persistentstorage/sqlite3api/SQLite/fts1_porter.c
changeset 0 08ec8eefde2f
equal deleted inserted replaced
-1:000000000000 0:08ec8eefde2f
       
     1 /*
       
     2 ** 2006 September 30
       
     3 **
       
     4 ** The author disclaims copyright to this source code.  In place of
       
     5 ** a legal notice, here is a blessing:
       
     6 **
       
     7 **    May you do good and not evil.
       
     8 **    May you find forgiveness for yourself and forgive others.
       
     9 **    May you share freely, never taking more than you give.
       
    10 **
       
    11 *************************************************************************
       
    12 ** Implementation of the full-text-search tokenizer that implements
       
    13 ** a Porter stemmer.
       
    14 */
       
    15 
       
    16 /*
       
    17 ** The code in this file is only compiled if:
       
    18 **
       
    19 **     * The FTS1 module is being built as an extension
       
    20 **       (in which case SQLITE_CORE is not defined), or
       
    21 **
       
    22 **     * The FTS1 module is being built into the core of
       
    23 **       SQLite (in which case SQLITE_ENABLE_FTS1 is defined).
       
    24 */
       
    25 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1)
       
    26 
       
    27 
       
    28 #include <assert.h>
       
    29 #include <stdlib.h>
       
    30 #include <stdio.h>
       
    31 #include <string.h>
       
    32 #include <ctype.h>
       
    33 
       
    34 #include "fts1_tokenizer.h"
       
    35 
       
    36 /*
       
    37 ** Class derived from sqlite3_tokenizer
       
    38 */
       
    39 typedef struct porter_tokenizer {
       
    40   sqlite3_tokenizer base;      /* Base class */
       
    41 } porter_tokenizer;
       
    42 
       
    43 /*
       
    44 ** Class derived from sqlit3_tokenizer_cursor
       
    45 */
       
    46 typedef struct porter_tokenizer_cursor {
       
    47   sqlite3_tokenizer_cursor base;
       
    48   const char *zInput;          /* input we are tokenizing */
       
    49   int nInput;                  /* size of the input */
       
    50   int iOffset;                 /* current position in zInput */
       
    51   int iToken;                  /* index of next token to be returned */
       
    52   char *zToken;                /* storage for current token */
       
    53   int nAllocated;              /* space allocated to zToken buffer */
       
    54 } porter_tokenizer_cursor;
       
    55 
       
    56 
       
    57 /* Forward declaration */
       
    58 static const sqlite3_tokenizer_module porterTokenizerModule;
       
    59 
       
    60 
       
    61 /*
       
    62 ** Create a new tokenizer instance.
       
    63 */
       
    64 static int porterCreate(
       
    65   int argc, const char * const *argv,
       
    66   sqlite3_tokenizer **ppTokenizer
       
    67 ){
       
    68   porter_tokenizer *t;
       
    69   t = (porter_tokenizer *) calloc(sizeof(*t), 1);
       
    70   if( t==NULL ) return SQLITE_NOMEM;
       
    71 
       
    72   *ppTokenizer = &t->base;
       
    73   return SQLITE_OK;
       
    74 }
       
    75 
       
    76 /*
       
    77 ** Destroy a tokenizer
       
    78 */
       
    79 static int porterDestroy(sqlite3_tokenizer *pTokenizer){
       
    80   free(pTokenizer);
       
    81   return SQLITE_OK;
       
    82 }
       
    83 
       
    84 /*
       
    85 ** Prepare to begin tokenizing a particular string.  The input
       
    86 ** string to be tokenized is zInput[0..nInput-1].  A cursor
       
    87 ** used to incrementally tokenize this string is returned in 
       
    88 ** *ppCursor.
       
    89 */
       
    90 static int porterOpen(
       
    91   sqlite3_tokenizer *pTokenizer,         /* The tokenizer */
       
    92   const char *zInput, int nInput,        /* String to be tokenized */
       
    93   sqlite3_tokenizer_cursor **ppCursor    /* OUT: Tokenization cursor */
       
    94 ){
       
    95   porter_tokenizer_cursor *c;
       
    96 
       
    97   c = (porter_tokenizer_cursor *) malloc(sizeof(*c));
       
    98   if( c==NULL ) return SQLITE_NOMEM;
       
    99 
       
   100   c->zInput = zInput;
       
   101   if( zInput==0 ){
       
   102     c->nInput = 0;
       
