int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK; |
|
423 #else |
|
424 static int threadsOverrideEachOthersLocks = SQLITE_THREAD_OVERRIDE_LOCK; |
|
425 #endif |
|
426 |
|
427 /* |
|
428 ** This structure holds information passed into individual test |
|
429 ** threads by the testThreadLockingBehavior() routine. |
|
430 */ |
|
431 struct threadTestData { |
|
432 int fd; /* File to be locked */ |
|
433 struct flock lock; /* The locking operation */ |
|
434 int result; /* Result of the locking operation */ |
|
435 }; |
|
436 |
|
437 #ifdef SQLITE_LOCK_TRACE |
|
438 /* |
|
439 ** Print out information about all locking operations. |
|
440 ** |
|
441 ** This routine is used for troubleshooting locks on multithreaded |
|
442 ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE |
|
443 ** command-line option on the compiler. This code is normally |
|
444 ** turned off. |
|
445 */ |
|
446 static int lockTrace(int fd, int op, struct flock *p){ |
|
447 char *zOpName, *zType; |
|
448 int s; |
|
449 int savedErrno; |
|
450 if( op==F_GETLK ){ |
|
451 zOpName = "GETLK"; |
|
452 }else if( op==F_SETLK ){ |
|
453 zOpName = "SETLK"; |
|
454 }else{ |
|
455 s = fcntl(fd, op, p); |
|
456 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s); |
|
457 return s; |
|
458 } |
|
459 if( p->l_type==F_RDLCK ){ |
|
460 zType = "RDLCK"; |
|
461 }else if( p->l_type==F_WRLCK ){ |
|
462 zType = "WRLCK"; |
|
463 }else if( p->l_type==F_UNLCK ){ |
|
464 zType = "UNLCK"; |
|
465 }else{ |
|
466 assert( 0 ); |
|
467 } |
|
468 assert( p->l_whence==SEEK_SET ); |
|
469 s = fcntl(fd, op, p); |
|
470 savedErrno = errno; |
|
471 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n", |
|
472 threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len, |
|
473 (int)p->l_pid, s); |
|
474 if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){ |
|
475 struct flock l2; |
|
476 l2 = *p; |
|
477 fcntl(fd, F_GETLK, &l2); |
|
478 if( l2.l_type==F_RDLCK ){ |
|
479 zType = "RDLCK"; |
|
480 }else if( l2.l_type==F_WRLCK ){ |
|
481 zType = "WRLCK"; |
|
482 }else if( l2.l_type==F_UNLCK ){ |
|
483 zType = "UNLCK"; |
|
484 }else{ |
|
485 assert( 0 ); |
|
486 } |
|
487 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n", |
|
488 zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid); |
|
489 } |
|
490 errno = savedErrno; |
|
491 return s; |
|
492 } |
|
493 #define fcntl lockTrace |
|
494 #endif /* SQLITE_LOCK_TRACE */ |
|
495 |
|
496 /* |
|
497 ** The testThreadLockingBehavior() routine launches two separate |
|
498 ** threads on this routine. This routine attempts to lock a file |
|
499 ** descriptor then returns. The success or failure of that attempt |
|
500 ** allows the testThreadLockingBehavior() procedure to determine |
|
501 ** whether or not threads can override each others locks. |
|
502 */ |
|
503 static void *threadLockingTest(void *pArg){ |
|
504 struct threadTestData *pData = (struct threadTestData*)pArg; |
|
505 pData->result = fcntl(pData->fd, F_SETLK, &pData->lock); |
|
506 return pArg; |
|
507 } |
|
508 |
|
509 /* |
|
510 ** This procedure attempts to determine whether or not threads |
|
511 ** can override each others locks then sets the |
|
512 ** threadsOverrideEachOthersLocks variable appropriately. |
|
513 */ |
|
514 static void testThreadLockingBehavior(int fd_orig){ |
|
515 int fd; |
|
516 struct threadTestData d[2]; |
|
517 pthread_t t[2]; |
|
518 |
|
519 fd = dup(fd_orig); |
|
520 if( fd<0 ) return; |
|
521 memset(d, 0, sizeof(d)); |
|
522 d[0].fd = fd; |
|
523 d[0].lock.l_type = F_RDLCK; |
|
524 d[0].lock.l_len = 1; |
|
525 d[0].lock.l_start = 0; |
|
526 d[0].lock.l_whence = SEEK_SET; |
|
527 d[1] = d[0]; |
|
528 d[1].lock.l_type = F_WRLCK; |
|
529 pthread_create(&t[0], 0, threadLockingTest, &d[0]); |
|
530 pthread_create(&t[1], 0, threadLockingTest, &d[1]); |
|
531 pthread_join(t[0], 0); |
|
532 pthread_join(t[1], 0); |
|
533 close(fd); |
|
534 threadsOverrideEachOthersLocks = d[0].result==0 && d[1].result==0; |
|
535 } |
|
536 #endif /* SQLITE_THREADSAFE */ |
|
537 |
|
538 /* |
|
539 ** Release a lockInfo structure previously allocated by findLockInfo(). |
|
540 */ |
|
541 static void releaseLockInfo(struct lockInfo *pLock){ |
|
542 if( pLock ){ |
|
543 pLock->nRef--; |
|
544 if( pLock->nRef==0 ){ |
|
545 if( pLock->pPrev ){ |
|
546 assert( pLock->pPrev->pNext==pLock ); |
|
547 pLock->pPrev->pNext = pLock->pNext; |
|
548 }else{ |
|
549 assert( lockList==pLock ); |
|
550 lockList = pLock->pNext; |
|
551 } |
|
552 if( pLock->pNext ){ |
|
553 assert( pLock->pNext->pPrev==pLock ); |
|
554 pLock->pNext->pPrev = pLock->pPrev; |
|
555 } |
|
556 sqlite3_free(pLock); |
|
557 } |
|
558 } |
|
559 } |
|
560 |
|
561 /* |
|
562 ** Release a openCnt structure previously allocated by findLockInfo(). |
|
563 */ |
|
564 static void releaseOpenCnt(struct openCnt *pOpen){ |
|
565 if( pOpen ){ |
|
566 pOpen->nRef--; |
|
567 if( pOpen->nRef==0 ){ |
|
568 if( pOpen->pPrev ){ |
|
569 assert( pOpen->pPrev->pNext==pOpen ); |
|
570 pOpen->pPrev->pNext = pOpen->pNext; |
|
571 }else{ |
|
572 assert( openList==pOpen ); |
|
573 openList = pOpen->pNext; |
|
574 } |
|
575 if( pOpen->pNext ){ |
|
576 assert( pOpen->pNext->pPrev==pOpen ); |
|
577 pOpen->pNext->pPrev = pOpen->pPrev; |
|
578 } |
|
579 sqlite3_free(pOpen->aPending); |
|
580 sqlite3_free(pOpen); |
|
581 } |
|
582 } |
|
583 } |
|
584 |
|
585 #if SQLITE_ENABLE_LOCKING_STYLE |
|
586 /* |
|
587 ** Tests a byte-range locking query to see if byte range locks are |
|
588 ** supported, if not we fall back to dotlockLockingStyle. |
|
589 */ |
|
590 static int testLockingStyle(int fd){ |
|
591 struct flock lockInfo; |
|
592 |
|
593 /* Test byte-range lock using fcntl(). If the call succeeds, |
|
594 ** assume that the file-system supports POSIX style locks. |
|
595 */ |
|
596 lockInfo.l_len = 1; |
|
597 lockInfo.l_start = 0; |
|
598 lockInfo.l_whence = SEEK_SET; |
|
599 lockInfo.l_type = F_RDLCK; |
|
600 if( fcntl(fd, F_GETLK, &lockInfo)!=-1 ) { |
|
601 return LOCKING_STYLE_POSIX; |
|
602 } |
|
603 |
|
604 /* Testing for flock() can give false positives. So if if the above |
|
605 ** test fails, then we fall back to using dot-file style locking. |
|
606 */ |
|
607 return LOCKING_STYLE_DOTFILE; |
|
608 } |
|
609 #endif |
|
610 |
|
611 /* |
|
612 ** If SQLITE_ENABLE_LOCKING_STYLE is defined, this function Examines the |
|
613 ** f_fstypename entry in the statfs structure as returned by stat() for |
|
614 ** the file system hosting the database file and selects the appropriate |
|
615 ** locking style based on its value. These values and assignments are |
|
616 ** based on Darwin/OSX behavior and have not been thoroughly tested on |
|
617 ** other systems. |
|
618 ** |
|
619 ** If SQLITE_ENABLE_LOCKING_STYLE is not defined, this function always |
|
620 ** returns LOCKING_STYLE_POSIX. |
|
621 */ |
|
622 static int detectLockingStyle( |
|
623 sqlite3_vfs *pVfs, |
|
624 const char *filePath, |
|
625 int fd |
|
626 ){ |
|
627 #if SQLITE_ENABLE_LOCKING_STYLE |
|
628 struct Mapping { |
|
629 const char *zFilesystem; |
|
630 int eLockingStyle; |
|
631 } aMap[] = { |
|
632 { "hfs", LOCKING_STYLE_POSIX }, |
|
633 { "ufs", LOCKING_STYLE_POSIX }, |
|
634 { "afpfs", LOCKING_STYLE_AFP }, |
|
635 #ifdef SQLITE_ENABLE_AFP_LOCKING_SMB |
|
636 { "smbfs", LOCKING_STYLE_AFP }, |
|
637 #else |
|
638 { "smbfs", LOCKING_STYLE_FLOCK }, |
|
639 #endif |
|
640 { "msdos", LOCKING_STYLE_DOTFILE }, |
|
641 { "webdav", LOCKING_STYLE_NONE }, |
|
642 { 0, 0 } |
|
643 }; |
|
644 int i; |
|
645 struct statfs fsInfo; |
|
646 |
|
647 if( !filePath ){ |
|
648 return LOCKING_STYLE_NONE; |
|
649 } |
|
650 if( pVfs->pAppData ){ |
|
651 return SQLITE_PTR_TO_INT(pVfs->pAppData); |
|
652 } |
|
653 |
|
654 if( statfs(filePath, &fsInfo) != -1 ){ |
|
655 if( fsInfo.f_flags & MNT_RDONLY ){ |
|
656 return LOCKING_STYLE_NONE; |
|
657 } |
|
658 for(i=0; aMap[i].zFilesystem; i++){ |
|
659 if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){ |
|
660 return aMap[i].eLockingStyle; |
|
661 } |
|
662 } |
|
663 } |
|
664 |
|
665 /* Default case. Handles, amongst others, "nfs". */ |
|
666 return testLockingStyle(fd); |
|
667 #endif |
|
668 return LOCKING_STYLE_POSIX; |
|
669 } |
|
670 |
|
671 /* |
|
672 ** Given a file descriptor, locate lockInfo and openCnt structures that |
|
673 ** describes that file descriptor. Create new ones if necessary. The |
|
674 ** return values might be uninitialized if an error occurs. |
|
675 ** |
|
676 ** Return an appropriate error code. |
|
677 */ |
|
678 static int findLockInfo( |
|
679 int fd, /* The file descriptor used in the key */ |
|
680 struct lockInfo **ppLock, /* Return the lockInfo structure here */ |
|
681 struct openCnt **ppOpen /* Return the openCnt structure here */ |
|
682 ){ |
|
683 int rc; |
|
684 struct lockKey key1; |
|
685 struct openKey key2; |
|
686 struct stat statbuf; |
|
687 struct lockInfo *pLock; |
|
688 struct openCnt *pOpen; |
|
689 rc = fstat(fd, &statbuf); |
|
690 if( rc!=0 ){ |
|
691 #ifdef EOVERFLOW |
|
692 if( errno==EOVERFLOW ) return SQLITE_NOLFS; |
|
693 #endif |
|
694 return SQLITE_IOERR; |
|
695 } |
|
696 |
|
697 /* On OS X on an msdos filesystem, the inode number is reported |
|
698 ** incorrectly for zero-size files. See ticket #3260. To work |
|
699 ** around this problem (we consider it a bug in OS X, not SQLite) |
|
700 ** we always increase the file size to 1 by writing a single byte |
|
701 ** prior to accessing the inode number. The one byte written is |
|
702 ** an ASCII 'S' character which also happens to be the first byte |
|
703 ** in the header of every SQLite database. In this way, if there |
|
704 ** is a race condition such that another thread has already populated |
|
705 ** the first page of the database, no damage is done. |
|
706 */ |
|
707 if( statbuf.st_size==0 ){ |
|
708 write(fd, "S", 1); |
|
709 rc = fstat(fd, &statbuf); |
|
710 if( rc!=0 ){ |
|
711 return SQLITE_IOERR; |
|
712 } |
|
713 } |
|
714 |
|
715 memset(&key1, 0, sizeof(key1)); |
|
716 key1.dev = statbuf.st_dev; |
|
717 key1.ino = statbuf.st_ino; |
|
718 #if SQLITE_THREADSAFE |
|
719 if( threadsOverrideEachOthersLocks<0 ){ |
|
720 testThreadLockingBehavior(fd); |
|
721 } |
|
722 key1.tid = threadsOverrideEachOthersLocks ? 0 : pthread_self(); |
|
723 #endif |
|
724 memset(&key2, 0, sizeof(key2)); |
|
725 key2.dev = statbuf.st_dev; |
|
726 key2.ino = statbuf.st_ino; |
|
727 pLock = lockList; |
|
728 while( pLock && memcmp(&key1, &pLock->key, sizeof(key1)) ){ |
|
729 pLock = pLock->pNext; |
|
730 } |
|
731 if( pLock==0 ){ |
|
732 pLock = sqlite3_malloc( sizeof(*pLock) ); |
|
733 if( pLock==0 ){ |
|
734 rc = SQLITE_NOMEM; |
|
735 goto exit_findlockinfo; |
|
736 } |
|
737 pLock->key = key1; |
|
738 pLock->nRef = 1; |
|
739 pLock->cnt = 0; |
|
740 pLock->locktype = 0; |
|
741 pLock->pNext = lockList; |
|
742 pLock->pPrev = 0; |
|
743 if( lockList ) lockList->pPrev = pLock; |
|
744 lockList = pLock; |
|
745 }else{ |
|
746 pLock->nRef++; |
|
747 } |
|
748 *ppLock = pLock; |
|
749 if( ppOpen!=0 ){ |
|
750 pOpen = openList; |
|
751 while( pOpen && memcmp(&key2, &pOpen->key, sizeof(key2)) ){ |
|
752 pOpen = pOpen->pNext; |
