|
1 /* |
|
2 ** 2005 May 23 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** |
|
13 ** This file contains functions used to access the internal hash tables |
|
14 ** of user defined functions and collation sequences. |
|
15 ** |
|
16 ** $Id: callback.c,v 1.31 2008/09/09 12:31:34 drh Exp $ |
|
17 */ |
|
18 |
|
19 #include "sqliteInt.h" |
|
20 |
|
21 /* |
|
22 ** Invoke the 'collation needed' callback to request a collation sequence |
|
23 ** in the database text encoding of name zName, length nName. |
|
24 ** If the collation sequence |
|
25 */ |
|
26 static void callCollNeeded(sqlite3 *db, const char *zName, int nName){ |
|
27 assert( !db->xCollNeeded || !db->xCollNeeded16 ); |
|
28 if( nName<0 ) nName = sqlite3Strlen(db, zName); |
|
29 if( db->xCollNeeded ){ |
|
30 char *zExternal = sqlite3DbStrNDup(db, zName, nName); |
|
31 if( !zExternal ) return; |
|
32 db->xCollNeeded(db->pCollNeededArg, db, (int)ENC(db), zExternal); |
|
33 sqlite3DbFree(db, zExternal); |
|
34 } |
|
35 #ifndef SQLITE_OMIT_UTF16 |
|
36 if( db->xCollNeeded16 ){ |
|
37 char const *zExternal; |
|
38 sqlite3_value *pTmp = sqlite3ValueNew(db); |
|
39 sqlite3ValueSetStr(pTmp, nName, zName, SQLITE_UTF8, SQLITE_STATIC); |
|
40 zExternal = sqlite3ValueText(pTmp, SQLITE_UTF16NATIVE); |
|
41 if( zExternal ){ |
|
42 db->xCollNeeded16(db->pCollNeededArg, db, (int)ENC(db), zExternal); |
|
43 } |
|
44 sqlite3ValueFree(pTmp); |
|
45 } |
|
46 #endif |
|
47 } |
|
48 |
|
49 /* |
|
50 ** This routine is called if the collation factory fails to deliver a |
|
51 ** collation function in the best encoding but there may be other versions |
|
52 ** of this collation function (for other text encodings) available. Use one |
|
53 ** of these instead if they exist. Avoid a UTF-8 <-> UTF-16 conversion if |
|
54 ** possible. |
|
55 */ |
|
56 static int synthCollSeq(sqlite3 *db, CollSeq *pColl){ |
|
57 CollSeq *pColl2; |
|
58 char *z = pColl->zName; |
|
59 int n = strlen(z); |
|
60 int i; |
|
61 static const u8 aEnc[] = { SQLITE_UTF16BE, SQLITE_UTF16LE, SQLITE_UTF8 }; |
|
62 for(i=0; i<3; i++){ |
|
63 pColl2 = sqlite3FindCollSeq(db, aEnc[i], z, n, 0); |
|
64 if( pColl2->xCmp!=0 ){ |
|
65 memcpy(pColl, pColl2, sizeof(CollSeq)); |
|
66 pColl->xDel = 0; /* Do not copy the destructor */ |
|
67 return SQLITE_OK; |
|
68 } |
|
69 } |
|
70 return SQLITE_ERROR; |
|
71 } |
|
72 |
|
73 /* |
|
74 ** This function is responsible for invoking the collation factory callback |
|
75 ** or substituting a collation sequence of a different encoding when the |
|
76 ** requested collation sequence is not available in the database native |
|
77 ** encoding. |
|
78 ** |
|
79 ** If it is not NULL, then pColl must point to the database native encoding |
|
80 ** collation sequence with name zName, length nName. |
|
81 ** |
|
82 ** The return value is either the collation sequence to be used in database |
|
83 ** db for collation type name zName, length nName, or NULL, if no collation |
|
84 ** sequence can be found. |
|
85 */ |
|
86 CollSeq *sqlite3GetCollSeq( |
|
87 sqlite3* db, |
|
88 CollSeq *pColl, |
|
89 const char *zName, |
|
90 int nName |
|
91 ){ |
|
92 CollSeq *p; |
|
93 |
|
94 p = pColl; |
|
95 if( !p ){ |
|
96 p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0); |
|
97 } |
|
98 if( !p || !p->xCmp ){ |
|
99 /* No collation sequence of this type for this encoding is registered. |
|