   103   }else if( nInput<0 ){
       
   104     c->nInput = (int)strlen(zInput);
       
   105   }else{
       
   106     c->nInput = nInput;
       
   107   }
       
   108   c->iOffset = 0;                 /* start tokenizing at the beginning */
       
   109   c->iToken = 0;
       
   110   c->zToken = NULL;               /* no space allocated, yet. */
       
   111   c->nAllocated = 0;
       
   112 
       
   113   *ppCursor = &c->base;
       
   114   return SQLITE_OK;
       
   115 }
       
   116 
       
   117 /*
       
   118 ** Close a tokenization cursor previously opened by a call to
       
   119 ** porterOpen() above.
       
   120 */
       
   121 static int porterClose(sqlite3_tokenizer_cursor *pCursor){
       
   122   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
       
   123   free(c->zToken);
       
   124   free(c);
       
   125   return SQLITE_OK;
       
   126 }
       
   127 /*
       
   128 ** Vowel or consonant
       
   129 */
       
   130 static const char cType[] = {
       
   131    0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
       
   132    1, 1, 1, 2, 1
       
   133 };
       
   134 
       
   135 /*
       
   136 ** isConsonant() and isVowel() determine if their first character in
       
   137 ** the string they point to is a consonant or a vowel, according
       
   138 ** to Porter ruls.  
       
   139 **
       
   140 ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
       
   141 ** 'Y' is a consonant unless it follows another consonant,
       
   142 ** in which case it is a vowel.
       
   143 **
       
   144 ** In these routine, the letters are in reverse order.  So the 'y' rule
       
   145 ** is that 'y' is a consonant unless it is followed by another
       
   146 ** consonent.
       
   147 */
       
   148 static int isVowel(const char*);
       
   149 static int isConsonant(const char *z){
       
   150   int j;
       
   151   char x = *z;
       
   152   if( x==0 ) return 0;
       
   153   assert( x>='a' && x<='z' );
       
   154   j = cType[x-'a'];
       
   155   if( j<2 ) return j;
       
   156   return z[1]==0 || isVowel(z + 1);
       
   157 }
       
   158 static int isVowel(const char *z){
       
   159   int j;
       
   160   char x = *z;
       
   161   if( x==0 ) return 0;
       
   162   assert( x>='a' && x<='z' );
       
   163   j = cType[x-'a'];
       
   164   if( j<2 ) return 1-j;
       
   165   return isConsonant(z + 1);
       
   166 }
       
   167 
       
   168 /*
       
   169 ** Let any sequence of one or more vowels be represented by V and let
       
   170 ** C be sequence of one or more consonants.  Then every word can be
       
   171 ** represented as:
       
   172 **
       
   173 **           [C] (VC){m} [V]
       
   174 **
       
   175 ** In prose:  A word is an optional consonant followed by zero or
       
   176 ** vowel-consonant pairs followed by an optional vowel.  "m" is the
       
   177 ** number of vowel consonant pairs.  This routine computes the value
       
   178 ** of m for the first i bytes of a word.
       
   179 **
       
   180 ** Return true if the m-value for z is 1 or more.  In other words,
       
   181 ** return true if z contains at least one vowel that is followed
       
   182 ** by a consonant.
       
   183 **
       
   184 ** In this routine z[] is in reverse order.  So we are really looking
       
   185 ** for an instance of of a consonant followed by a vowel.
       
   186 */
       
   187 static int m_gt_0(const char *z){
       
   188   while( isVowel(z) ){ z++; }
       
   189   if( *z==0 ) return 0;
       
   190   while( isConsonant(z) ){ z++; }
       
   191   return *z!=0;
       
   192 }
       
   193 
       
   194 /* Like mgt0 above except we are looking for a value of m which is
       
   195 ** exactly 1
       
   196 */
       
   197 static int m_eq_1(const char *z){
       
   198   while( isVowel(z) ){ z++; }
       
   199   if( *z==0 ) return 0;
       
   200   while( isConsonant(z) ){ z++; }
       
   201   if( *z==0 ) return 0;
       
   202   while( isVowel(z) ){ z++; }
       
   203   if( *z==0 ) return 1;
       
   204   while( isConsonant(z) ){ z++; }
       
   205   return *z==0;
       
   206 }
       
   207 
       
   208 /* Like mgt0 above except we are looking for a value of m>1 instead
       
   209 ** or m>0
       
   210 */
       
   211 static int m_gt_1(const char *z){
       
   212   while( isVowel(z) ){ z++; }
       
   213   if( *z==0 ) return 0;
       