|
753 } |
|
754 if( pOpen==0 ){ |
|
755 pOpen = sqlite3_malloc( sizeof(*pOpen) ); |
|
756 if( pOpen==0 ){ |
|
757 releaseLockInfo(pLock); |
|
758 rc = SQLITE_NOMEM; |
|
759 goto exit_findlockinfo; |
|
760 } |
|
761 pOpen->key = key2; |
|
762 pOpen->nRef = 1; |
|
763 pOpen->nLock = 0; |
|
764 pOpen->nPending = 0; |
|
765 pOpen->aPending = 0; |
|
766 pOpen->pNext = openList; |
|
767 pOpen->pPrev = 0; |
|
768 if( openList ) openList->pPrev = pOpen; |
|
769 openList = pOpen; |
|
770 }else{ |
|
771 pOpen->nRef++; |
|
772 } |
|
773 *ppOpen = pOpen; |
|
774 } |
|
775 |
|
776 exit_findlockinfo: |
|
777 return rc; |
|
778 } |
|
779 |
|
780 #ifdef SQLITE_DEBUG |
|
781 /* |
|
782 ** Helper function for printing out trace information from debugging |
|
783 ** binaries. This returns the string represetation of the supplied |
|
784 ** integer lock-type. |
|
785 */ |
|
786 static const char *locktypeName(int locktype){ |
|
787 switch( locktype ){ |
|
788 case NO_LOCK: return "NONE"; |
|
789 case SHARED_LOCK: return "SHARED"; |
|
790 case RESERVED_LOCK: return "RESERVED"; |
|
791 case PENDING_LOCK: return "PENDING"; |
|
792 case EXCLUSIVE_LOCK: return "EXCLUSIVE"; |
|
793 } |
|
794 return "ERROR"; |
|
795 } |
|
796 #endif |
|
797 |
|
798 /* |
|
799 ** If we are currently in a different thread than the thread that the |
|
800 ** unixFile argument belongs to, then transfer ownership of the unixFile |
|
801 ** over to the current thread. |
|
802 ** |
|
803 ** A unixFile is only owned by a thread on systems where one thread is |
|
804 ** unable to override locks created by a different thread. RedHat9 is |
|
805 ** an example of such a system. |
|
806 ** |
|
807 ** Ownership transfer is only allowed if the unixFile is currently unlocked. |
|
808 ** If the unixFile is locked and an ownership is wrong, then return |
|
809 ** SQLITE_MISUSE. SQLITE_OK is returned if everything works. |
|
810 */ |
|
811 #if SQLITE_THREADSAFE |
|
812 static int transferOwnership(unixFile *pFile){ |
|
813 int rc; |
|
814 pthread_t hSelf; |
|
815 if( threadsOverrideEachOthersLocks ){ |
|
816 /* Ownership transfers not needed on this system */ |
|
817 return SQLITE_OK; |
|
818 } |
|
819 hSelf = pthread_self(); |
|
820 if( pthread_equal(pFile->tid, hSelf) ){ |
|
821 /* We are still in the same thread */ |
|
822 OSTRACE1("No-transfer, same thread\n"); |
|
823 return SQLITE_OK; |
|
824 } |
|
825 if( pFile->locktype!=NO_LOCK ){ |
|
826 /* We cannot change ownership while we are holding a lock! */ |
|
827 return SQLITE_MISUSE; |
|
828 } |
|
829 OSTRACE4("Transfer ownership of %d from %d to %d\n", |
|
830 pFile->h, pFile->tid, hSelf); |
|
831 pFile->tid = hSelf; |
|
832 if (pFile->pLock != NULL) { |
|
833 releaseLockInfo(pFile->pLock); |
|
834 rc = findLockInfo(pFile->h, &pFile->pLock, 0); |
|
835 OSTRACE5("LOCK %d is now %s(%s,%d)\n", pFile->h, |
|
836 locktypeName(pFile->locktype), |
|
837 locktypeName(pFile->pLock->locktype), pFile->pLock->cnt); |
|
838 return rc; |
|
839 } else { |
|
840 return SQLITE_OK; |
|
841 } |
|
842 } |
|
843 #else |
|
844 /* On single-threaded builds, ownership transfer is a no-op */ |
|
845 # define transferOwnership(X) SQLITE_OK |
|
846 #endif |
|
847 |
|
848 /* |
|
849 ** Seek to the offset passed as the second argument, then read cnt |
|
850 ** bytes into pBuf. Return the number of bytes actually read. |
|
851 ** |
|
852 ** NB: If you define USE_PREAD or USE_PREAD64, then it might also |
|
853 ** be necessary to define _XOPEN_SOURCE to be 500. This varies from |
|
854 ** one system to another. Since SQLite does not define USE_PREAD |
|
855 ** any any form by default, we will not attempt to define _XOPEN_SOURCE. |
|
856 ** See tickets #2741 and #2681. |
|
857 */ |
|
858 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ |
|
859 int got; |
|
860 i64 newOffset; |
|
861 TIMER_START; |
|
862 #if defined(USE_PREAD) |
|
863 got = pread(id->h, pBuf, cnt, offset); |
|
864 SimulateIOError( got = -1 ); |
|
865 #elif defined(USE_PREAD64) |
|
866 got = pread64(id->h, pBuf, cnt, offset); |
|
867 SimulateIOError( got = -1 ); |
|
868 #else |
|
869 newOffset = lseek(id->h, offset, SEEK_SET); |
|
870 SimulateIOError( newOffset-- ); |
|
871 if( newOffset!=offset ){ |
|
872 return -1; |
|
873 } |
|
874 got = read(id->h, pBuf, cnt); |
|
875 #endif |
|
876 TIMER_END; |
|
877 OSTRACE5("READ %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED); |
|
878 return got; |
|
879 } |
|
880 |
|
881 /* |
|
882 ** Read data from a file into a buffer. Return SQLITE_OK if all |
|
883 ** bytes were read successfully and SQLITE_IOERR if anything goes |
|
884 ** wrong. |
|
885 */ |
|
886 static int unixRead( |
|
887 sqlite3_file *id, |
|
888 void *pBuf, |
|
889 int amt, |
|
890 sqlite3_int64 offset |
|
891 ){ |
|
892 int got; |
|
893 assert( id ); |
|
894 got = seekAndRead((unixFile*)id, offset, pBuf, amt); |
|
895 if( got==amt ){ |
|
896 return SQLITE_OK; |
|
897 }else if( got<0 ){ |
|
898 return SQLITE_IOERR_READ; |
|
899 }else{ |
|
900 memset(&((char*)pBuf)[got], 0, amt-got); |
|
901 return SQLITE_IOERR_SHORT_READ; |
|
902 } |
|
903 } |
|
904 |
|
905 /* |
|
906 ** Seek to the offset in id->offset then read cnt bytes into pBuf. |
|
907 ** Return the number of bytes actually read. Update the offset. |
|
908 */ |
|
909 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ |
|
910 int got; |
|
911 i64 newOffset; |
|
912 TIMER_START; |
|
913 #if defined(USE_PREAD) |
|
914 got = pwrite(id->h, pBuf, cnt, offset); |
|
915 #elif defined(USE_PREAD64) |
|
916 got = pwrite64(id->h, pBuf, cnt, offset); |
|
917 #else |
|
918 newOffset = lseek(id->h, offset, SEEK_SET); |
|
919 if( newOffset!=offset ){ |
|
920 return -1; |
|
921 } |
|
922 got = write(id->h, pBuf, cnt); |
|
923 #endif |
|
924 TIMER_END; |
|
925 OSTRACE5("WRITE %-3d %5d %7lld %llu\n", id->h, got, offset, TIMER_ELAPSED); |
|
926 return got; |
|
927 } |
|
928 |
|
929 |
|
930 /* |
|
931 ** Write data from a buffer into a file. Return SQLITE_OK on success |
|
932 ** or some other error code on failure. |
|
933 */ |
|
934 static int unixWrite( |
|
935 sqlite3_file *id, |
|
936 const void *pBuf, |
|
937 int amt, |
|
938 sqlite3_int64 offset |
|
939 ){ |
|
940 int wrote = 0; |
|
941 assert( id ); |
|
942 assert( amt>0 ); |
|
943 while( amt>0 && (wrote = seekAndWrite((unixFile*)id, offset, pBuf, amt))>0 ){ |
|
944 amt -= wrote; |
|
945 offset += wrote; |
|
946 pBuf = &((char*)pBuf)[wrote]; |
|
947 } |
|
948 SimulateIOError(( wrote=(-1), amt=1 )); |
|
949 SimulateDiskfullError(( wrote=0, amt=1 )); |
|
950 if( amt>0 ){ |
|
951 if( wrote<0 ){ |
|
952 return SQLITE_IOERR_WRITE; |
|
953 }else{ |
|
954 return SQLITE_FULL; |
|
955 } |
|
956 } |
|
957 return SQLITE_OK; |
|
958 } |
|
959 |
|
960 #ifdef SQLITE_TEST |
|
961 /* |
|
962 ** Count the number of fullsyncs and normal syncs. This is used to test |
|
963 ** that syncs and fullsyncs are occuring at the right times. |
|
964 */ |
|
965 int sqlite3_sync_count = 0; |
|
966 int sqlite3_fullsync_count = 0; |
|
967 #endif |
|
968 |
|
969 /* |
|
970 ** Use the fdatasync() API only if the HAVE_FDATASYNC macro is defined. |
|
971 ** Otherwise use fsync() in its place. |
|
972 */ |
|
973 #ifndef HAVE_FDATASYNC |
|
974 # define fdatasync fsync |
|
975 #endif |
|
976 |
|
977 /* |
|
978 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not |
|
979 ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently |
|
980 ** only available on Mac OS X. But that could change. |
|
981 */ |
|
982 #ifdef F_FULLFSYNC |
|
983 # define HAVE_FULLFSYNC 1 |
|
984 #else |
|
985 # define HAVE_FULLFSYNC 0 |
|
986 #endif |
|
987 |
|
988 |
|
989 /* |
|
990 ** The fsync() system call does not work as advertised on many |
|
991 ** unix systems. The following procedure is an attempt to make |
|
992 ** it work better. |
|
993 ** |
|
994 ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful |
|
995 ** for testing when we want to run through the test suite quickly. |
|
996 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC |
|
997 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash |
|
998 ** or power failure will likely corrupt the database file. |
|
999 */ |
|
1000 static int full_fsync(int fd, int fullSync, int dataOnly){ |
|
1001 int rc; |
|
1002 |
|
1003 /* Record the number of times that we do a normal fsync() and |
|
1004 ** FULLSYNC. This is used during testing to verify that this procedure |
|
1005 ** gets called with the correct arguments. |
|
1006 */ |
|
1007 #ifdef SQLITE_TEST |
|
1008 if( fullSync ) sqlite3_fullsync_count++; |
|
1009 sqlite3_sync_count++; |
|
1010 #endif |
|
1011 |
|
1012 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a |
|
1013 ** no-op |
|
1014 */ |
|
1015 #ifdef SQLITE_NO_SYNC |
|
1016 rc = SQLITE_OK; |
|
1017 #else |
|
1018 |
|
1019 #if HAVE_FULLFSYNC |
|
1020 if( fullSync ){ |
|
1021 rc = fcntl(fd, F_FULLFSYNC, 0); |
|
1022 }else{ |
|
1023 rc = 1; |
|
1024 } |
|
1025 /* If the FULLFSYNC failed, fall back to attempting an fsync(). |
|
1026 * It shouldn't be possible for fullfsync to fail on the local |
|
1027 * file system (on OSX), so failure indicates that FULLFSYNC |
|
1028 * isn't supported for this file system. So, attempt an fsync |
|
1029 * and (for now) ignore the overhead of a superfluous fcntl call. |
|
1030 * It'd be better to detect fullfsync support once and avoid |
|
1031 * the fcntl call every time sync is called. |
|
1032 */ |
|
1033 if( rc ) rc = fsync(fd); |
|
1034 |
|
1035 #else |
|
1036 if( dataOnly ){ |
|
1037 rc = fdatasync(fd); |
|
1038 }else{ |
|
1039 rc = fsync(fd); |
|
1040 } |
|
1041 #endif /* HAVE_FULLFSYNC */ |
|
1042 #endif /* defined(SQLITE_NO_SYNC) */ |
|
1043 |
|
1044 return rc; |
|
1045 } |
|
1046 |
|
1047 /* |
|
1048 ** Make sure all writes to a particular file are committed to disk. |
|
1049 ** |
|
1050 ** If dataOnly==0 then both the file itself and its metadata (file |
|
1051 ** size, access time, etc) are synced. If dataOnly!=0 then only the |
|
1052 ** file data is synced. |
|
1053 ** |
|
1054 ** Under Unix, also make sure that the directory entry for the file |
|
1055 ** has been created by fsync-ing the directory that contains the file. |
|
1056 ** If we do not do this and we encounter a power failure, the directory |
|
1057 ** entry for the journal might not exist after we reboot. The next |
|
1058 ** SQLite to access the file will not know that the journal exists (because |
|
1059 ** the directory entry for the journal was never created) and the transaction |
|
1060 ** will not roll back - possibly leading to database corruption. |
|
1061 */ |
|
1062 static int unixSync(sqlite3_file *id, int flags){ |
|
1063 int rc; |
|
1064 unixFile *pFile = (unixFile*)id; |
|
1065 |
|
1066 int isDataOnly = (flags&SQLITE_SYNC_DATAONLY); |
|
1067 int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL; |
|
1068 |
|
1069 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ |
|
1070 assert((flags&0x0F)==SQLITE_SYNC_NORMAL |
|
1071 || (flags&0x0F)==SQLITE_SYNC_FULL |
|
1072 ); |
|
1073 |
|
1074 /* Unix cannot, but some systems may return SQLITE_FULL from here. This |
|
1075 ** line is to test that doing so does not cause any problems. |