100 ** Call the collation factory to see if it can supply us with one. |
|
101 */ |
|
102 callCollNeeded(db, zName, nName); |
|
103 p = sqlite3FindCollSeq(db, ENC(db), zName, nName, 0); |
|
104 } |
|
105 if( p && !p->xCmp && synthCollSeq(db, p) ){ |
|
106 p = 0; |
|
107 } |
|
108 assert( !p || p->xCmp ); |
|
109 return p; |
|
110 } |
|
111 |
|
112 /* |
|
113 ** This routine is called on a collation sequence before it is used to |
|
114 ** check that it is defined. An undefined collation sequence exists when |
|
115 ** a database is loaded that contains references to collation sequences |
|
116 ** that have not been defined by sqlite3_create_collation() etc. |
|
117 ** |
|
118 ** If required, this routine calls the 'collation needed' callback to |
|
119 ** request a definition of the collating sequence. If this doesn't work, |
|
120 ** an equivalent collating sequence that uses a text encoding different |
|
121 ** from the main database is substituted, if one is available. |
|
122 */ |
|
123 int sqlite3CheckCollSeq(Parse *pParse, CollSeq *pColl){ |
|
124 if( pColl ){ |
|
125 const char *zName = pColl->zName; |
|
126 CollSeq *p = sqlite3GetCollSeq(pParse->db, pColl, zName, -1); |
|
127 if( !p ){ |
|
128 if( pParse->nErr==0 ){ |
|
129 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName); |
|
130 } |
|
131 pParse->nErr++; |
|
132 return SQLITE_ERROR; |
|
133 } |
|
134 assert( p==pColl ); |
|
135 } |
|
136 return SQLITE_OK; |
|
137 } |
|
138 |
|
139 |
|
140 |
|
141 /* |
|
142 ** Locate and return an entry from the db.aCollSeq hash table. If the entry |
|
143 ** specified by zName and nName is not found and parameter 'create' is |
|
144 ** true, then create a new entry. Otherwise return NULL. |
|
145 ** |
|
146 ** Each pointer stored in the sqlite3.aCollSeq hash table contains an |
|
147 ** array of three CollSeq structures. The first is the collation sequence |
|
148 ** prefferred for UTF-8, the second UTF-16le, and the third UTF-16be. |
|
149 ** |
|
150 ** Stored immediately after the three collation sequences is a copy of |
|
151 ** the collation sequence name. A pointer to this string is stored in |
|
152 ** each collation sequence structure. |
|
153 */ |
|
154 static CollSeq *findCollSeqEntry( |
|
155 sqlite3 *db, |
|
156 const char *zName, |
|
157 int nName, |
|
158 int create |
|
159 ){ |
|
160 CollSeq *pColl; |
|
161 if( nName<0 ) nName = sqlite3Strlen(db, zName); |
|
162 pColl = sqlite3HashFind(&db->aCollSeq, zName, nName); |
|
163 |
|
164 if( 0==pColl && create ){ |
|
165 pColl = sqlite3DbMallocZero(db, 3*sizeof(*pColl) + nName + 1 ); |
|
166 if( pColl ){ |
|
167 CollSeq *pDel = 0; |
|
168 pColl[0].zName = (char*)&pColl[3]; |
|
169 pColl[0].enc = SQLITE_UTF8; |
|
170 pColl[1].zName = (char*)&pColl[3]; |
|
171 pColl[1].enc = SQLITE_UTF16LE; |
|
172 pColl[2].zName = (char*)&pColl[3]; |
|
173 pColl[2].enc = SQLITE_UTF16BE; |
|
174 memcpy(pColl[0].zName, zName, nName); |
|
175 pColl[0].zName[nName] = 0; |
|
176 pDel = sqlite3HashInsert(&db->aCollSeq, pColl[0].zName, nName, pColl); |
|
177 |
|
178 /* If a malloc() failure occured in sqlite3HashInsert(), it will |
|
179 ** return the pColl pointer to be deleted (because it wasn't added |
|
180 ** to the hash table). |
|
181 */ |
|
182 assert( pDel==0 || pDel==pColl ); |
|
183 if( pDel!=0 ){ |
|
184 db->mallocFailed = 1; |
|
185 sqlite3DbFree(db, pDel); |
|
186 pColl = 0; |
|