   214   while( isConsonant(z) ){ z++; }
       
   215   if( *z==0 ) return 0;
       
   216   while( isVowel(z) ){ z++; }
       
   217   if( *z==0 ) return 0;
       
   218   while( isConsonant(z) ){ z++; }
       
   219   return *z!=0;
       
   220 }
       
   221 
       
   222 /*
       
   223 ** Return TRUE if there is a vowel anywhere within z[0..n-1]
       
   224 */
       
   225 static int hasVowel(const char *z){
       
   226   while( isConsonant(z) ){ z++; }
       
   227   return *z!=0;
       
   228 }
       
   229 
       
   230 /*
       
   231 ** Return TRUE if the word ends in a double consonant.
       
   232 **
       
   233 ** The text is reversed here. So we are really looking at
       
   234 ** the first two characters of z[].
       
   235 */
       
   236 static int doubleConsonant(const char *z){
       
   237   return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
       
   238 }
       
   239 
       
   240 /*
       
   241 ** Return TRUE if the word ends with three letters which
       
   242 ** are consonant-vowel-consonent and where the final consonant
       
   243 ** is not 'w', 'x', or 'y'.
       
   244 **
       
   245 ** The word is reversed here.  So we are really checking the
       
   246 ** first three letters and the first one cannot be in [wxy].
       
   247 */
       
   248 static int star_oh(const char *z){
       
   249   return
       
   250     z[0]!=0 && isConsonant(z) &&
       
   251     z[0]!='w' && z[0]!='x' && z[0]!='y' &&
       
   252     z[1]!=0 && isVowel(z+1) &&
       
   253     z[2]!=0 && isConsonant(z+2);
       
   254 }
       
   255 
       
   256 /*
       
   257 ** If the word ends with zFrom and xCond() is true for the stem
       
   258 ** of the word that preceeds the zFrom ending, then change the 
       
   259 ** ending to zTo.
       
   260 **
       
   261 ** The input word *pz and zFrom are both in reverse order.  zTo
       
   262 ** is in normal order. 
       
   263 **
       
   264 ** Return TRUE if zFrom matches.  Return FALSE if zFrom does not
       
   265 ** match.  Not that TRUE is returned even if xCond() fails and
       
   266 ** no substitution occurs.
       
   267 */
       
   268 static int stem(
       
   269   char **pz,             /* The word being stemmed (Reversed) */
       
   270   const char *zFrom,     /* If the ending matches this... (Reversed) */
       
   271   const char *zTo,       /* ... change the ending to this (not reversed) */
       
   272   int (*xCond)(const char*)   /* Condition that must be true */
       
   273 ){
       
   274   char *z = *pz;
       
   275   while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
       
   276   if( *zFrom!=0 ) return 0;
       
   277   if( xCond && !xCond(z) ) return 1;
       
   278   while( *zTo ){
       
   279     *(--z) = *(zTo++);
       
   280   }
       
   281   *pz = z;
       
   282   return 1;
       
   283 }
       
   284 
       
   285 /*
       
   286 ** This is the fallback stemmer used when the porter stemmer is
       
   287 ** inappropriate.  The input word is copied into the output with
       
   288 ** US-ASCII case folding.  If the input word is too long (more
       
   289 ** than 20 bytes if it contains no digits or more than 6 bytes if
       
   290 ** it contains digits) then word is truncated to 20 or 6 bytes
       
   291 ** by taking 10 or 3 bytes from the beginning and end.
       
   292 */
       
   293 static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
       
   294   int i, mx, j;
       
   295   int hasDigit = 0;
       
   296   for(i=0; i<nIn; i++){
       
   297     int c = zIn[i];
       
   298     if( c>='A' && c<='Z' ){
       
   299       zOut[i] = c - 'A' + 'a';
       
   300     }else{
       
   301       if( c>='0' && c<='9' ) hasDigit = 1;
       
   302       zOut[i] = c;
       
   303     }
       
   304   }
       
   305   mx = hasDigit ? 3 : 10;
       
   306   if( nIn>mx*2 ){
       
   307     for(j=mx, i=nIn-mx; i<nIn; i++, j++){
       
   308       zOut[j] = zOut[i];
       
   309     }
       
   310     i = j;
       
   311   }
       
   312   zOut[i] = 0;
       
   313   *pnOut = i;
       
   314 }
       
   315 
       
   316 
       
   317 /*
       
   318 ** Stem the input word zIn[0..nIn-1].  Store the output in zOut.
       