|
1076 */ |
|
1077 SimulateDiskfullError( return SQLITE_FULL ); |
|
1078 |
|
1079 assert( pFile ); |
|
1080 OSTRACE2("SYNC %-3d\n", pFile->h); |
|
1081 rc = full_fsync(pFile->h, isFullsync, isDataOnly); |
|
1082 SimulateIOError( rc=1 ); |
|
1083 if( rc ){ |
|
1084 return SQLITE_IOERR_FSYNC; |
|
1085 } |
|
1086 if( pFile->dirfd>=0 ){ |
|
1087 OSTRACE4("DIRSYNC %-3d (have_fullfsync=%d fullsync=%d)\n", pFile->dirfd, |
|
1088 HAVE_FULLFSYNC, isFullsync); |
|
1089 #ifndef SQLITE_DISABLE_DIRSYNC |
|
1090 /* The directory sync is only attempted if full_fsync is |
|
1091 ** turned off or unavailable. If a full_fsync occurred above, |
|
1092 ** then the directory sync is superfluous. |
|
1093 */ |
|
1094 if( (!HAVE_FULLFSYNC || !isFullsync) && full_fsync(pFile->dirfd,0,0) ){ |
|
1095 /* |
|
1096 ** We have received multiple reports of fsync() returning |
|
1097 ** errors when applied to directories on certain file systems. |
|
1098 ** A failed directory sync is not a big deal. So it seems |
|
1099 ** better to ignore the error. Ticket #1657 |
|
1100 */ |
|
1101 /* return SQLITE_IOERR; */ |
|
1102 } |
|
1103 #endif |
|
1104 close(pFile->dirfd); /* Only need to sync once, so close the directory */ |
|
1105 pFile->dirfd = -1; /* when we are done. */ |
|
1106 } |
|
1107 return SQLITE_OK; |
|
1108 } |
|
1109 |
|
1110 /* |
|
1111 ** Truncate an open file to a specified size |
|
1112 */ |
|
1113 static int unixTruncate(sqlite3_file *id, i64 nByte){ |
|
1114 int rc; |
|
1115 assert( id ); |
|
1116 SimulateIOError( return SQLITE_IOERR_TRUNCATE ); |
|
1117 rc = ftruncate(((unixFile*)id)->h, (off_t)nByte); |
|
1118 if( rc ){ |
|
1119 return SQLITE_IOERR_TRUNCATE; |
|
1120 }else{ |
|
1121 return SQLITE_OK; |
|
1122 } |
|
1123 } |
|
1124 |
|
1125 /* |
|
1126 ** Determine the current size of a file in bytes |
|
1127 */ |
|
1128 static int unixFileSize(sqlite3_file *id, i64 *pSize){ |
|
1129 int rc; |
|
1130 struct stat buf; |
|
1131 assert( id ); |
|
1132 rc = fstat(((unixFile*)id)->h, &buf); |
|
1133 SimulateIOError( rc=1 ); |
|
1134 if( rc!=0 ){ |
|
1135 return SQLITE_IOERR_FSTAT; |
|
1136 } |
|
1137 *pSize = buf.st_size; |
|
1138 |
|
1139 /* When opening a zero-size database, the findLockInfo() procedure |
|
1140 ** writes a single byte into that file in order to work around a bug |
|
1141 ** in the OS-X msdos filesystem. In order to avoid problems with upper |
|
1142 ** layers, we need to report this file size as zero even though it is |
|
1143 ** really 1. Ticket #3260. |
|
1144 */ |
|
1145 if( *pSize==1 ) *pSize = 0; |
|
1146 |
|
1147 |
|
1148 return SQLITE_OK; |
|
1149 } |
|
1150 |
|
1151 /* |
|
1152 ** This routine translates a standard POSIX errno code into something |
|
1153 ** useful to the clients of the sqlite3 functions. Specifically, it is |
|
1154 ** intended to translate a variety of "try again" errors into SQLITE_BUSY |
|
1155 ** and a variety of "please close the file descriptor NOW" errors into |
|
1156 ** SQLITE_IOERR |
|
1157 ** |
|
1158 ** Errors during initialization of locks, or file system support for locks, |
|
1159 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately. |
|
1160 */ |
|
1161 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) { |
|
1162 switch (posixError) { |
|
1163 case 0: |
|
1164 return SQLITE_OK; |
|
1165 |
|
1166 case EAGAIN: |
|
1167 case ETIMEDOUT: |
|
1168 case EBUSY: |
|
1169 case EINTR: |
|
1170 case ENOLCK: |
|
1171 /* random NFS retry error, unless during file system support |
|
1172 * introspection, in which it actually means what it says */ |
|
1173 return SQLITE_BUSY; |
|
1174 |
|
1175 case EACCES: |
|
1176 /* EACCES is like EAGAIN during locking operations, but not any other time*/ |
|
1177 if( (sqliteIOErr == SQLITE_IOERR_LOCK) || |
|
1178 (sqliteIOErr == SQLITE_IOERR_UNLOCK) || |
|
1179 (sqliteIOErr == SQLITE_IOERR_RDLOCK) || |
|
1180 (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){ |
|
1181 return SQLITE_BUSY; |
|
1182 } |
|
1183 /* else fall through */ |
|
1184 case EPERM: |
|
1185 return SQLITE_PERM; |
|
1186 |
|
1187 case EDEADLK: |
|
1188 return SQLITE_IOERR_BLOCKED; |
|
1189 |
|
1190 #if EOPNOTSUPP!=ENOTSUP |
|
1191 case EOPNOTSUPP: |
|
1192 /* something went terribly awry, unless during file system support |
|
1193 * introspection, in which it actually means what it says */ |
|
1194 #endif |
|
1195 #ifdef ENOTSUP |
|
1196 case ENOTSUP: |
|
1197 /* invalid fd, unless during file system support introspection, in which |
|
1198 * it actually means what it says */ |
|
1199 #endif |
|
1200 case EIO: |
|
1201 case EBADF: |
|
1202 case EINVAL: |
|
1203 case ENOTCONN: |
|
1204 case ENODEV: |
|
1205 case ENXIO: |
|
1206 case ENOENT: |
|
1207 case ESTALE: |
|
1208 case ENOSYS: |
|
1209 /* these should force the client to close the file and reconnect */ |
|
1210 |
|
1211 default: |
|
1212 return sqliteIOErr; |
|
1213 } |
|
1214 } |
|
1215 |
|
1216 /* |
|
1217 ** This routine checks if there is a RESERVED lock held on the specified |
|
1218 ** file by this or any other process. If such a lock is held, set *pResOut |
|
1219 ** to a non-zero value otherwise *pResOut is set to zero. The return value |
|
1220 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. |
|
1221 */ |
|
1222 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){ |
|
1223 int rc = SQLITE_OK; |
|
1224 int reserved = 0; |
|
1225 unixFile *pFile = (unixFile*)id; |
|
1226 |
|
1227 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
|
1228 |
|
1229 assert( pFile ); |
|
1230 enterMutex(); /* Because pFile->pLock is shared across threads */ |
|
1231 |
|
1232 /* Check if a thread in this process holds such a lock */ |
|
1233 if( pFile->pLock->locktype>SHARED_LOCK ){ |
|
1234 reserved = 1; |
|
1235 } |
|
1236 |
|
1237 /* Otherwise see if some other process holds it. |
|
1238 */ |
|
1239 if( !reserved ){ |
|
1240 struct flock lock; |
|
1241 lock.l_whence = SEEK_SET; |
|
1242 lock.l_start = RESERVED_BYTE; |
|
1243 lock.l_len = 1; |
|
1244 lock.l_type = F_WRLCK; |
|
1245 if (-1 == fcntl(pFile->h, F_GETLK, &lock)) { |
|
1246 int tErrno = errno; |
|
1247 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); |
|
1248 pFile->lastErrno = tErrno; |
|
1249 } else if( lock.l_type!=F_UNLCK ){ |
|
1250 reserved = 1; |
|
1251 } |
|
1252 } |
|
1253 |
|
1254 leaveMutex(); |
|
1255 OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved); |
|
1256 |
|
1257 *pResOut = reserved; |
|
1258 return rc; |
|
1259 } |
|
1260 |
|
1261 /* |
|
1262 ** Lock the file with the lock specified by parameter locktype - one |
|
1263 ** of the following: |
|
1264 ** |
|
1265 ** (1) SHARED_LOCK |
|
1266 ** (2) RESERVED_LOCK |
|
1267 ** (3) PENDING_LOCK |
|
1268 ** (4) EXCLUSIVE_LOCK |
|
1269 ** |
|
1270 ** Sometimes when requesting one lock state, additional lock states |
|
1271 ** are inserted in between. The locking might fail on one of the later |
|
1272 ** transitions leaving the lock state different from what it started but |
|
1273 ** still short of its goal. The following chart shows the allowed |
|
1274 ** transitions and the inserted intermediate states: |
|
1275 ** |
|
1276 ** UNLOCKED -> SHARED |
|
1277 ** SHARED -> RESERVED |
|
1278 ** SHARED -> (PENDING) -> EXCLUSIVE |
|
1279 ** RESERVED -> (PENDING) -> EXCLUSIVE |
|
1280 ** PENDING -> EXCLUSIVE |
|
1281 ** |
|
1282 ** This routine will only increase a lock. Use the sqlite3OsUnlock() |
|
1283 ** routine to lower a locking level. |
|
1284 */ |
|
1285 static int unixLock(sqlite3_file *id, int locktype){ |
|
1286 /* The following describes the implementation of the various locks and |
|
1287 ** lock transitions in terms of the POSIX advisory shared and exclusive |
|
1288 ** lock primitives (called read-locks and write-locks below, to avoid |
|
1289 ** confusion with SQLite lock names). The algorithms are complicated |
|
1290 ** slightly in order to be compatible with windows systems simultaneously |
|
1291 ** accessing the same database file, in case that is ever required. |
|
1292 ** |
|
1293 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved |
|
1294 ** byte', each single bytes at well known offsets, and the 'shared byte |
|
1295 ** range', a range of 510 bytes at a well known offset. |
|
1296 ** |
|
1297 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending |
|
1298 ** byte'. If this is successful, a random byte from the 'shared byte |
|
1299 ** range' is read-locked and the lock on the 'pending byte' released. |
|
1300 ** |
|
1301 ** A process may only obtain a RESERVED lock after it has a SHARED lock. |
|
1302 ** A RESERVED lock is implemented by grabbing a write-lock on the |
|
1303 ** 'reserved byte'. |
|
1304 ** |
|
1305 ** A process may only obtain a PENDING lock after it has obtained a |
|
1306 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock |
|
1307 ** on the 'pending byte'. This ensures that no new SHARED locks can be |
|
1308 ** obtained, but existing SHARED locks are allowed to persist. A process |
|
1309 ** does not have to obtain a RESERVED lock on the way to a PENDING lock. |
|
1310 ** This property is used by the algorithm for rolling back a journal file |
|
1311 ** after a crash. |
|
1312 ** |
|
1313 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is |
|
1314 ** implemented by obtaining a write-lock on the entire 'shared byte |
|
1315 ** range'. Since all other locks require a read-lock on one of the bytes |
|
1316 ** within this range, this ensures that no other locks are held on the |
|
1317 ** database. |
|
1318 ** |
|
1319 ** The reason a single byte cannot be used instead of the 'shared byte |
|
1320 ** range' is that some versions of windows do not support read-locks. By |
|
1321 ** locking a random byte from a range, concurrent SHARED locks may exist |
|
1322 ** even if the locking primitive used is always a write-lock. |
|
1323 */ |
|
1324 int rc = SQLITE_OK; |
|
1325 unixFile *pFile = (unixFile*)id; |
|
1326 struct lockInfo *pLock = pFile->pLock; |
|
1327 struct flock lock; |
|
1328 int s; |
|
1329 |
|
1330 assert( pFile ); |
|
1331 OSTRACE7("LOCK %d %s was %s(%s,%d) pid=%d\n", pFile->h, |
|
1332 locktypeName(locktype), locktypeName(pFile->locktype), |
|
1333 locktypeName(pLock->locktype), pLock->cnt , getpid()); |
|
1334 |
|
1335 /* If there is already a lock of this type or more restrictive on the |
|
1336 ** unixFile, do nothing. Don't use the end_lock: exit path, as |
|
1337 ** enterMutex() hasn't been called yet. |
|
1338 */ |
|
1339 if( pFile->locktype>=locktype ){ |
|
1340 OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h, |
|
1341 locktypeName(locktype)); |
|
1342 return SQLITE_OK; |
|
1343 } |
|
1344 |
|
1345 /* Make sure the locking sequence is correct |
|
1346 */ |
|
1347 assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK ); |
|
1348 assert( locktype!=PENDING_LOCK ); |
|
1349 assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK ); |
|
1350 |
|
1351 /* This mutex is needed because pFile->pLock is shared across threads |
|
1352 */ |
|
1353 enterMutex(); |
|
1354 |
|
1355 /* Make sure the current thread owns the pFile. |
|
1356 */ |
|
1357 rc = transferOwnership(pFile); |
|
1358 if( rc!=SQLITE_OK ){ |