187 } |
|
188 } |
|
189 } |
|
190 return pColl; |
|
191 } |
|
192 |
|
193 /* |
|
194 ** Parameter zName points to a UTF-8 encoded string nName bytes long. |
|
195 ** Return the CollSeq* pointer for the collation sequence named zName |
|
196 ** for the encoding 'enc' from the database 'db'. |
|
197 ** |
|
198 ** If the entry specified is not found and 'create' is true, then create a |
|
199 ** new entry. Otherwise return NULL. |
|
200 ** |
|
201 ** A separate function sqlite3LocateCollSeq() is a wrapper around |
|
202 ** this routine. sqlite3LocateCollSeq() invokes the collation factory |
|
203 ** if necessary and generates an error message if the collating sequence |
|
204 ** cannot be found. |
|
205 */ |
|
206 CollSeq *sqlite3FindCollSeq( |
|
207 sqlite3 *db, |
|
208 u8 enc, |
|
209 const char *zName, |
|
210 int nName, |
|
211 int create |
|
212 ){ |
|
213 CollSeq *pColl; |
|
214 if( zName ){ |
|
215 pColl = findCollSeqEntry(db, zName, nName, create); |
|
216 }else{ |
|
217 pColl = db->pDfltColl; |
|
218 } |
|
219 assert( SQLITE_UTF8==1 && SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 ); |
|
220 assert( enc>=SQLITE_UTF8 && enc<=SQLITE_UTF16BE ); |
|
221 if( pColl ) pColl += enc-1; |
|
222 return pColl; |
|
223 } |
|
224 |
|
225 /* During the search for the best function definition, this procedure |
|
226 ** is called to test how well the function passed as the first argument |
|
227 ** matches the request for a function with nArg arguments in a system |
|
228 ** that uses encoding enc. The value returned indicates how well the |
|
229 ** request is matched. A higher value indicates a better match. |
|
230 ** |
|
231 ** The returned value is always between 1 and 6, as follows: |
|
232 ** |
|
233 ** 1: A variable arguments function that prefers UTF-8 when a UTF-16 |
|
234 ** encoding is requested, or vice versa. |
|
235 ** 2: A variable arguments function that uses UTF-16BE when UTF-16LE is |
|
236 ** requested, or vice versa. |
|
237 ** 3: A variable arguments function using the same text encoding. |
|
238 ** 4: A function with the exact number of arguments requested that |
|
239 ** prefers UTF-8 when a UTF-16 encoding is requested, or vice versa. |
|
240 ** 5: A function with the exact number of arguments requested that |
|
241 ** prefers UTF-16LE when UTF-16BE is requested, or vice versa. |
|
242 ** 6: An exact match. |
|
243 ** |
|
244 */ |
|
245 static int matchQuality(FuncDef *p, int nArg, u8 enc){ |
|
246 int match = 0; |
|
247 if( p->nArg==-1 || p->nArg==nArg || nArg==-1 ){ |
|
248 match = 1; |
|
249 if( p->nArg==nArg || nArg==-1 ){ |
|
250 match = 4; |
|
251 } |
|
252 if( enc==p->iPrefEnc ){ |
|
253 match += 2; |
|
254 } |
|
255 else if( (enc==SQLITE_UTF16LE && p->iPrefEnc==SQLITE_UTF16BE) || |
|
256 (enc==SQLITE_UTF16BE && p->iPrefEnc==SQLITE_UTF16LE) ){ |
|
257 match += 1; |
|
258 } |
|
259 } |
|
260 return match; |
|
261 } |
|
262 |
|
263 /* |
|
264 ** Search a FuncDefHash for a function with the given name. Return |
|
265 ** a pointer to the matching FuncDef if found, or 0 if there is no match. |
|
266 */ |
|
267 static FuncDef *functionSearch( |
|
268 FuncDefHash *pHash, /* Hash table to search */ |
|
269 int h, /* Hash of the name */ |
|
270 const char *zFunc, /* Name of function */ |
|
271 int nFunc /* Number of bytes in zFunc */ |
|
272 ){ |
|
273 FuncDef *p; |
|
274 for(p=pHash->a[h]; p; p=p->pHash){ |
|
275 if( sqlite3StrNICmp(p->zName, zFunc, nFunc)==0 && p->zName[nFunc]==0 ){ |
|
276 return p; |
|
277 } |
|
278 } |
|
279 return 0; |
|
280 } |
|
281 |
|
282 /* |
|
283 ** Insert a new FuncDef into a FuncDefHash hash table. |
|
284 */ |
|
285 void sqlite3FuncDefInsert( |
|
286 FuncDefHash *pHash, /* The hash table into which to insert */ |
|
287 FuncDef *pDef /* The function definition to insert */ |
|
288 ){ |
|
289 FuncDef *pOther; |
|
290 int nName = strlen(pDef->zName); |
|
291 u8 c1 = (u8)pDef->zName[0]; |
|
292 int h = (sqlite3UpperToLower[c1] + nName) % ArraySize(pHash->a); |
|
293 pOther = functionSearch(pHash, h, pDef->zName, nName); |
|
294 if( pOther ){ |
|
295 pDef->pNext = pOther->pNext; |
|
296 pOther->pNext = pDef; |
|
297 }else{ |
|
298 pDef->pNext = 0; |
|
299 pDef->pHash = pHash->a[h]; |
|
300 pHash->a[h] = pDef; |
|
301 } |
|
302 } |
|
303 |
|
304 |
|
305 |
|
306 /* |
|
307 ** Locate a user function given a name, a number of arguments and a flag |
|
308 ** indicating whether the function prefers UTF-16 over UTF-8. Return a |
|
309 ** pointer to the FuncDef structure that defines that function, or return |
|
310 ** NULL if the function does not exist. |
|
311 ** |
|
312 ** If the createFlag argument is true, then a new (blank) FuncDef |
|
313 ** structure is created and liked into the "db" structure if a |
|
314 ** no matching function previously existed. When createFlag is true |
|
315 ** and the nArg parameter is -1, then only a function that accepts |
|
316 ** any number of arguments will be returned. |
|
317 ** |
|
318 ** If createFlag is false and nArg is -1, then the first valid |
|
319 ** function found is returned. A function is valid if either xFunc |
|
320 ** or xStep is non-zero. |
|
321 ** |
|
322 ** If createFlag is false, then a function with the required name and |
|
323 ** number of arguments may be returned even if the eTextRep flag does not |
|
324 ** match that requested. |
|
325 */ |
|
326 FuncDef *sqlite3FindFunction( |
|
327 sqlite3 *db, /* An open database */ |
|
328 const char *zName, /* Name of the function. Not null-terminated */ |
|
329 int nName, /* Number of characters in the name */ |
|
330 int nArg, /* Number of arguments. -1 means any number */ |
|
331 u8 enc, /* Preferred text encoding */ |
|
332 int createFlag /* Create new entry if true and does not otherwise exist */ |
|
333 ){ |
|
334 FuncDef *p; /* Iterator variable */ |
|
335 FuncDef *pBest = 0; /* Best match found so far */ |
|
336 int bestScore = 0; /* Score of best match */ |
|
337 int h; /* Hash value */ |
|
338 |
|
339 |
|
340 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE ); |
|
341 if( nArg<-1 ) nArg = -1; |
|
342 h = (sqlite3UpperToLower[(u8)zName[0]] + nName) % ArraySize(db->aFunc.a); |
|
343 |
|
344 /* First search for a match amongst the application-defined functions. |
|
345 */ |
|
346 p = functionSearch(&db->aFunc, h, zName, nName); |
|
347 while( p ){ |
|
348 int score = matchQuality(p, nArg, enc); |
|
349 if( score>bestScore ){ |
|
350 pBest = p; |
|
351 bestScore = score; |
|
352 } |
|
353 p = p->pNext; |
|
354 } |
|
355 |
|
356 /* If no match is found, search the built-in functions. |
|
357 ** |
|
358 ** Except, if createFlag is true, that means that we are trying to |
|
359 ** install a new function. Whatever FuncDef structure is returned will |
|
360 ** have fields overwritten with new information appropriate for the |