   319 ** zOut is at least big enough to hold nIn bytes.  Write the actual
       
   320 ** size of the output word (exclusive of the '\0' terminator) into *pnOut.
       
   321 **
       
   322 ** Any upper-case characters in the US-ASCII character set ([A-Z])
       
   323 ** are converted to lower case.  Upper-case UTF characters are
       
   324 ** unchanged.
       
   325 **
       
   326 ** Words that are longer than about 20 bytes are stemmed by retaining
       
   327 ** a few bytes from the beginning and the end of the word.  If the
       
   328 ** word contains digits, 3 bytes are taken from the beginning and
       
   329 ** 3 bytes from the end.  For long words without digits, 10 bytes
       
   330 ** are taken from each end.  US-ASCII case folding still applies.
       
   331 ** 
       
   332 ** If the input word contains not digits but does characters not 
       
   333 ** in [a-zA-Z] then no stemming is attempted and this routine just 
       
   334 ** copies the input into the input into the output with US-ASCII
       
   335 ** case folding.
       
   336 **
       
   337 ** Stemming never increases the length of the word.  So there is
       
   338 ** no chance of overflowing the zOut buffer.
       
   339 */
       
   340 static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
       
   341   int i, j, c;
       
   342   char zReverse[28];
       
   343   char *z, *z2;
       
   344   if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
       
   345     /* The word is too big or too small for the porter stemmer.
       
   346     ** Fallback to the copy stemmer */
       
   347     copy_stemmer(zIn, nIn, zOut, pnOut);
       
   348     return;
       
   349   }
       
   350   for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
       
   351     c = zIn[i];
       
   352     if( c>='A' && c<='Z' ){
       
   353       zReverse[j] = c + 'a' - 'A';
       
   354     }else if( c>='a' && c<='z' ){
       
   355       zReverse[j] = c;
       
   356     }else{
       
   357       /* The use of a character not in [a-zA-Z] means that we fallback
       
   358       ** to the copy stemmer */
       
   359       copy_stemmer(zIn, nIn, zOut, pnOut);
       
   360       return;
       
   361     }
       
   362   }
       
   363   memset(&zReverse[sizeof(zReverse)-5], 0, 5);
       
   364   z = &zReverse[j+1];
       
   365 
       
   366 
       
   367   /* Step 1a */
       
   368   if( z[0]=='s' ){
       
   369     if(
       
   370      !stem(&z, "sess", "ss", 0) &&
       
   371      !stem(&z, "sei", "i", 0)  &&
       
   372      !stem(&z, "ss", "ss", 0)
       
   373     ){
       
   374       z++;
       
   375     }
       
   376   }
       
   377 
       
   378   /* Step 1b */  
       
   379   z2 = z;
       
   380   if( stem(&z, "dee", "ee", m_gt_0) ){
       
   381     /* Do nothing.  The work was all in the test */
       
   382   }else if( 
       
   383      (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
       
   384       && z!=z2
       
   385   ){
       
   386      if( stem(&z, "ta", "ate", 0) ||
       
   387          stem(&z, "lb", "ble", 0) ||
       
   388          stem(&z, "zi", "ize", 0) ){
       
   389        /* Do nothing.  The work was all in the test */
       
   390      }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
       
   391        z++;
       
   392      }else if( m_eq_1(z) && star_oh(z) ){
       
   393        *(--z) = 'e';
       
   394      }
       
   395   }
       
   396 
       
   397   /* Step 1c */
       
   398   if( z[0]=='y' && hasVowel(z+1) ){
       
   399     z[0] = 'i';
       
   400   }
       
   401 
       
   402   /* Step 2 */
       
   403   switch( z[1] ){
       
   404    case 'a':
       
   405      stem(&z, "lanoita", "ate", m_gt_0) ||
       
   406      stem(&z, "lanoit", "tion", m_gt_0);
       
   407      break;
       
   408    case 'c':
       
   409      stem(&z, "icne", "ence", m_gt_0) ||
       
   410      stem(&z, "icna", "ance", m_gt_0);
       
   411      break;
       
   412    case 'e':
       
   413      stem(&z, "rezi", "ize", m_gt_0);
       
   414      break;
       
   415    case 'g':
       