|
1359 leaveMutex(); |
|
1360 return rc; |
|
1361 } |
|
1362 pLock = pFile->pLock; |
|
1363 |
|
1364 /* If some thread using this PID has a lock via a different unixFile* |
|
1365 ** handle that precludes the requested lock, return BUSY. |
|
1366 */ |
|
1367 if( (pFile->locktype!=pLock->locktype && |
|
1368 (pLock->locktype>=PENDING_LOCK || locktype>SHARED_LOCK)) |
|
1369 ){ |
|
1370 rc = SQLITE_BUSY; |
|
1371 goto end_lock; |
|
1372 } |
|
1373 |
|
1374 /* If a SHARED lock is requested, and some thread using this PID already |
|
1375 ** has a SHARED or RESERVED lock, then increment reference counts and |
|
1376 ** return SQLITE_OK. |
|
1377 */ |
|
1378 if( locktype==SHARED_LOCK && |
|
1379 (pLock->locktype==SHARED_LOCK || pLock->locktype==RESERVED_LOCK) ){ |
|
1380 assert( locktype==SHARED_LOCK ); |
|
1381 assert( pFile->locktype==0 ); |
|
1382 assert( pLock->cnt>0 ); |
|
1383 pFile->locktype = SHARED_LOCK; |
|
1384 pLock->cnt++; |
|
1385 pFile->pOpen->nLock++; |
|
1386 goto end_lock; |
|
1387 } |
|
1388 |
|
1389 lock.l_len = 1L; |
|
1390 |
|
1391 lock.l_whence = SEEK_SET; |
|
1392 |
|
1393 /* A PENDING lock is needed before acquiring a SHARED lock and before |
|
1394 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will |
|
1395 ** be released. |
|
1396 */ |
|
1397 if( locktype==SHARED_LOCK |
|
1398 || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK) |
|
1399 ){ |
|
1400 lock.l_type = (locktype==SHARED_LOCK?F_RDLCK:F_WRLCK); |
|
1401 lock.l_start = PENDING_BYTE; |
|
1402 s = fcntl(pFile->h, F_SETLK, &lock); |
|
1403 if( s==(-1) ){ |
|
1404 int tErrno = errno; |
|
1405 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
|
1406 if( IS_LOCK_ERROR(rc) ){ |
|
1407 pFile->lastErrno = tErrno; |
|
1408 } |
|
1409 goto end_lock; |
|
1410 } |
|
1411 } |
|
1412 |
|
1413 |
|
1414 /* If control gets to this point, then actually go ahead and make |
|
1415 ** operating system calls for the specified lock. |
|
1416 */ |
|
1417 if( locktype==SHARED_LOCK ){ |
|
1418 int tErrno = 0; |
|
1419 assert( pLock->cnt==0 ); |
|
1420 assert( pLock->locktype==0 ); |
|
1421 |
|
1422 /* Now get the read-lock */ |
|
1423 lock.l_start = SHARED_FIRST; |
|
1424 lock.l_len = SHARED_SIZE; |
|
1425 if( (s = fcntl(pFile->h, F_SETLK, &lock))==(-1) ){ |
|
1426 tErrno = errno; |
|
1427 } |
|
1428 /* Drop the temporary PENDING lock */ |
|
1429 lock.l_start = PENDING_BYTE; |
|
1430 lock.l_len = 1L; |
|
1431 lock.l_type = F_UNLCK; |
|
1432 if( fcntl(pFile->h, F_SETLK, &lock)!=0 ){ |
|
1433 if( s != -1 ){ |
|
1434 /* This could happen with a network mount */ |
|
1435 tErrno = errno; |
|
1436 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); |
|
1437 if( IS_LOCK_ERROR(rc) ){ |
|
1438 pFile->lastErrno = tErrno; |
|
1439 } |
|
1440 goto end_lock; |
|
1441 } |
|
1442 } |
|
1443 if( s==(-1) ){ |
|
1444 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
|
1445 if( IS_LOCK_ERROR(rc) ){ |
|
1446 pFile->lastErrno = tErrno; |
|
1447 } |
|
1448 }else{ |
|
1449 pFile->locktype = SHARED_LOCK; |
|
1450 pFile->pOpen->nLock++; |
|
1451 pLock->cnt = 1; |
|
1452 } |
|
1453 }else if( locktype==EXCLUSIVE_LOCK && pLock->cnt>1 ){ |
|
1454 /* We are trying for an exclusive lock but another thread in this |
|
1455 ** same process is still holding a shared lock. */ |
|
1456 rc = SQLITE_BUSY; |
|
1457 }else{ |
|
1458 /* The request was for a RESERVED or EXCLUSIVE lock. It is |
|
1459 ** assumed that there is a SHARED or greater lock on the file |
|
1460 ** already. |
|
1461 */ |
|
1462 assert( 0!=pFile->locktype ); |
|
1463 lock.l_type = F_WRLCK; |
|
1464 switch( locktype ){ |
|
1465 case RESERVED_LOCK: |
|
1466 lock.l_start = RESERVED_BYTE; |
|
1467 break; |
|
1468 case EXCLUSIVE_LOCK: |
|
1469 lock.l_start = SHARED_FIRST; |
|
1470 lock.l_len = SHARED_SIZE; |
|
1471 break; |
|
1472 default: |
|
1473 assert(0); |
|
1474 } |
|
1475 s = fcntl(pFile->h, F_SETLK, &lock); |
|
1476 if( s==(-1) ){ |
|
1477 int tErrno = errno; |
|
1478 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
|
1479 if( IS_LOCK_ERROR(rc) ){ |
|
1480 pFile->lastErrno = tErrno; |
|
1481 } |
|
1482 } |
|
1483 } |
|
1484 |
|
1485 if( rc==SQLITE_OK ){ |
|
1486 pFile->locktype = locktype; |
|
1487 pLock->locktype = locktype; |
|
1488 }else if( locktype==EXCLUSIVE_LOCK ){ |
|
1489 pFile->locktype = PENDING_LOCK; |
|
1490 pLock->locktype = PENDING_LOCK; |
|
1491 } |
|
1492 |
|
1493 end_lock: |
|
1494 leaveMutex(); |
|
1495 OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype), |
|
1496 rc==SQLITE_OK ? "ok" : "failed"); |
|
1497 return rc; |
|
1498 } |
|
1499 |
|
1500 /* |
|
1501 ** Lower the locking level on file descriptor pFile to locktype. locktype |
|
1502 ** must be either NO_LOCK or SHARED_LOCK. |
|
1503 ** |
|
1504 ** If the locking level of the file descriptor is already at or below |
|
1505 ** the requested locking level, this routine is a no-op. |
|
1506 */ |
|
1507 static int unixUnlock(sqlite3_file *id, int locktype){ |
|
1508 struct lockInfo *pLock; |
|
1509 struct flock lock; |
|
1510 int rc = SQLITE_OK; |
|
1511 unixFile *pFile = (unixFile*)id; |
|
1512 int h; |
|
1513 |
|
1514 assert( pFile ); |
|
1515 OSTRACE7("UNLOCK %d %d was %d(%d,%d) pid=%d\n", pFile->h, locktype, |
|
1516 pFile->locktype, pFile->pLock->locktype, pFile->pLock->cnt, getpid()); |
|
1517 |
|
1518 assert( locktype<=SHARED_LOCK ); |
|
1519 if( pFile->locktype<=locktype ){ |
|
1520 return SQLITE_OK; |
|
1521 } |
|
1522 if( CHECK_THREADID(pFile) ){ |
|
1523 return SQLITE_MISUSE; |
|
1524 } |
|
1525 enterMutex(); |
|
1526 h = pFile->h; |
|
1527 pLock = pFile->pLock; |
|
1528 assert( pLock->cnt!=0 ); |
|
1529 if( pFile->locktype>SHARED_LOCK ){ |
|
1530 assert( pLock->locktype==pFile->locktype ); |
|
1531 SimulateIOErrorBenign(1); |
|
1532 SimulateIOError( h=(-1) ) |
|
1533 SimulateIOErrorBenign(0); |
|
1534 if( locktype==SHARED_LOCK ){ |
|
1535 lock.l_type = F_RDLCK; |
|
1536 lock.l_whence = SEEK_SET; |
|
1537 lock.l_start = SHARED_FIRST; |
|
1538 lock.l_len = SHARED_SIZE; |
|
1539 if( fcntl(h, F_SETLK, &lock)==(-1) ){ |
|
1540 int tErrno = errno; |
|
1541 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); |
|
1542 if( IS_LOCK_ERROR(rc) ){ |
|
1543 pFile->lastErrno = tErrno; |
|
1544 } |
|
1545 goto end_unlock; |
|
1546 } |
|
1547 } |
|
1548 lock.l_type = F_UNLCK; |
|
1549 lock.l_whence = SEEK_SET; |
|
1550 lock.l_start = PENDING_BYTE; |
|
1551 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); |
|
1552 if( fcntl(h, F_SETLK, &lock)!=(-1) ){ |
|
1553 pLock->locktype = SHARED_LOCK; |
|
1554 }else{ |
|
1555 int tErrno = errno; |
|
1556 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); |
|
1557 if( IS_LOCK_ERROR(rc) ){ |
|
1558 pFile->lastErrno = tErrno; |
|
1559 } |
|
1560 goto end_unlock; |
|
1561 } |
|
1562 } |
|
1563 if( locktype==NO_LOCK ){ |
|
1564 struct openCnt *pOpen; |
|
1565 |
|
1566 /* Decrement the shared lock counter. Release the lock using an |
|
1567 ** OS call only when all threads in this same process have released |
|
1568 ** the lock. |
|
1569 */ |
|
1570 pLock->cnt--; |
|
1571 if( pLock->cnt==0 ){ |
|
1572 lock.l_type = F_UNLCK; |
|
1573 lock.l_whence = SEEK_SET; |
|
1574 lock.l_start = lock.l_len = 0L; |
|
1575 SimulateIOErrorBenign(1); |
|
1576 SimulateIOError( h=(-1) ) |
|
1577 SimulateIOErrorBenign(0); |
|
1578 if( fcntl(h, F_SETLK, &lock)!=(-1) ){ |
|
1579 pLock->locktype = NO_LOCK; |
|
1580 }else{ |
|
1581 int tErrno = errno; |
|
1582 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); |
|
1583 if( IS_LOCK_ERROR(rc) ){ |
|
1584 pFile->lastErrno = tErrno; |
|
1585 } |
|
1586 pLock->cnt = 1; |
|
1587 goto end_unlock; |
|
1588 } |
|
1589 } |
|
1590 |
|
1591 /* Decrement the count of locks against this same file. When the |
|
1592 ** count reaches zero, close any other file descriptors whose close |
|
1593 ** was deferred because of outstanding locks. |
|
1594 */ |
|
1595 if( rc==SQLITE_OK ){ |
|
1596 pOpen = pFile->pOpen; |
|
1597 pOpen->nLock--; |
|
1598 assert( pOpen->nLock>=0 ); |
|
1599 if( pOpen->nLock==0 && pOpen->nPending>0 ){ |
|
1600 int i; |
|
1601 for(i=0; i<pOpen->nPending; i++){ |
|
1602 close(pOpen->aPending[i]); |
|
1603 } |
|
1604 sqlite3_free(pOpen->aPending); |
|
1605 pOpen->nPending = 0; |
|
1606 pOpen->aPending = 0; |
|
1607 } |
|
1608 } |
|
1609 } |
|
1610 |
|
1611 end_unlock: |
|
1612 leaveMutex(); |
|
1613 if( rc==SQLITE_OK ) pFile->locktype = locktype; |
|
1614 return rc; |
|
1615 } |
|
1616 |
|
1617 /* |
|
1618 ** This function performs the parts of the "close file" operation |
|
1619 ** common to all locking schemes. It closes the directory and file |
|
1620 ** handles, if they are valid, and sets all fields of the unixFile |
|
1621 ** structure to 0. |
|
1622 */ |
|
1623 static int closeUnixFile(sqlite3_file *id){ |
|
1624 unixFile *pFile = (unixFile*)id; |
|
1625 if( pFile ){ |
|
1626 if( pFile->dirfd>=0 ){ |
|
1627 close(pFile->dirfd); |
|
1628 } |
|
1629 if( pFile->h>=0 ){ |
|
1630 close(pFile->h); |
|
1631 } |
|
1632 OSTRACE2("CLOSE %-3d\n", pFile->h); |
|
1633 OpenCounter(-1); |
|
1634 memset(pFile, 0, sizeof(unixFile)); |
|
1635 } |
|
1636 return SQLITE_OK; |
|
1637 } |
|
1638 |
|
1639 /* |
|
1640 ** Close a file. |
|
1641 */ |
|
1642 static int unixClose(sqlite3_file *id){ |
|
1643 if( id ){ |
|
1644 unixFile *pFile = (unixFile *)id; |
|
1645 unixUnlock(id, NO_LOCK); |
|
1646 enterMutex(); |
|
1647 if( pFile->pOpen && pFile->pOpen->nLock ){ |
|
1648 /* If there are outstanding locks, do not actually close the file just |
|
1649 ** yet because that would clear those locks. Instead, add the file |
|
1650 ** descriptor to pOpen->aPending. It will be automatically closed when |
|
1651 ** the last lock is cleared. |
|
1652 */ |
|
1653 int *aNew; |
|
1654 struct openCnt *pOpen = pFile->pOpen; |
|
1655 aNew = sqlite3_realloc(pOpen->aPending, (pOpen->nPending+1)*sizeof(int) ); |
|
1656 if( aNew==0 ){ |
|
1657 /* If a malloc fails, just leak the file descriptor */ |
|
1658 }else{ |
|
1659 pOpen->aPending = aNew; |
|
1660 pOpen->aPending[pOpen->nPending] = pFile->h; |
|
1661 pOpen->nPending++; |
|
1662 pFile->h = -1; |
|
1663 } |
|
1664 } |
|
1665 releaseLockInfo(pFile->pLock); |
|
1666 releaseOpenCnt(pFile->pOpen); |
|
1667 closeUnixFile(id); |
|
1668 leaveMutex(); |
|
1669 } |
|
1670 return SQLITE_OK; |
|
1671 } |
|
1672 |
|
1673 |
|
1674 #if SQLITE_ENABLE_LOCKING_STYLE |
|
1675 #pragma mark AFP Support |
|
1676 |
|
1677 /* |
|
1678 ** The afpLockingContext structure contains all afp lock specific state |
|
1679 */ |
|
1680 typedef struct afpLockingContext afpLockingContext; |
|
1681 struct afpLockingContext { |
|
1682 unsigned long long sharedLockByte; |
|
1683 const char *filePath; |
|
1684 }; |
|
1685 |
|
1686 struct ByteRangeLockPB2 |
|
1687 { |
|
1688 unsigned long long offset; /* offset to first byte to lock */ |
|
1689 unsigned long long length; /* nbr of bytes to lock */ |
|
1690 unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */ |
|
1691 unsigned char unLockFlag; /* 1 = unlock, 0 = lock */ |
|
1692 unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */ |
|
1693 int fd; /* file desc to assoc this lock with */ |
|
1694 }; |
|