|
361 ** new function. But the FuncDefs for built-in functions are read-only. |
|
362 ** So we must not search for built-ins when creating a new function. |
|
363 */ |
|
364 if( !createFlag && !pBest ){ |
|
365 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); |
|
366 p = functionSearch(pHash, h, zName, nName); |
|
367 while( p ){ |
|
368 int score = matchQuality(p, nArg, enc); |
|
369 if( score>bestScore ){ |
|
370 pBest = p; |
|
371 bestScore = score; |
|
372 } |
|
373 p = p->pNext; |
|
374 } |
|
375 } |
|
376 |
|
377 /* If the createFlag parameter is true and the search did not reveal an |
|
378 ** exact match for the name, number of arguments and encoding, then add a |
|
379 ** new entry to the hash table and return it. |
|
380 */ |
|
381 if( createFlag && (bestScore<6 || pBest->nArg!=nArg) && |
|
382 (pBest = sqlite3DbMallocZero(db, sizeof(*pBest)+nName+1))!=0 ){ |
|
383 pBest->zName = (char *)&pBest[1]; |
|
384 pBest->nArg = nArg; |
|
385 pBest->iPrefEnc = enc; |
|
386 memcpy(pBest->zName, zName, nName); |
|
387 pBest->zName[nName] = 0; |
|
388 sqlite3FuncDefInsert(&db->aFunc, pBest); |
|
389 } |
|
390 |
|
391 if( pBest && (pBest->xStep || pBest->xFunc || createFlag) ){ |
|
392 return pBest; |
|
393 } |
|
394 return 0; |
|
395 } |
|
396 |
|
397 /* |
|
398 ** Free all resources held by the schema structure. The void* argument points |
|
399 ** at a Schema struct. This function does not call sqlite3DbFree(db, ) on the |
|
400 ** pointer itself, it just cleans up subsiduary resources (i.e. the contents |
|
401 ** of the schema hash tables). |
|
402 ** |
|
403 ** The Schema.cache_size variable is not cleared. |
|
404 */ |
|
405 void sqlite3SchemaFree(void *p){ |
|
406 Hash temp1; |
|
407 Hash temp2; |
|
408 HashElem *pElem; |
|
409 Schema *pSchema = (Schema *)p; |
|
410 |
|
411 temp1 = pSchema->tblHash; |
|
412 temp2 = pSchema->trigHash; |
|
413 sqlite3HashInit(&pSchema->trigHash, SQLITE_HASH_STRING, 0); |
|
414 sqlite3HashClear(&pSchema->aFKey); |
|
415 sqlite3HashClear(&pSchema->idxHash); |
|
416 for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){ |
|
417 sqlite3DeleteTrigger(0, (Trigger*)sqliteHashData(pElem)); |
|
418 } |
|
419 sqlite3HashClear(&temp2); |
|
420 sqlite3HashInit(&pSchema->tblHash, SQLITE_HASH_STRING, 0); |
|
421 for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){ |
|
422 Table *pTab = sqliteHashData(pElem); |
|
423 sqlite3DeleteTable(pTab); |
|
424 } |
|
425 sqlite3HashClear(&temp1); |
|
426 pSchema->pSeqTab = 0; |
|
427 pSchema->flags &= ~DB_SchemaLoaded; |
|
428 } |
|
429 |
|
430 /* |
|
431 ** Find and return the schema associated with a BTree. Create |
|
432 ** a new one if necessary. |
|
433 */ |
|
434 Schema *sqlite3SchemaGet(sqlite3 *db, Btree *pBt){ |
|
435 Schema * p; |
|
436 if( pBt ){ |
|
437 p = (Schema *)sqlite3BtreeSchema(pBt, sizeof(Schema), sqlite3SchemaFree); |
|
438 }else{ |
|
439 p = (Schema *)sqlite3MallocZero(sizeof(Schema)); |
|
440 } |
|
441 if( !p ){ |
|
442 db->mallocFailed = 1; |
|
443 }else if ( 0==p->file_format ){ |
|
444 sqlite3HashInit(&p->tblHash, SQLITE_HASH_STRING, 0); |
|
445 sqlite3HashInit(&p->idxHash, SQLITE_HASH_STRING, 0); |
|
446 sqlite3HashInit(&p->trigHash, SQLITE_HASH_STRING, 0); |
|
447 sqlite3HashInit(&p->aFKey, SQLITE_HASH_STRING, 1); |
|
448 p->enc = SQLITE_UTF8; |
|
449 } |
|
450 return p; |
|
451 } |