   416      stem(&z, "igol", "log", m_gt_0);
       
   417      break;
       
   418    case 'l':
       
   419      stem(&z, "ilb", "ble", m_gt_0) ||
       
   420      stem(&z, "illa", "al", m_gt_0) ||
       
   421      stem(&z, "iltne", "ent", m_gt_0) ||
       
   422      stem(&z, "ile", "e", m_gt_0) ||
       
   423      stem(&z, "ilsuo", "ous", m_gt_0);
       
   424      break;
       
   425    case 'o':
       
   426      stem(&z, "noitazi", "ize", m_gt_0) ||
       
   427      stem(&z, "noita", "ate", m_gt_0) ||
       
   428      stem(&z, "rota", "ate", m_gt_0);
       
   429      break;
       
   430    case 's':
       
   431      stem(&z, "msila", "al", m_gt_0) ||
       
   432      stem(&z, "ssenevi", "ive", m_gt_0) ||
       
   433      stem(&z, "ssenluf", "ful", m_gt_0) ||
       
   434      stem(&z, "ssensuo", "ous", m_gt_0);
       
   435      break;
       
   436    case 't':
       
   437      stem(&z, "itila", "al", m_gt_0) ||
       
   438      stem(&z, "itivi", "ive", m_gt_0) ||
       
   439      stem(&z, "itilib", "ble", m_gt_0);
       
   440      break;
       
   441   }
       
   442 
       
   443   /* Step 3 */
       
   444   switch( z[0] ){
       
   445    case 'e':
       
   446      stem(&z, "etaci", "ic", m_gt_0) ||
       
   447      stem(&z, "evita", "", m_gt_0)   ||
       
   448      stem(&z, "ezila", "al", m_gt_0);
       
   449      break;
       
   450    case 'i':
       
   451      stem(&z, "itici", "ic", m_gt_0);
       
   452      break;
       
   453    case 'l':
       
   454      stem(&z, "laci", "ic", m_gt_0) ||
       
   455      stem(&z, "luf", "", m_gt_0);
       
   456      break;
       
   457    case 's':
       
   458      stem(&z, "ssen", "", m_gt_0);
       
   459      break;
       
   460   }
       
   461 
       
   462   /* Step 4 */
       
   463   switch( z[1] ){
       
   464    case 'a':
       
   465      if( z[0]=='l' && m_gt_1(z+2) ){
       
   466        z += 2;
       
   467      }
       
   468      break;
       
   469    case 'c':
       
   470      if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e')  && m_gt_1(z+4)  ){
       
   471        z += 4;
       
   472      }
       
   473      break;
       
   474    case 'e':
       
   475      if( z[0]=='r' && m_gt_1(z+2) ){
       
   476        z += 2;
       
   477      }
       
   478      break;
       
   479    case 'i':
       
   480      if( z[0]=='c' && m_gt_1(z+2) ){
       
   481        z += 2;
       
   482      }
       
   483      break;
       
   484    case 'l':
       
   485      if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
       
   486        z += 4;
       
   487      }
       
   488      break;
       
   489    case 'n':
       
   490      if( z[0]=='t' ){
       
   491        if( z[2]=='a' ){
       
   492          if( m_gt_1(z+3) ){
       
   493            z += 3;
       
   494          }
       
   495        }else if( z[2]=='e' ){
       
   496          stem(&z, "tneme", "", m_gt_1) ||
       
   497          stem(&z, "tnem", "", m_gt_1) ||
       
   498          stem(&z, "tne", "", m_gt_1);
       
   499        }
       
   500      }
       
   501      break;
       
   502    case 'o':
       
   503      if( z[0]=='u' ){
       
   504        if( m_gt_1(z+2) ){
       
   505          z += 2;
       
   506        }
       
   507      }else if( z[3]=='s' || z[3]=='t' ){
       
   508        stem(&z, "noi", "", m_gt_1);
       
   509      }
       
   510      break;
       
   511    case 's':
       
   512      if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
       
   513        z += 3;
       
   514      }
       
   515      break;
       
   516    case 't':
       
   517      stem(&z, "eta", "", m_gt_1) ||
       
   518      stem(&z, "iti", "", m_gt_1);
       
   519      break;
       
   520    case 'u':
       
   521      if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
       
   522        z += 3;
       
   523      }
       
   524      break;
       
   525    case 'v':
       
   526    case 'z':
       
   527      if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
       
   528        z += 3;
       
   529      }
       
   530      break;
       
   531   }
       
   532 
       
   533   /* Step 5a */
       
   534   if( z[0]=='e' ){
       
   535     if( m_gt_1(z+1) ){
       
   536       z++;
       
   537     }else if( m_eq_1(z+1) && !star_oh(z+1) ){
       
   538       z++;
       
   539     }
       
   540   }
       
   541 
       
   542   /* Step 5b */
       
   543   if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
       
   544     z++;
       
   545   }
       
   546 
       
   547   /* z[] is now the stemmed word in reverse order.  Flip it back
       
   548   ** around into forward order and return.
       