1695 |
|
1696 #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2) |
|
1697 |
|
1698 /* |
|
1699 ** Return SQLITE_OK on success, SQLITE_BUSY on failure. |
|
1700 */ |
|
1701 static int _AFPFSSetLock( |
|
1702 const char *path, |
|
1703 unixFile *pFile, |
|
1704 unsigned long long offset, |
|
1705 unsigned long long length, |
|
1706 int setLockFlag |
|
1707 ){ |
|
1708 struct ByteRangeLockPB2 pb; |
|
1709 int err; |
|
1710 |
|
1711 pb.unLockFlag = setLockFlag ? 0 : 1; |
|
1712 pb.startEndFlag = 0; |
|
1713 pb.offset = offset; |
|
1714 pb.length = length; |
|
1715 pb.fd = pFile->h; |
|
1716 OSTRACE5("AFPLOCK setting lock %s for %d in range %llx:%llx\n", |
|
1717 (setLockFlag?"ON":"OFF"), pFile->h, offset, length); |
|
1718 err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0); |
|
1719 if ( err==-1 ) { |
|
1720 int rc; |
|
1721 int tErrno = errno; |
|
1722 OSTRACE4("AFPLOCK failed to fsctl() '%s' %d %s\n", path, tErrno, strerror(tErrno)); |
|
1723 rc = sqliteErrorFromPosixError(tErrno, setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK); /* error */ |
|
1724 if( IS_LOCK_ERROR(rc) ){ |
|
1725 pFile->lastErrno = tErrno; |
|
1726 } |
|
1727 return rc; |
|
1728 } else { |
|
1729 return SQLITE_OK; |
|
1730 } |
|
1731 } |
|
1732 |
|
1733 /* AFP-style reserved lock checking following the behavior of |
|
1734 ** unixCheckReservedLock, see the unixCheckReservedLock function comments */ |
|
1735 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){ |
|
1736 int rc = SQLITE_OK; |
|
1737 int reserved = 0; |
|
1738 unixFile *pFile = (unixFile*)id; |
|
1739 |
|
1740 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
|
1741 |
|
1742 assert( pFile ); |
|
1743 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; |
|
1744 |
|
1745 /* Check if a thread in this process holds such a lock */ |
|
1746 if( pFile->locktype>SHARED_LOCK ){ |
|
1747 reserved = 1; |
|
1748 } |
|
1749 |
|
1750 /* Otherwise see if some other process holds it. |
|
1751 */ |
|
1752 if( !reserved ){ |
|
1753 /* lock the RESERVED byte */ |
|
1754 int lrc = _AFPFSSetLock(context->filePath, pFile, RESERVED_BYTE, 1,1); |
|
1755 if( SQLITE_OK==lrc ){ |
|
1756 /* if we succeeded in taking the reserved lock, unlock it to restore |
|
1757 ** the original state */ |
|
1758 lrc = _AFPFSSetLock(context->filePath, pFile, RESERVED_BYTE, 1, 0); |
|
1759 } else { |
|
1760 /* if we failed to get the lock then someone else must have it */ |
|
1761 reserved = 1; |
|
1762 } |
|
1763 if( IS_LOCK_ERROR(lrc) ){ |
|
1764 rc=lrc; |
|
1765 } |
|
1766 } |
|
1767 |
|
1768 OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved); |
|
1769 |
|
1770 *pResOut = reserved; |
|
1771 return rc; |
|
1772 } |
|
1773 |
|
1774 /* AFP-style locking following the behavior of unixLock, see the unixLock |
|
1775 ** function comments for details of lock management. */ |
|
1776 static int afpLock(sqlite3_file *id, int locktype){ |
|
1777 int rc = SQLITE_OK; |
|
1778 unixFile *pFile = (unixFile*)id; |
|
1779 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; |
|
1780 |
|
1781 assert( pFile ); |
|
1782 OSTRACE5("LOCK %d %s was %s pid=%d\n", pFile->h, |
|
1783 locktypeName(locktype), locktypeName(pFile->locktype), getpid()); |
|
1784 |
|
1785 /* If there is already a lock of this type or more restrictive on the |
|
1786 ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as |
|
1787 ** enterMutex() hasn't been called yet. |
|
1788 */ |
|
1789 if( pFile->locktype>=locktype ){ |
|
1790 OSTRACE3("LOCK %d %s ok (already held)\n", pFile->h, |
|
1791 locktypeName(locktype)); |
|
1792 return SQLITE_OK; |
|
1793 } |
|
1794 |
|
1795 /* Make sure the locking sequence is correct |
|
1796 */ |
|
1797 assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK ); |
|
1798 assert( locktype!=PENDING_LOCK ); |
|
1799 assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK ); |
|
1800 |
|
1801 /* This mutex is needed because pFile->pLock is shared across threads |
|
1802 */ |
|
1803 enterMutex(); |
|
1804 |
|
1805 /* Make sure the current thread owns the pFile. |
|
1806 */ |
|
1807 rc = transferOwnership(pFile); |
|
1808 if( rc!=SQLITE_OK ){ |
|
1809 leaveMutex(); |
|
1810 return rc; |
|
1811 } |
|
1812 |
|
1813 /* A PENDING lock is needed before acquiring a SHARED lock and before |
|
1814 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will |
|
1815 ** be released. |
|
1816 */ |
|
1817 if( locktype==SHARED_LOCK |
|
1818 || (locktype==EXCLUSIVE_LOCK && pFile->locktype<PENDING_LOCK) |
|
1819 ){ |
|
1820 int failed; |
|
1821 failed = _AFPFSSetLock(context->filePath, pFile, PENDING_BYTE, 1, 1); |
|
1822 if (failed) { |
|
1823 rc = failed; |
|
1824 goto afp_end_lock; |
|
1825 } |
|
1826 } |
|
1827 |
|
1828 /* If control gets to this point, then actually go ahead and make |
|
1829 ** operating system calls for the specified lock. |
|
1830 */ |
|
1831 if( locktype==SHARED_LOCK ){ |
|
1832 int lk, lrc1, lrc2, lrc1Errno; |
|
1833 |
|
1834 /* Now get the read-lock SHARED_LOCK */ |
|
1835 /* note that the quality of the randomness doesn't matter that much */ |
|
1836 lk = random(); |
|
1837 context->sharedLockByte = (lk & 0x7fffffff)%(SHARED_SIZE - 1); |
|
1838 lrc1 = _AFPFSSetLock(context->filePath, pFile, |
|
1839 SHARED_FIRST+context->sharedLockByte, 1, 1); |
|
1840 if( IS_LOCK_ERROR(lrc1) ){ |
|
1841 lrc1Errno = pFile->lastErrno; |
|
1842 } |
|
1843 /* Drop the temporary PENDING lock */ |
|
1844 lrc2 = _AFPFSSetLock(context->filePath, pFile, PENDING_BYTE, 1, 0); |
|
1845 |
|
1846 if( IS_LOCK_ERROR(lrc1) ) { |
|
1847 pFile->lastErrno = lrc1Errno; |
|
1848 rc = lrc1; |
|
1849 goto afp_end_lock; |
|
1850 } else if( IS_LOCK_ERROR(lrc2) ){ |
|
1851 rc = lrc2; |
|
1852 goto afp_end_lock; |
|
1853 } else if( lrc1 != SQLITE_OK ) { |
|
1854 rc = lrc1; |
|
1855 } else { |
|
1856 pFile->locktype = SHARED_LOCK; |
|
1857 } |
|
1858 }else{ |
|
1859 /* The request was for a RESERVED or EXCLUSIVE lock. It is |
|
1860 ** assumed that there is a SHARED or greater lock on the file |
|
1861 ** already. |
|
1862 */ |
|
1863 int failed = 0; |
|
1864 assert( 0!=pFile->locktype ); |
|
1865 if (locktype >= RESERVED_LOCK && pFile->locktype < RESERVED_LOCK) { |
|
1866 /* Acquire a RESERVED lock */ |
|
1867 failed = _AFPFSSetLock(context->filePath, pFile, RESERVED_BYTE, 1,1); |
|
1868 } |
|
1869 if (!failed && locktype == EXCLUSIVE_LOCK) { |
|
1870 /* Acquire an EXCLUSIVE lock */ |
|
1871 |
|
1872 /* Remove the shared lock before trying the range. we'll need to |
|
1873 ** reestablish the shared lock if we can't get the afpUnlock |
|
1874 */ |
|
1875 if (!(failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST + |
|
1876 context->sharedLockByte, 1, 0))) { |
|
1877 /* now attemmpt to get the exclusive lock range */ |
|
1878 failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST, |
|
1879 SHARED_SIZE, 1); |
|
1880 if (failed && (failed = _AFPFSSetLock(context->filePath, pFile, |
|
1881 SHARED_FIRST + context->sharedLockByte, 1, 1))) { |
|
1882 rc = failed; |
|
1883 } |
|
1884 } else { |
|
1885 rc = failed; |
|
1886 } |
|
1887 } |
|
1888 if( failed ){ |
|
1889 rc = failed; |
|
1890 } |
|
1891 } |
|
1892 |
|
1893 if( rc==SQLITE_OK ){ |
|
1894 pFile->locktype = locktype; |
|
1895 }else if( locktype==EXCLUSIVE_LOCK ){ |
|
1896 pFile->locktype = PENDING_LOCK; |
|
1897 } |
|
1898 |
|
1899 afp_end_lock: |
|
1900 leaveMutex(); |
|
1901 OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype), |
|
1902 rc==SQLITE_OK ? "ok" : "failed"); |
|
1903 return rc; |
|
1904 } |
|
1905 |
|
1906 /* |
|
1907 ** Lower the locking level on file descriptor pFile to locktype. locktype |
|
1908 ** must be either NO_LOCK or SHARED_LOCK. |
|
1909 ** |
|
1910 ** If the locking level of the file descriptor is already at or below |
|
1911 ** the requested locking level, this routine is a no-op. |
|
1912 */ |
|
1913 static int afpUnlock(sqlite3_file *id, int locktype) { |
|
1914 int rc = SQLITE_OK; |
|
1915 unixFile *pFile = (unixFile*)id; |
|
1916 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; |
|
1917 |
|
1918 assert( pFile ); |
|
1919 OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype, |
|
1920 pFile->locktype, getpid()); |
|
1921 |
|
1922 assert( locktype<=SHARED_LOCK ); |
|
1923 if( pFile->locktype<=locktype ){ |
|
1924 return SQLITE_OK; |
|
1925 } |
|
1926 if( CHECK_THREADID(pFile) ){ |
|
1927 return SQLITE_MISUSE; |
|
1928 } |
|
1929 enterMutex(); |
|
1930 int failed = SQLITE_OK; |
|
1931 if( pFile->locktype>SHARED_LOCK ){ |
|
1932 if( locktype==SHARED_LOCK ){ |
|
1933 |
|
1934 /* unlock the exclusive range - then re-establish the shared lock */ |
|
1935 if (pFile->locktype==EXCLUSIVE_LOCK) { |
|
1936 failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST, |
|
1937 SHARED_SIZE, 0); |
|
1938 if (!failed) { |
|
1939 /* successfully removed the exclusive lock */ |
|
1940 if ((failed = _AFPFSSetLock(context->filePath, pFile, SHARED_FIRST+ |
|
1941 context->sharedLockByte, 1, 1))) { |
|
1942 /* failed to re-establish our shared lock */ |
|
1943 rc = failed; |
|
1944 } |
|
1945 } else { |
|
1946 rc = failed; |
|
1947 } |
|
1948 } |
|
1949 } |
|
1950 if (rc == SQLITE_OK && pFile->locktype>=PENDING_LOCK) { |
|
1951 if ((failed = _AFPFSSetLock(context->filePath, pFile, |
|
1952 PENDING_BYTE, 1, 0))){ |
|
1953 /* failed to release the pending lock */ |
|
1954 rc = failed; |
|
1955 } |
|
1956 } |
|
1957 if (rc == SQLITE_OK && pFile->locktype>=RESERVED_LOCK) { |
|
1958 if ((failed = _AFPFSSetLock(context->filePath, pFile, |
|
1959 RESERVED_BYTE, 1, 0))) { |
|
1960 /* failed to release the reserved lock */ |
|
1961 rc = failed; |
|
1962 } |
|
1963 } |
|
1964 } |
|
1965 if( locktype==NO_LOCK ){ |
|
1966 int failed = _AFPFSSetLock(context->filePath, pFile, |
|
1967 SHARED_FIRST + context->sharedLockByte, 1, 0); |
|
1968 if (failed) { |
|
1969 rc = failed; |
|
1970 } |
|
1971 } |
|
1972 if (rc == SQLITE_OK) |
|
1973 pFile->locktype = locktype; |
|
1974 leaveMutex(); |
|
1975 return rc; |
|
1976 } |
|
1977 |
|
1978 /* |
|
1979 ** Close a file & cleanup AFP specific locking context |
|
1980 */ |
|
1981 static int afpClose(sqlite3_file *id) { |
|
1982 if( id ){ |
|
1983 unixFile *pFile = (unixFile*)id; |
|
1984 afpUnlock(id, NO_LOCK); |
|
1985 sqlite3_free(pFile->lockingContext); |
|
1986 } |
|
1987 return closeUnixFile(id); |
|
1988 } |
|
1989 |
|
1990 |
|
1991 #pragma mark flock() style locking |
|
1992 |
|
1993 /* |
|
1994 ** The flockLockingContext is not used |
|
1995 */ |
|
1996 typedef void flockLockingContext; |
|
1997 |
|
1998 /* flock-style reserved lock checking following the behavior of |
|
1999 ** unixCheckReservedLock, see the unixCheckReservedLock function comments */ |
|
2000 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){ |
|
2001 int rc = SQLITE_OK; |
|
2002 int reserved = 0; |
|
2003 unixFile *pFile = (unixFile*)id; |
|
2004 |
|
2005 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
|
2006 |
|
2007 assert( pFile ); |
|
2008 |
|
2009 /* Check if a thread in this process holds such a lock */ |
|
2010 if( pFile->locktype>SHARED_LOCK ){ |
|
2011 reserved = 1; |
|
2012 } |
|
2013 |
|
2014 /* Otherwise see if some other process holds it. */ |
|
2015 if( !reserved ){ |
|
2016 /* attempt to get the lock */ |
|
2017 int lrc = flock(pFile->h, LOCK_EX | LOCK_NB); |
|
2018 if( !lrc ){ |
|
2019 /* got the lock, unlock it */ |
|
2020 lrc = flock(pFile->h, LOCK_UN); |
|
2021 if ( lrc ) { |
|
2022 int tErrno = errno; |
|
2023 /* unlock failed with an error */ |
|
2024 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); |
|
2025 if( IS_LOCK_ERROR(lrc) ){ |
|
2026 pFile->lastErrno = tErrno; |
|
2027 rc = lrc; |
|
2028 } |
|
2029 } |
|
2030 } else { |
|
2031 int tErrno = errno; |
|
2032 reserved = 1; |
|
2033 /* someone else might have it reserved */ |
|
2034 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
|
2035 if( IS_LOCK_ERROR(lrc) ){ |
|
2036 pFile->lastErrno = tErrno; |
|
2037 rc = lrc; |
|
2038 } |
|
2039 } |
|
2040 } |
|
2041 OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved); |
|
2042 |
|
2043 *pResOut = reserved; |
|
2044 return rc; |
|
2045 } |
|
2046 |
|
2047 static int flockLock(sqlite3_file *id, int locktype) { |
|
2048 int rc = SQLITE_OK; |
|
2049 unixFile *pFile = (unixFile*)id; |
|
2050 |
|
2051 assert( pFile ); |
|
2052 |
|
2053 /* if we already have a lock, it is exclusive. |
|
2054 ** Just adjust level and punt on outta here. */ |
|
2055 if (pFile->locktype > NO_LOCK) { |
|
2056 pFile->locktype = locktype; |
|
2057 return SQLITE_OK; |
|
2058 } |
|
2059 |
|
2060 /* grab an exclusive lock */ |
|
2061 |
|
2062 if (flock(pFile->h, LOCK_EX | LOCK_NB)) { |
|
2063 int tErrno = errno; |
|
2064 /* didn't get, must be busy */ |
|
2065 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
|
2066 if( IS_LOCK_ERROR(rc) ){ |
|
2067 pFile->lastErrno = tErrno; |
|
2068 } |
|
2069 } else { |
|
2070 /* got it, set the type and return ok */ |
|
2071 pFile->locktype = locktype; |
|
2072 } |
|
2073 OSTRACE4("LOCK %d %s %s\n", pFile->h, locktypeName(locktype), |
|
2074 rc==SQLITE_OK ? "ok" : "failed"); |
|
2075 return rc; |
|
2076 } |
|
2077 |
|
2078 static int flockUnlock(sqlite3_file *id, int locktype) { |
|
2079 unixFile *pFile = (unixFile*)id; |
|
2080 |
|
2081 assert( pFile ); |
|
2082 OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype, |
|
2083 pFile->locktype, getpid()); |
|
2084 assert( locktype<=SHARED_LOCK ); |
|
2085 |
|
2086 /* no-op if possible */ |
|
2087 if( pFile->locktype==locktype ){ |
|
2088 return SQLITE_OK; |
|
2089 } |
|
2090 |
|
2091 /* shared can just be set because we always have an exclusive */ |
|
2092 if (locktype==SHARED_LOCK) { |
|
2093 pFile->locktype = locktype; |
|
2094 return SQLITE_OK; |
|
2095 } |
|
2096 |
|
2097 /* no, really, unlock. */ |
|
2098 int rc = flock(pFile->h, LOCK_UN); |
|
2099 if (rc) { |
|
2100 int r, tErrno = errno; |
|
2101 r = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); |
|
2102 if( IS_LOCK_ERROR(r) ){ |
|
2103 pFile->lastErrno = tErrno; |
|
2104 } |
|
2105 return r; |
|
2106 } else { |
|
2107 pFile->locktype = NO_LOCK; |
|
2108 return SQLITE_OK; |
|
2109 } |
|
2110 } |
|
2111 |
|
2112 /* |
|
2113 ** Close a file. |
|
2114 */ |
|
2115 static int flockClose(sqlite3_file *id) { |
|
2116 if( id ){ |
|
2117 flockUnlock(id, NO_LOCK); |
|
2118 } |
|
2119 return closeUnixFile(id); |
|
2120 } |
|
2121 |
|
2122 #pragma mark Old-School .lock file based locking |
|
2123 |
|
2124 /* Dotlock-style reserved lock checking following the behavior of |
|
2125 ** unixCheckReservedLock, see the unixCheckReservedLock function comments */ |
|
2126 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) { |
|
2127 int rc = SQLITE_OK; |
|
2128 int reserved = 0; |
|
2129 unixFile *pFile = (unixFile*)id; |
|
2130 |
|
2131 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); |
|
2132 |
|
2133 assert( pFile ); |
|
2134 |
|
2135 /* Check if a thread in this process holds such a lock */ |
|
2136 if( pFile->locktype>SHARED_LOCK ){ |
|
2137 reserved = 1; |
|
2138 } |
|
2139 |
|
2140 /* Otherwise see if some other process holds it. */ |
|
2141 if( !reserved ){ |
|
2142 char *zLockFile = (char *)pFile->lockingContext; |
|
2143 struct stat statBuf; |
|
2144 |
|
2145 if( lstat(zLockFile, &statBuf)==0 ){ |
|
2146 /* file exists, someone else has the lock */ |
|
2147 reserved = 1; |
|
2148 }else{ |
|
2149 /* file does not exist, we could have it if we want it */ |
|
2150 int tErrno = errno; |
|
2151 if( ENOENT != tErrno ){ |
|
2152 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); |
|
2153 pFile->lastErrno = tErrno; |
|
2154 } |
|
2155 } |
|
2156 } |
|
2157 OSTRACE4("TEST WR-LOCK %d %d %d\n", pFile->h, rc, reserved); |
|
2158 |
|
2159 *pResOut = reserved; |
|
2160 return rc; |
|
2161 } |
|
2162 |
|
2163 static int dotlockLock(sqlite3_file *id, int locktype) { |
|
2164 unixFile *pFile = (unixFile*)id; |
|
2165 int fd; |
|
2166 char *zLockFile = (char *)pFile->lockingContext; |
|
2167 int rc=SQLITE_OK; |
|
2168 |
|
2169 /* if we already have a lock, it is exclusive. |
|
2170 ** Just adjust level and punt on outta here. */ |
|
2171 if (pFile->locktype > NO_LOCK) { |
|
2172 pFile->locktype = locktype; |
|
2173 |
|
2174 /* Always update the timestamp on the old file */ |
|
2175 utimes(zLockFile, NULL); |
|
2176 rc = SQLITE_OK; |
|
2177 goto dotlock_end_lock; |
|
2178 } |
|
2179 |
|
2180 /* check to see if lock file already exists */ |
|
2181 struct stat statBuf; |
|
2182 if (lstat(zLockFile,&statBuf) == 0){ |
|
2183 rc = SQLITE_BUSY; /* it does, busy */ |
|
2184 goto dotlock_end_lock; |
|
2185 } |
|
2186 |
|
2187 /* grab an exclusive lock */ |
|
2188 fd = open(zLockFile,O_RDONLY|O_CREAT|O_EXCL,0600); |
|
2189 if( fd<0 ){ |
|
2190 /* failed to open/create the file, someone else may have stolen the lock */ |
|
2191 int tErrno = errno; |
|
2192 if( EEXIST == tErrno ){ |
|
2193 rc = SQLITE_BUSY; |
|
2194 } else { |
|
2195 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); |
|
2196 if( IS_LOCK_ERROR(rc) ){ |
|
2197 pFile->lastErrno = tErrno; |
|
2198 } |
|
2199 } |
|
2200 goto dotlock_end_lock; |
|
2201 } |
|
2202 close(fd); |
|
2203 |
|
2204 /* got it, set the type and return ok */ |
|
2205 pFile->locktype = locktype; |
|
2206 |
|
2207 dotlock_end_lock: |
|
2208 return rc; |
|
2209 } |
|
2210 |
|
2211 static int dotlockUnlock(sqlite3_file *id, int locktype) { |
|
2212 unixFile *pFile = (unixFile*)id; |
|
2213 char *zLockFile = (char *)pFile->lockingContext; |
|
2214 |
|
2215 assert( pFile ); |
|
2216 OSTRACE5("UNLOCK %d %d was %d pid=%d\n", pFile->h, locktype, |
|
2217 pFile->locktype, getpid()); |
|
2218 assert( locktype<=SHARED_LOCK ); |
|
2219 |
|
2220 /* no-op if possible */ |
|
2221 if( pFile->locktype==locktype ){ |
|
2222 return SQLITE_OK; |
|
2223 } |
|
2224 |
|
2225 /* shared can just be set because we always have an exclusive */ |
|
2226 if (locktype==SHARED_LOCK) { |
|
2227 pFile->locktype = locktype; |
|
2228 return SQLITE_OK; |
|
2229 } |
|
2230 |
|
2231 /* no, really, unlock. */ |
|
2232 if (unlink(zLockFile) ) { |
|
2233 int rc, tErrno = errno; |
|
2234 if( ENOENT != tErrno ){ |
|
2235 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); |
|
2236 } |
|
2237 if( IS_LOCK_ERROR(rc) ){ |
|
2238 pFile->lastErrno = tErrno; |
|
2239 } |
|
2240 return rc; |
|
2241 } |
|
2242 pFile->locktype = NO_LOCK; |
|
2243 return SQLITE_OK; |
|
2244 } |
|
2245 |
|
2246 /* |
|
2247 ** Close a file. |
|
2248 */ |
|
2249 static int dotlockClose(sqlite3_file *id) { |
|
2250 if( id ){ |
|
2251 unixFile *pFile = (unixFile*)id; |
|
2252 dotlockUnlock(id, NO_LOCK); |
|
2253 sqlite3_free(pFile->lockingContext); |
|
2254 } |
|
2255 return closeUnixFile(id); |
|
2256 } |
|
2257 |
|
2258 |
|
2259 #endif /* SQLITE_ENABLE_LOCKING_STYLE */ |
|
2260 |
|
2261 /* |
|
2262 ** The nolockLockingContext is void |
|
2263 */ |
|
2264 typedef void nolockLockingContext; |
|
2265 |
|
2266 static int nolockCheckReservedLock(sqlite3_file *id, int *pResOut) { |
|
2267 *pResOut = 0; |
|
2268 return SQLITE_OK; |
|
2269 } |
|
2270 |
|
2271 static int nolockLock(sqlite3_file *id, int locktype) { |
|
2272 return SQLITE_OK; |
|
2273 } |
|
2274 |
|
2275 static int nolockUnlock(sqlite3_file *id, int locktype) { |
|
2276 return SQLITE_OK; |
|
2277 } |
|
2278 |
|
2279 /* |
|
2280 ** Close a file. |
|
2281 */ |
|
2282 static int nolockClose(sqlite3_file *id) { |
|
2283 return closeUnixFile(id); |
|
2284 } |
|
2285 |
|
2286 |
|
2287 /* |
|
2288 ** Information and control of an open file handle. |
|
2289 */ |
|
2290 static int unixFileControl(sqlite3_file *id, int op, void *pArg){ |
|
2291 switch( op ){ |
|
2292 case SQLITE_FCNTL_LOCKSTATE: { |
|
2293 *(int*)pArg = ((unixFile*)id)->locktype; |
|
2294 return SQLITE_OK; |
|
2295 } |
|
2296 } |
|
2297 return SQLITE_ERROR; |
|
2298 } |
|
2299 |
|
2300 /* |
|
2301 ** Return the sector size in bytes of the underlying block device for |
|
2302 ** the specified file. This is almost always 512 bytes, but may be |
|
2303 ** larger for some devices. |
|
2304 ** |
|
2305 ** SQLite code assumes this function cannot fail. It also assumes that |
|
2306 ** if two files are created in the same file-system directory (i.e. |
|
2307 ** a database and its journal file) that the sector size will be the |
|
2308 ** same for both. |
|
2309 */ |
|
2310 static int unixSectorSize(sqlite3_file *id){ |
|
2311 return SQLITE_DEFAULT_SECTOR_SIZE; |
|
2312 } |
|
2313 |
|
2314 /* |
|
2315 ** Return the device characteristics for the file. This is always 0. |
|
2316 */ |
|
2317 static int unixDeviceCharacteristics(sqlite3_file *id){ |
|
2318 return 0; |
|
2319 } |
|
2320 |
|
2321 /* |
|
2322 ** Initialize the contents of the unixFile structure pointed to by pId. |
|
2323 ** |
|
2324 ** When locking extensions are enabled, the filepath and locking style |
|
2325 ** are needed to determine the unixFile pMethod to use for locking operations. |
|
2326 ** The locking-style specific lockingContext data structure is created |
|
2327 ** and assigned here also. |
|
2328 */ |
|
2329 static int fillInUnixFile( |
|
2330 sqlite3_vfs *pVfs, /* Pointer to vfs object */ |
|
2331 int h, /* Open file descriptor of file being opened */ |
|
2332 int dirfd, /* Directory file descriptor */ |
|
2333 sqlite3_file *pId, /* Write to the unixFile structure here */ |
|
2334 const char *zFilename, /* Name of the file being opened */ |
|
2335 int noLock /* Omit locking if true */ |
|
2336 ){ |
|
2337 int eLockingStyle; |
|
2338 unixFile *pNew = (unixFile *)pId; |
|
2339 int rc = SQLITE_OK; |
|
2340 |
|
2341 /* Macro to define the static contents of an sqlite3_io_methods |
|
2342 ** structure for a unix backend file. Different locking methods |
|
2343 ** require different functions for the xClose, xLock, xUnlock and |
|
2344 ** xCheckReservedLock methods. |
|
2345 */ |
|
2346 #define IOMETHODS(xClose, xLock, xUnlock, xCheckReservedLock) { \ |
|
2347 1, /* iVersion */ \ |
|
2348 xClose, /* xClose */ \ |
|
2349 unixRead, /* xRead */ \ |
|
2350 unixWrite, /* xWrite */ \ |
|
2351 unixTruncate, /* xTruncate */ \ |
|
2352 unixSync, /* xSync */ \ |
|
2353 unixFileSize, /* xFileSize */ \ |
|
2354 xLock, /* xLock */ \ |
|
2355 xUnlock, /* xUnlock */ \ |
|
2356 xCheckReservedLock, /* xCheckReservedLock */ \ |
|
2357 unixFileControl, /* xFileControl */ \ |
|
2358 unixSectorSize, /* xSectorSize */ \ |
|
2359 unixDeviceCharacteristics /* xDeviceCapabilities */ \ |
|
2360 } |
|
2361 static sqlite3_io_methods aIoMethod[] = { |
|
2362 IOMETHODS(unixClose, unixLock, unixUnlock, unixCheckReservedLock) |
|
2363 ,IOMETHODS(nolockClose, nolockLock, nolockUnlock, nolockCheckReservedLock) |
|
2364 #if SQLITE_ENABLE_LOCKING_STYLE |
|
2365 ,IOMETHODS(dotlockClose, dotlockLock, dotlockUnlock,dotlockCheckReservedLock) |
|
2366 ,IOMETHODS(flockClose, flockLock, flockUnlock, flockCheckReservedLock) |
|
2367 ,IOMETHODS(afpClose, afpLock, afpUnlock, afpCheckReservedLock) |
|
2368 #endif |
|
2369 }; |
|
2370 /* The order of the IOMETHODS macros above is important. It must be the |
|
2371 ** same order as the LOCKING_STYLE numbers |
|
2372 */ |
|
2373 assert(LOCKING_STYLE_POSIX==1); |
|
2374 assert(LOCKING_STYLE_NONE==2); |
|
2375 assert(LOCKING_STYLE_DOTFILE==3); |
|
2376 assert(LOCKING_STYLE_FLOCK==4); |
|
2377 assert(LOCKING_STYLE_AFP==5); |
|
2378 |
|
2379 assert( pNew->pLock==NULL ); |
|
2380 assert( pNew->pOpen==NULL ); |
|
2381 |
|
2382 OSTRACE3("OPEN %-3d %s\n", h, zFilename); |
|
2383 pNew->h = h; |
|
2384 pNew->dirfd = dirfd; |
|
2385 SET_THREADID(pNew); |
|
2386 |
|
2387 if( noLock ){ |
|
2388 eLockingStyle = LOCKING_STYLE_NONE; |
|
2389 }else{ |
|
2390 eLockingStyle = detectLockingStyle(pVfs, zFilename, h); |
|
2391 } |
|
2392 |
|
2393 switch( eLockingStyle ){ |
|
2394 |
|
2395 case LOCKING_STYLE_POSIX: { |
|
2396 enterMutex(); |
|
2397 rc = findLockInfo(h, &pNew->pLock, &pNew->pOpen); |
|
2398 leaveMutex(); |
|
2399 break; |
|
2400 } |
|
2401 |
|
2402 #if SQLITE_ENABLE_LOCKING_STYLE |
|
2403 case LOCKING_STYLE_AFP: { |
|
2404 /* AFP locking uses the file path so it needs to be included in |
|
2405 ** the afpLockingContext. |
|
2406 */ |
|
2407 afpLockingContext *pCtx; |
|
2408 pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) ); |
|
2409 if( pCtx==0 ){ |
|
2410 rc = SQLITE_NOMEM; |
|
2411 }else{ |
|
2412 /* NB: zFilename exists and remains valid until the file is closed |
|
2413 ** according to requirement F11141. So we do not need to make a |
|
2414 ** copy of the filename. */ |
|
2415 pCtx->filePath = zFilename; |
|
2416 srandomdev(); |
|
2417 } |
|
2418 break; |
|
2419 } |
|
2420 |
|
2421 case LOCKING_STYLE_DOTFILE: { |
|
2422 /* Dotfile locking uses the file path so it needs to be included in |
|
2423 ** the dotlockLockingContext |
|
2424 */ |
|
2425 char *zLockFile; |
|
2426 int nFilename; |
|
2427 nFilename = strlen(zFilename) + 6; |
|
2428 zLockFile = (char *)sqlite3_malloc(nFilename); |
|
2429 if( zLockFile==0 ){ |
|
2430 rc = SQLITE_NOMEM; |
|
2431 }else{ |
|
2432 sqlite3_snprintf(nFilename, zLockFile, "%s.lock", zFilename); |
|
2433 } |
|
2434 pNew->lockingContext = zLockFile; |
|
2435 break; |
|
2436 } |
|
2437 |
|
2438 case LOCKING_STYLE_FLOCK: |
|
2439 case LOCKING_STYLE_NONE: |
|
2440 break; |
|
2441 #endif |
|
2442 } |
|
2443 |
|
2444 pNew->lastErrno = 0; |
|
2445 if( rc!=SQLITE_OK ){ |
|
2446 if( dirfd>=0 ) close(dirfd); |
|
2447 close(h); |
|
2448 }else{ |
|
2449 pNew->pMethod = &aIoMethod[eLockingStyle-1]; |
|
2450 OpenCounter(+1); |
|
2451 } |
|
2452 return rc; |
|
2453 } |
|
2454 |
|
2455 /* |
|
2456 ** Open a file descriptor to the directory containing file zFilename. |
|
2457 ** If successful, *pFd is set to the opened file descriptor and |
|
2458 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM |
|
2459 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined |
|
2460 ** value. |
|
2461 ** |
|
2462 ** If SQLITE_OK is returned, the caller is responsible for closing |
|
2463 ** the file descriptor *pFd using close(). |
|
2464 */ |
|
2465 static int openDirectory(const char *zFilename, int *pFd){ |
|
2466 int ii; |
|
2467 int fd = -1; |
|
2468 char zDirname[MAX_PATHNAME+1]; |
|
2469 |
|
2470 sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); |
|
2471 for(ii=strlen(zDirname); ii>=0 && zDirname[ii]!='/'; ii--); |
|
2472 if( ii>0 ){ |
|
2473 zDirname[ii] = '\0'; |
|
2474 fd = open(zDirname, O_RDONLY|O_BINARY, 0); |
|
2475 if( fd>=0 ){ |
|
2476 #ifdef FD_CLOEXEC |
|
2477 fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC); |
|
2478 #endif |
|
2479 OSTRACE3("OPENDIR %-3d %s\n", fd, zDirname); |
|
2480 } |
|
2481 } |
|
2482 *pFd = fd; |
|
2483 return (fd>=0?SQLITE_OK:SQLITE_CANTOPEN); |
|
2484 } |
|
2485 |
|
2486 /* |
|
2487 ** Create a temporary file name in zBuf. zBuf must be allocated |
|
2488 ** by the calling process and must be big enough to hold at least |
|
2489 ** pVfs->mxPathname bytes. |
|
2490 */ |
|
2491 static int getTempname(int nBuf, char *zBuf){ |
|
2492 static const char *azDirs[] = { |
|
2493 0, |
|
2494 "/var/tmp", |
|
2495 "/usr/tmp", |
|
2496 "/tmp", |
|
2497 ".", |
|
2498 }; |
|
2499 static const unsigned char zChars[] = |
|
2500 "abcdefghijklmnopqrstuvwxyz" |
|
2501 "ABCDEFGHIJKLMNOPQRSTUVWXYZ" |
|
2502 "0123456789"; |
|
2503 int i, j; |
|
2504 struct stat buf; |
|
2505 const char *zDir = "."; |
|
2506 |
|
2507 /* It's odd to simulate an io-error here, but really this is just |
|
2508 ** using the io-error infrastructure to test that SQLite handles this |
|
2509 ** function failing. |
|
2510 */ |
|
2511 SimulateIOError( return SQLITE_IOERR ); |
|
2512 |
|
2513 azDirs[0] = sqlite3_temp_directory; |
|
2514 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){ |
|
2515 if( azDirs[i]==0 ) continue; |
|
2516 if( stat(azDirs[i], &buf) ) continue; |
|
2517 if( !S_ISDIR(buf.st_mode) ) continue; |
|
2518 if( access(azDirs[i], 07) ) continue; |
|
2519 zDir = azDirs[i]; |
|
2520 break; |
|
2521 } |
|
2522 |
|
2523 /* Check that the output buffer is large enough for the temporary file |
|
2524 ** name. If it is not, return SQLITE_ERROR. |
|
2525 */ |
|
2526 if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 17) >= nBuf ){ |
|
2527 return SQLITE_ERROR; |
|
2528 } |
|
2529 |
|
2530 do{ |
|
2531 sqlite3_snprintf(nBuf-17, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir); |
|
2532 j = strlen(zBuf); |
|
2533 sqlite3_randomness(15, &zBuf[j]); |
|
2534 for(i=0; i<15; i++, j++){ |
|
2535 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; |
|
2536 } |
|
2537 zBuf[j] = 0; |
|
2538 }while( access(zBuf,0)==0 ); |
|
2539 return SQLITE_OK; |
|
2540 } |
|
2541 |
|
2542 |
|
2543 /* |
|
2544 ** Open the file zPath. |
|
2545 ** |
|
2546 ** Previously, the SQLite OS layer used three functions in place of this |
|
2547 ** one: |
|
2548 ** |
|
2549 ** sqlite3OsOpenReadWrite(); |
|
2550 ** sqlite3OsOpenReadOnly(); |
|
2551 ** sqlite3OsOpenExclusive(); |
|
2552 ** |
|
2553 ** These calls correspond to the following combinations of flags: |
|
2554 ** |
|
2555 ** ReadWrite() -> (READWRITE | CREATE) |
|
2556 ** ReadOnly() -> (READONLY) |
|
2557 ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE) |
|
2558 ** |
|
2559 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If |
|
2560 ** true, the file was configured to be automatically deleted when the |
|
2561 ** file handle closed. To achieve the same effect using this new |
|
2562 ** interface, add the DELETEONCLOSE flag to those specified above for |
|
2563 ** OpenExclusive(). |
|
2564 */ |
|
2565 static int unixOpen( |
|
2566 sqlite3_vfs *pVfs, |
|
2567 const char *zPath, |
|
2568 sqlite3_file *pFile, |
|
2569 int flags, |
|
2570 int *pOutFlags |
|
2571 ){ |
|
2572 int fd = 0; /* File descriptor returned by open() */ |
|
2573 int dirfd = -1; /* Directory file descriptor */ |
|
2574 int oflags = 0; /* Flags to pass to open() */ |
|
2575 int eType = flags&0xFFFFFF00; /* Type of file to open */ |
|
2576 int noLock; /* True to omit locking primitives */ |
|
2577 |
|
2578 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); |
|
2579 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); |
|
2580 int isCreate = (flags & SQLITE_OPEN_CREATE); |
|
2581 int isReadonly = (flags & SQLITE_OPEN_READONLY); |
|
2582 int isReadWrite = (flags & SQLITE_OPEN_READWRITE); |
|
2583 |
|
2584 /* If creating a master or main-file journal, this function will open |
|
2585 ** a file-descriptor on the directory too. The first time unixSync() |
|
2586 ** is called the directory file descriptor will be fsync()ed and close()d. |
|
2587 */ |
|
2588 int isOpenDirectory = (isCreate && |
|
2589 (eType==SQLITE_OPEN_MASTER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL) |
|
2590 ); |
|
2591 |
|
2592 /* If argument zPath is a NULL pointer, this function is required to open |
|
2593 ** a temporary file. Use this buffer to store the file name in. |
|
2594 */ |
|
2595 char zTmpname[MAX_PATHNAME+1]; |
|
2596 const char *zName = zPath; |
|
2597 |
|
2598 /* Check the following statements are true: |
|
2599 ** |
|
2600 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and |
|
2601 ** (b) if CREATE is set, then READWRITE must also be set, and |
|
2602 ** (c) if EXCLUSIVE is set, then CREATE must also be set. |
|
2603 ** (d) if DELETEONCLOSE is set, then CREATE must also be set. |
|
2604 */ |
|
2605 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); |
|
2606 assert(isCreate==0 || isReadWrite); |
|
2607 assert(isExclusive==0 || isCreate); |
|
2608 assert(isDelete==0 || isCreate); |
|
2609 |
|
2610 /* The main DB, main journal, and master journal are never automatically |
|
2611 ** deleted |
|
2612 */ |
|
2613 assert( eType!=SQLITE_OPEN_MAIN_DB || !isDelete ); |
|
2614 assert( eType!=SQLITE_OPEN_MAIN_JOURNAL || !isDelete ); |
|
2615 assert( eType!=SQLITE_OPEN_MASTER_JOURNAL || !isDelete ); |
|
2616 |
|
2617 /* Assert that the upper layer has set one of the "file-type" flags. */ |
|
2618 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB |
|
2619 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL |
|
2620 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL |
|
2621 || eType==SQLITE_OPEN_TRANSIENT_DB |
|
2622 ); |
|
2623 |
|
2624 memset(pFile, 0, sizeof(unixFile)); |
|
2625 |
|
2626 if( !zName ){ |
|
2627 int rc; |
|
2628 assert(isDelete && !isOpenDirectory); |
|
2629 rc = getTempname(MAX_PATHNAME+1, zTmpname); |
|
2630 if( rc!=SQLITE_OK ){ |
|
2631 return rc; |
|
2632 } |
|
2633 zName = zTmpname; |
|
2634 } |
|
2635 |
|
2636 if( isReadonly ) oflags |= O_RDONLY; |
|
2637 if( isReadWrite ) oflags |= O_RDWR; |
|
2638 if( isCreate ) oflags |= O_CREAT; |
|
2639 if( isExclusive ) oflags |= (O_EXCL|O_NOFOLLOW); |
|
2640 oflags |= (O_LARGEFILE|O_BINARY); |
|
2641 |
|
2642 fd = open(zName, oflags, isDelete?0600:SQLITE_DEFAULT_FILE_PERMISSIONS); |
|
2643 if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){ |
|
2644 /* Failed to open the file for read/write access. Try read-only. */ |
|
2645 flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); |
|
2646 flags |= SQLITE_OPEN_READONLY; |
|
2647 return unixOpen(pVfs, zPath, pFile, flags, pOutFlags); |
|
2648 } |
|
2649 if( fd<0 ){ |
|
2650 return SQLITE_CANTOPEN; |
|
2651 } |
|
2652 if( isDelete ){ |
|
2653 unlink(zName); |
|
2654 } |
|
2655 if( pOutFlags ){ |
|
2656 *pOutFlags = flags; |
|
2657 } |
|
2658 |
|
2659 assert(fd!=0); |
|
2660 if( isOpenDirectory ){ |
|
2661 int rc = openDirectory(zPath, &dirfd); |
|
2662 if( rc!=SQLITE_OK ){ |
|
2663 close(fd); |
|
2664 return rc; |
|
2665 } |
|
2666 } |
|
2667 |
|
2668 #ifdef FD_CLOEXEC |
|
2669 fcntl(fd, F_SETFD, fcntl(fd, F_GETFD, 0) | FD_CLOEXEC); |
|
2670 #endif |
|
2671 |
|
2672 noLock = eType!=SQLITE_OPEN_MAIN_DB; |
|
2673 return fillInUnixFile(pVfs, fd, dirfd, pFile, zPath, noLock); |
|
2674 } |
|
2675 |
|
2676 /* |
|
2677 ** Delete the file at zPath. If the dirSync argument is true, fsync() |
|
2678 ** the directory after deleting the file. |
|
2679 */ |
|
2680 static int unixDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ |
|
2681 int rc = SQLITE_OK; |
|
2682 SimulateIOError(return SQLITE_IOERR_DELETE); |
|
2683 unlink(zPath); |
|
2684 if( dirSync ){ |
|
2685 int fd; |
|
2686 rc = openDirectory(zPath, &fd); |
|
2687 if( rc==SQLITE_OK ){ |
|
2688 if( fsync(fd) ){ |
|
2689 rc = SQLITE_IOERR_DIR_FSYNC; |
|
2690 } |
|
2691 close(fd); |
|
2692 } |
|
2693 } |
|
2694 return rc; |
|
2695 } |
|
2696 |
|
2697 /* |
|
2698 ** Test the existance of or access permissions of file zPath. The |
|
2699 ** test performed depends on the value of flags: |
|
2700 ** |
|
2701 ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists |
|
2702 ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable. |
|
2703 ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable. |
|
2704 ** |
|
2705 ** Otherwise return 0. |
|
2706 */ |
|
2707 static int unixAccess( |
|
2708 sqlite3_vfs *pVfs, |
|
2709 const char *zPath, |
|
2710 int flags, |
|
2711 int *pResOut |
|
2712 ){ |
|
2713 int amode = 0; |
|
2714 SimulateIOError( return SQLITE_IOERR_ACCESS; ); |
|
2715 switch( flags ){ |
|
2716 case SQLITE_ACCESS_EXISTS: |
|
2717 amode = F_OK; |
|
2718 break; |
|
2719 case SQLITE_ACCESS_READWRITE: |
|
2720 amode = W_OK|R_OK; |
|
2721 break; |
|
2722 case SQLITE_ACCESS_READ: |
|
2723 amode = R_OK; |
|
2724 break; |
|
2725 |
|
2726 default: |
|
2727 assert(!"Invalid flags argument"); |
|
2728 } |
|
2729 *pResOut = (access(zPath, amode)==0); |
|
2730 return SQLITE_OK; |
|
2731 } |
|
2732 |
|
2733 |
|
2734 /* |
|
2735 ** Turn a relative pathname into a full pathname. The relative path |
|
2736 ** is stored as a nul-terminated string in the buffer pointed to by |
|
2737 ** zPath. |
|
2738 ** |
|
2739 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes |
|
2740 ** (in this case, MAX_PATHNAME bytes). The full-path is written to |
|
2741 ** this buffer before returning. |
|
2742 */ |
|
2743 static int unixFullPathname( |
|
2744 sqlite3_vfs *pVfs, /* Pointer to vfs object */ |
|
2745 const char *zPath, /* Possibly relative input path */ |
|
2746 int nOut, /* Size of output buffer in bytes */ |
|
2747 char *zOut /* Output buffer */ |
|
2748 ){ |
|
2749 |
|
2750 /* It's odd to simulate an io-error here, but really this is just |
|
2751 ** using the io-error infrastructure to test that SQLite handles this |
|
2752 ** function failing. This function could fail if, for example, the |
|
2753 ** current working directly has been unlinked. |
|
2754 */ |
|
2755 SimulateIOError( return SQLITE_ERROR ); |
|
2756 |
|
2757 assert( pVfs->mxPathname==MAX_PATHNAME ); |
|
2758 zOut[nOut-1] = '\0'; |
|
2759 if( zPath[0]=='/' ){ |
|
2760 sqlite3_snprintf(nOut, zOut, "%s", zPath); |
|
2761 }else{ |
|
2762 int nCwd; |
|
2763 if( getcwd(zOut, nOut-1)==0 ){ |
|
2764 return SQLITE_CANTOPEN; |
|
2765 } |
|
2766 nCwd = strlen(zOut); |
|
2767 sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath); |
|
2768 } |
|
2769 return SQLITE_OK; |
|
2770 |
|
2771 #if 0 |
|
2772 /* |
|
2773 ** Remove "/./" path elements and convert "/A/./" path elements |
|
2774 ** to just "/". |
|
2775 */ |
|
2776 if( zFull ){ |
|
2777 int i, j; |
|
2778 for(i=j=0; zFull[i]; i++){ |
|
2779 if( zFull[i]=='/' ){ |
|
2780 if( zFull[i+1]=='/' ) continue; |
|
2781 if( zFull[i+1]=='.' && zFull[i+2]=='/' ){ |
|
2782 i += 1; |
|
2783 continue; |
|
2784 } |
|
2785 if( zFull[i+1]=='.' && zFull[i+2]=='.' && zFull[i+3]=='/' ){ |
|
2786 while( j>0 && zFull[j-1]!='/' ){ j--; } |
|
2787 i += 3; |
|
2788 continue; |
|
2789 } |
|
2790 } |
|
2791 zFull[j++] = zFull[i]; |
|
2792 } |
|
2793 zFull[j] = 0; |
|
2794 } |
|
2795 #endif |
|
2796 } |
|
2797 |
|
2798 |
|
2799 #ifndef SQLITE_OMIT_LOAD_EXTENSION |
|
2800 /* |
|
2801 ** Interfaces for opening a shared library, finding entry points |
|
2802 ** within the shared library, and closing the shared library. |
|
2803 */ |
|
2804 #include <dlfcn.h> |
|
2805 static void *unixDlOpen(sqlite3_vfs *pVfs, const char *zFilename){ |
|
2806 return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL); |
|
2807 } |
|
2808 |
|
2809 /* |
|
2810 ** SQLite calls this function immediately after a call to unixDlSym() or |
|
2811 ** unixDlOpen() fails (returns a null pointer). If a more detailed error |
|
2812 ** message is available, it is written to zBufOut. If no error message |
|
2813 ** is available, zBufOut is left unmodified and SQLite uses a default |
|
2814 ** error message. |
|
2815 */ |
|
2816 static void unixDlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){ |
|
2817 char *zErr; |
|
2818 enterMutex(); |
|
2819 zErr = dlerror(); |
|
2820 if( zErr ){ |
|
2821 sqlite3_snprintf(nBuf, zBufOut, "%s", zErr); |
|
2822 } |
|
2823 leaveMutex(); |
|
2824 } |
|
2825 static void *unixDlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol){ |
|
2826 return dlsym(pHandle, zSymbol); |
|
2827 } |
|
2828 static void unixDlClose(sqlite3_vfs *pVfs, void *pHandle){ |
|
2829 dlclose(pHandle); |
|
2830 } |
|
2831 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ |
|
2832 #define unixDlOpen 0 |
|
2833 #define unixDlError 0 |
|
2834 #define unixDlSym 0 |
|
2835 #define unixDlClose 0 |
|
2836 #endif |
|
2837 |
|
2838 /* |
|
2839 ** Write nBuf bytes of random data to the supplied buffer zBuf. |
|
2840 */ |
|
2841 static int unixRandomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ |
|
2842 |
|
2843 assert(nBuf>=(sizeof(time_t)+sizeof(int))); |
|
2844 |
|
2845 /* We have to initialize zBuf to prevent valgrind from reporting |
|
2846 ** errors. The reports issued by valgrind are incorrect - we would |
|
2847 ** prefer that the randomness be increased by making use of the |
|
2848 ** uninitialized space in zBuf - but valgrind errors tend to worry |
|
2849 ** some users. Rather than argue, it seems easier just to initialize |
|
2850 ** the whole array and silence valgrind, even if that means less randomness |
|
2851 ** in the random seed. |
|
2852 ** |
|
2853 ** When testing, initializing zBuf[] to zero is all we do. That means |
|
2854 ** that we always use the same random number sequence. This makes the |
|
2855 ** tests repeatable. |
|
2856 */ |
|
2857 memset(zBuf, 0, nBuf); |
|
2858 #if !defined(SQLITE_TEST) |
|
2859 { |
|
2860 int pid, fd; |
|
2861 fd = open("/dev/urandom", O_RDONLY); |
|
2862 if( fd<0 ){ |
|
2863 time_t t; |
|
2864 time(&t); |
|
2865 memcpy(zBuf, &t, sizeof(t)); |
|
2866 pid = getpid(); |
|
2867 memcpy(&zBuf[sizeof(t)], &pid, sizeof(pid)); |
|
2868 assert( sizeof(t)+sizeof(pid)<=nBuf ); |
|
2869 nBuf = sizeof(t) + sizeof(pid); |
|
2870 }else{ |
|
2871 nBuf = read(fd, zBuf, nBuf); |
|
2872 close(fd); |
|
2873 } |
|
2874 } |
|
2875 #endif |
|
2876 return nBuf; |
|
2877 } |
|
2878 |
|
2879 |
|
2880 /* |
|
2881 ** Sleep for a little while. Return the amount of time slept. |
|
2882 ** The argument is the number of microseconds we want to sleep. |
|
2883 ** The return value is the number of microseconds of sleep actually |
|
2884 ** requested from the underlying operating system, a number which |
|
2885 ** might be greater than or equal to the argument, but not less |
|
2886 ** than the argument. |
|
2887 */ |
|
2888 static int unixSleep(sqlite3_vfs *pVfs, int microseconds){ |
|
2889 #if defined(HAVE_USLEEP) && HAVE_USLEEP |
|
2890 usleep(microseconds); |
|
2891 return microseconds; |
|
2892 #else |
|
2893 int seconds = (microseconds+999999)/1000000; |
|
2894 sleep(seconds); |
|
2895 return seconds*1000000; |
|
2896 #endif |
|
2897 } |
|
2898 |
|
2899 /* |
|
2900 ** The following variable, if set to a non-zero value, becomes the result |
|
2901 ** returned from sqlite3OsCurrentTime(). This is used for testing. |
|
2902 */ |
|
2903 #ifdef SQLITE_TEST |
|
2904 int sqlite3_current_time = 0; |
|
2905 #endif |
|
2906 |
|
2907 /* |
|
2908 ** Find the current time (in Universal Coordinated Time). Write the |
|
2909 ** current time and date as a Julian Day number into *prNow and |
|
2910 ** return 0. Return 1 if the time and date cannot be found. |
|
2911 */ |
|
2912 static int unixCurrentTime(sqlite3_vfs *pVfs, double *prNow){ |
|
2913 #ifdef NO_GETTOD |
|
2914 time_t t; |
|
2915 time(&t); |
|
2916 *prNow = t/86400.0 + 2440587.5; |
|
2917 #else |
|
2918 struct timeval sNow; |
|
2919 gettimeofday(&sNow, 0); |
|
2920 *prNow = 2440587.5 + sNow.tv_sec/86400.0 + sNow.tv_usec/86400000000.0; |
|
2921 #endif |
|
2922 #ifdef SQLITE_TEST |
|
2923 if( sqlite3_current_time ){ |
|
2924 *prNow = sqlite3_current_time/86400.0 + 2440587.5; |
|
2925 } |
|
2926 #endif |
|
2927 return 0; |
|
2928 } |
|
2929 |
|
2930 static int unixGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){ |
|
2931 return 0; |
|
2932 } |
|
2933 |
|
2934 /* |
|
2935 ** Initialize the operating system interface. |
|
2936 */ |
|
2937 int sqlite3_os_init(void){ |
|
2938 /* Macro to define the static contents of an sqlite3_vfs structure for |
|
2939 ** the unix backend. The two parameters are the values to use for |
|
2940 ** the sqlite3_vfs.zName and sqlite3_vfs.pAppData fields, respectively. |
|
2941 ** |
|
2942 */ |
|
2943 #define UNIXVFS(zVfsName, pVfsAppData) { \ |
|
2944 1, /* iVersion */ \ |
|
2945 sizeof(unixFile), /* szOsFile */ \ |
|
2946 MAX_PATHNAME, /* mxPathname */ \ |
|
2947 0, /* pNext */ \ |
|
2948 zVfsName, /* zName */ \ |
|
2949 (void *)pVfsAppData, /* pAppData */ \ |
|
2950 unixOpen, /* xOpen */ \ |
|
2951 unixDelete, /* xDelete */ \ |
|
2952 unixAccess, /* xAccess */ \ |
|
2953 unixFullPathname, /* xFullPathname */ \ |
|
2954 unixDlOpen, /* xDlOpen */ \ |
|
2955 unixDlError, /* xDlError */ \ |
|
2956 unixDlSym, /* xDlSym */ \ |
|
2957 unixDlClose, /* xDlClose */ \ |
|
2958 unixRandomness, /* xRandomness */ \ |
|
2959 unixSleep, /* xSleep */ \ |
|
2960 unixCurrentTime, /* xCurrentTime */ \ |
|
2961 unixGetLastError /* xGetLastError */ \ |
|
2962 } |
|
2963 |
|
2964 static sqlite3_vfs unixVfs = UNIXVFS("unix", 0); |
|
2965 #if SQLITE_ENABLE_LOCKING_STYLE |
|
2966 int i; |
|
2967 static sqlite3_vfs aVfs[] = { |
|
2968 UNIXVFS("unix-posix", LOCKING_STYLE_POSIX), |
|
2969 UNIXVFS("unix-afp", LOCKING_STYLE_AFP), |
|
2970 UNIXVFS("unix-flock", LOCKING_STYLE_FLOCK), |
|
2971 UNIXVFS("unix-dotfile", LOCKING_STYLE_DOTFILE), |
|
2972 UNIXVFS("unix-none", LOCKING_STYLE_NONE) |
|
2973 }; |
|
2974 for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){ |
|
2975 sqlite3_vfs_register(&aVfs[i], 0); |
|
2976 } |
|
2977 #endif |
|
2978 sqlite3_vfs_register(&unixVfs, 1); |
|
2979 return SQLITE_OK; |
|
2980 } |
|
2981 |
|
2982 /* |
|
2983 ** Shutdown the operating system interface. This is a no-op for unix. |
|
2984 */ |
|
2985 int sqlite3_os_end(void){ |
|
2986 return SQLITE_OK; |
|
2987 } |
|
2988 |
|
2989 #endif /* SQLITE_OS_UNIX */ |