   549   */
       
   550   *pnOut = i = strlen(z);
       
   551   zOut[i] = 0;
       
   552   while( *z ){
       
   553     zOut[--i] = *(z++);
       
   554   }
       
   555 }
       
   556 
       
   557 /*
       
   558 ** Characters that can be part of a token.  We assume any character
       
   559 ** whose value is greater than 0x80 (any UTF character) can be
       
   560 ** part of a token.  In other words, delimiters all must have
       
   561 ** values of 0x7f or lower.
       
   562 */
       
   563 static const char isIdChar[] = {
       
   564 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
       
   565     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,  /* 3x */
       
   566     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 4x */
       
   567     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,  /* 5x */
       
   568     0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  /* 6x */
       
   569     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,  /* 7x */
       
   570 };
       
   571 #define idChar(C)  (((ch=C)&0x80)!=0 || (ch>0x2f && isIdChar[ch-0x30]))
       
   572 #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !isIdChar[ch-0x30]))
       
   573 
       
   574 /*
       
   575 ** Extract the next token from a tokenization cursor.  The cursor must
       
   576 ** have been opened by a prior call to porterOpen().
       
   577 */
       
   578 static int porterNext(
       
   579   sqlite3_tokenizer_cursor *pCursor,  /* Cursor returned by porterOpen */
       
   580   const char **pzToken,               /* OUT: *pzToken is the token text */
       
   581   int *pnBytes,                       /* OUT: Number of bytes in token */
       
   582   int *piStartOffset,                 /* OUT: Starting offset of token */
       
   583   int *piEndOffset,                   /* OUT: Ending offset of token */
       
   584   int *piPosition                     /* OUT: Position integer of token */
       
   585 ){
       
   586   porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
       
   587   const char *z = c->zInput;
       
   588 
       
   589   while( c->iOffset<c->nInput ){
       
   590     int iStartOffset, ch;
       
   591 
       
   592     /* Scan past delimiter characters */
       
   593     while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
       
   594       c->iOffset++;
       
   595     }
       
   596 
       
   597     /* Count non-delimiter characters. */
       
   598     iStartOffset = c->iOffset;
       
   599     while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
       
   600       c->iOffset++;
       
   601     }
       
   602 
       
   603     if( c->iOffset>iStartOffset ){
       
   604       int n = c->iOffset-iStartOffset;
       
   605       if( n>c->nAllocated ){
       
   606         c->nAllocated = n+20;
       
   607         c->zToken = realloc(c->zToken, c->nAllocated);
       
   608         if( c->zToken==NULL ) return SQLITE_NOMEM;
       
   609       }
       
   610       porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
       
   611       *pzToken = c->zToken;
       
   612       *piStartOffset = iStartOffset;
       
   613       *piEndOffset = c->iOffset;
       
   614       *piPosition = c->iToken++;
       
   615       return SQLITE_OK;
       
   616     }
       
   617   }
       
   618   return SQLITE_DONE;
       
   619 }
       
   620 
       
   621 /*
       
   622 ** The set of routines that implement the porter-stemmer tokenizer
       
   623 */
       
   624 static const sqlite3_tokenizer_module porterTokenizerModule = {
       
   625   0,
       
   626   porterCreate,
       
   627   porterDestroy,
       
   628   porterOpen,
       
   629   porterClose,
       
   630   porterNext,
       
   631 };
       
   632 
       
   633 /*
       
   634 ** Allocate a new porter tokenizer.  Return a pointer to the new
       
   635 ** tokenizer in *ppModule
       
   636 */
       
   637 void sqlite3Fts1PorterTokenizerModule(
       
   638   sqlite3_tokenizer_module const**ppModule
       
   639 ){
       
   640   *ppModule = &porterTokenizerModule;
       
   641 }
       
   642 
       
   643 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */