|
1 /* |
|
2 ** 2007 October 14 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This file contains the C functions that implement a memory |
|
13 ** allocation subsystem for use by SQLite. |
|
14 ** |
|
15 ** This version of the memory allocation subsystem omits all |
|
16 ** use of malloc(). The SQLite user supplies a block of memory |
|
17 ** before calling sqlite3_initialize() from which allocations |
|
18 ** are made and returned by the xMalloc() and xRealloc() |
|
19 ** implementations. Once sqlite3_initialize() has been called, |
|
20 ** the amount of memory available to SQLite is fixed and cannot |
|
21 ** be changed. |
|
22 ** |
|
23 ** This version of the memory allocation subsystem is included |
|
24 ** in the build only if SQLITE_ENABLE_MEMSYS3 is defined. |
|
25 ** |
|
26 ** $Id: mem3.c,v 1.23 2008/09/02 17:52:52 danielk1977 Exp $ |
|
27 */ |
|
28 #include "sqliteInt.h" |
|
29 |
|
30 /* |
|
31 ** This version of the memory allocator is only built into the library |
|
32 ** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not |
|
33 ** mean that the library will use a memory-pool by default, just that |
|
34 ** it is available. The mempool allocator is activated by calling |
|
35 ** sqlite3_config(). |
|
36 */ |
|
37 #ifdef SQLITE_ENABLE_MEMSYS3 |
|
38 |
|
39 /* |
|
40 ** Maximum size (in Mem3Blocks) of a "small" chunk. |
|
41 */ |
|
42 #define MX_SMALL 10 |
|
43 |
|
44 |
|
45 /* |
|
46 ** Number of freelist hash slots |
|
47 */ |
|
48 #define N_HASH 61 |
|
49 |
|
50 /* |
|
51 ** A memory allocation (also called a "chunk") consists of two or |
|
52 ** more blocks where each block is 8 bytes. The first 8 bytes are |
|
53 ** a header that is not returned to the user. |
|
54 ** |
|
55 ** A chunk is two or more blocks that is either checked out or |
|
56 ** free. The first block has format u.hdr. u.hdr.size4x is 4 times the |
|
57 ** size of the allocation in blocks if the allocation is free. |
|
58 ** The u.hdr.size4x&1 bit is true if the chunk is checked out and |
|
59 ** false if the chunk is on the freelist. The u.hdr.size4x&2 bit |
|
60 ** is true if the previous chunk is checked out and false if the |
|
61 ** previous chunk is free. The u.hdr.prevSize field is the size of |
|
62 ** the previous chunk in blocks if the previous chunk is on the |
|
63 ** freelist. If the previous chunk is checked out, then |
|
64 ** u.hdr.prevSize can be part of the data for that chunk and should |
|
65 ** not be read or written. |
|
66 ** |
|
67 ** We often identify a chunk by its index in mem3.aPool[]. When |
|
68 ** this is done, the chunk index refers to the second block of |
|
69 ** the chunk. In this way, the first chunk has an index of 1. |
|
70 ** A chunk index of 0 means "no such chunk" and is the equivalent |
|
71 ** of a NULL pointer. |
|
72 ** |
|
73 ** The second block of free chunks is of the form u.list. The |
|
74 ** two fields form a double-linked list of chunks of related sizes. |
|
75 ** Pointers to the head of the list are stored in mem3.aiSmall[] |
|
76 ** for smaller chunks and mem3.aiHash[] for larger chunks. |
|
77 ** |
|
78 ** The second block of a chunk is user data if the chunk is checked |
|
79 ** out. If a chunk is checked out, the user data may extend into |
|
80 ** the u.hdr.prevSize value of the following chunk. |
|
81 */ |
|
82 typedef struct Mem3Block Mem3Block; |
|
83 struct Mem3Block { |
|
84 union { |
|
85 struct { |
|
86 u32 prevSize; /* Size of previous chunk in Mem3Block elements */ |
|
87 u32 size4x; /* 4x the size of current chunk in Mem3Block elements */ |
|
88 } hdr; |
|
89 struct { |
|
90 u32 next; /* Index in mem3.aPool[] of next free chunk */ |
|
91 u32 prev; /* Index in mem3.aPool[] of previous free chunk */ |
|
92 } list; |
|
93 } u; |
|
94 }; |
|
95 |
|
96 /* |
|
97 ** All of the static variables used by this module are collected |
|
98 ** into a single structure named "mem3". This is to keep the |
|
99 ** static variables organized and to reduce namespace pollution |
|
100 ** when this module is combined with other in the amalgamation. |
|
101 */ |
|
102 static SQLITE_WSD struct Mem3Global { |
|
103 /* |
|
104 ** Memory available for allocation. nPool is the size of the array |
|
105 ** (in Mem3Blocks) pointed to by aPool less 2. |
|
106 */ |
|
107 u32 nPool; |
|
108 Mem3Block *aPool; |
|
109 |
|
110 /* |
|
111 ** True if we are evaluating an out-of-memory callback. |
|
112 */ |
|
113 int alarmBusy; |
|
114 |
|
115 /* |
|
116 ** Mutex to control access to the memory allocation subsystem. |
|
117 */ |
|
118 sqlite3_mutex *mutex; |
|
119 |
|
120 /* |
|
121 ** The minimum amount of free space that we have seen. |
|
122 */ |
|
123 u32 mnMaster; |
|
124 |
|
125 /* |
|
126 ** iMaster is the index of the master chunk. Most new allocations |
|
127 ** occur off of this chunk. szMaster is the size (in Mem3Blocks) |
|
128 ** of the current master. iMaster is 0 if there is not master chunk. |
|
129 ** The master chunk is not in either the aiHash[] or aiSmall[]. |
|
130 */ |
|
131 u32 iMaster; |
|
132 u32 szMaster; |
|
133 |
|
134 /* |
|
135 ** Array of lists of free blocks according to the block size |
|
136 ** for smaller chunks, or a hash on the block size for larger |
|
137 ** chunks. |
|
138 */ |
|
139 u32 aiSmall[MX_SMALL-1]; /* For sizes 2 through MX_SMALL, inclusive */ |
|
140 u32 aiHash[N_HASH]; /* For sizes MX_SMALL+1 and larger */ |
|
141 } mem3 = { 97535575 }; |
|
142 |
|
143 #define mem3 GLOBAL(struct Mem3Global, mem3) |
|
144 |
|
145 /* |
|
146 ** Unlink the chunk at mem3.aPool[i] from list it is currently |
|
147 ** on. *pRoot is the list that i is a member of. |
|
148 */ |
|
149 static void memsys3UnlinkFromList(u32 i, u32 *pRoot){ |
|
150 u32 next = mem3.aPool[i].u.list.next; |
|
151 u32 prev = mem3.aPool[i].u.list.prev; |
|
152 assert( sqlite3_mutex_held(mem3.mutex) ); |
|
153 if( prev==0 ){ |
|
154 *pRoot = next; |
|
155 }else{ |
|
156 mem3.aPool[prev].u.list.next = next; |
|
157 } |
|
158 if( next ){ |
|
159 mem3.aPool[next].u.list.prev = prev; |
|
160 } |
|
161 mem3.aPool[i].u.list.next = 0; |
|
162 mem3.aPool[i].u.list.prev = 0; |
|
163 } |
|
164 |
|
165 /* |
|
166 ** Unlink the chunk at index i from |
|
167 ** whatever list is currently a member of. |
|
168 */ |
|
169 static void memsys3Unlink(u32 i){ |
|
170 u32 size, hash; |
|
171 assert( sqlite3_mutex_held(mem3.mutex) ); |
|
172 assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); |
|
173 assert( i>=1 ); |
|
174 size = mem3.aPool[i-1].u.hdr.size4x/4; |
|
175 assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); |
|
176 assert( size>=2 ); |
|
177 if( size <= MX_SMALL ){ |
|
178 memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]); |
|
179 }else{ |
|
180 hash = size % N_HASH; |
|
181 memsys3UnlinkFromList(i, &mem3.aiHash[hash]); |
|
182 } |
|
183 } |
|
184 |
|
185 /* |
|
186 ** Link the chunk at mem3.aPool[i] so that is on the list rooted |
|
187 ** at *pRoot. |
|
188 */ |
|
189 static void memsys3LinkIntoList(u32 i, u32 *pRoot){ |
|
190 assert( sqlite3_mutex_held(mem3.mutex) ); |
|
191 mem3.aPool[i].u.list.next = *pRoot; |
|
192 mem3.aPool[i].u.list.prev = 0; |
|
193 if( *pRoot ){ |
|
194 mem3.aPool[*pRoot].u.list.prev = i; |
|
195 } |
|
196 *pRoot = i; |
|
197 } |
|
198 |
|
199 /* |
|
200 ** Link the chunk at index i into either the appropriate |
|
201 ** small chunk list, or into the large chunk hash table. |
|
202 */ |
|
203 static void memsys3Link(u32 i){ |
|
204 u32 size, hash; |
|
205 assert( sqlite3_mutex_held(mem3.mutex) ); |
|
206 assert( i>=1 ); |
|
207 assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 ); |
|
208 size = mem3.aPool[i-1].u.hdr.size4x/4; |
|
209 assert( size==mem3.aPool[i+size-1].u.hdr.prevSize ); |
|
210 assert( size>=2 ); |
|
211 if( size <= MX_SMALL ){ |
|
212 memsys3LinkIntoList(i, &mem3.aiSmall[size-2]); |
|
213 }else{ |
|
214 hash = size % N_HASH; |
|
215 memsys3LinkIntoList(i, &mem3.aiHash[hash]); |
|
216 } |
|
217 } |
|
218 |
|
219 /* |
|
220 ** If the STATIC_MEM mutex is not already held, obtain it now. The mutex |
|
221 ** will already be held (obtained by code in malloc.c) if |
|
222 ** sqlite3GlobalConfig.bMemStat is true. |
|
223 */ |
|
224 static void memsys3Enter(void){ |
|
225 if( sqlite3GlobalConfig.bMemstat==0 && mem3.mutex==0 ){ |
|
226 mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); |
|
227 } |
|
228 sqlite3_mutex_enter(mem3.mutex); |
|
229 } |
|
230 static void memsys3Leave(void){ |
|
231 sqlite3_mutex_leave(mem3.mutex); |
|
232 } |
|
233 |
|
234 /* |
|
235 ** Called when we are unable to satisfy an allocation of nBytes. |
|
236 */ |
|
237 static void memsys3OutOfMemory(int nByte){ |
|
238 if( !mem3.alarmBusy ){ |
|
239 mem3.alarmBusy = 1; |
|
240 assert( sqlite3_mutex_held(mem3.mutex) ); |
|
241 sqlite3_mutex_leave(mem3.mutex); |
|
242 sqlite3_release_memory(nByte); |
|
243 sqlite3_mutex_enter(mem3.mutex); |
|
244 mem3.alarmBusy = 0; |
|
245 } |
|
246 } |
|
247 |
|
248 |
|
249 /* |
|
250 ** Chunk i is a free chunk that has been unlinked. Adjust its |
|
251 ** size parameters for check-out and return a pointer to the |
|
252 ** user portion of the chunk. |
|
253 */ |
|
254 static void *memsys3Checkout(u32 i, int nBlock){ |
|
255 u32 x; |
|
256 assert( sqlite3_mutex_held(mem3.mutex) ); |
|
257 assert( i>=1 ); |
|
258 assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ); |
|
259 assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock ); |
|
260 x = mem3.aPool[i-1].u.hdr.size4x; |
|
261 mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2); |
|
262 mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock; |
|
263 mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2; |
|
264 return &mem3.aPool[i]; |
|
265 } |
|
266 |
|
267 /* |
|
268 ** Carve a piece off of the end of the mem3.iMaster free chunk. |
|
269 ** Return a pointer to the new allocation. Or, if the master chunk |
|
270 ** is not large enough, return 0. |
|
271 */ |
|
272 static void *memsys3FromMaster(int nBlock){ |
|
273 assert( sqlite3_mutex_held(mem3.mutex) ); |
|
274 assert( mem3.szMaster>=nBlock ); |
|
275 if( nBlock>=mem3.szMaster-1 ){ |
|
276 /* Use the entire master */ |
|
277 void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster); |
|
278 mem3.iMaster = 0; |
|
279 mem3.szMaster = 0; |
|
280 mem3.mnMaster = 0; |
|
281 return p; |
|
282 }else{ |
|
283 /* Split the master block. Return the tail. */ |
|
284 u32 newi, x; |
|
285 newi = mem3.iMaster + mem3.szMaster - nBlock; |
|
286 assert( newi > mem3.iMaster+1 ); |
|
287 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock; |
|
288 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2; |
|
289 mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1; |
|
290 mem3.szMaster -= nBlock; |
|
291 mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster; |
|
292 x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; |
|
293 mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; |
|
294 if( mem3.szMaster < mem3.mnMaster ){ |
|
295 mem3.mnMaster = mem3.szMaster; |
|
296 } |
|
297 return (void*)&mem3.aPool[newi]; |
|
298 } |
|
299 } |
|
300 |
|
301 /* |
|
302 ** *pRoot is the head of a list of free chunks of the same size |
|
303 ** or same size hash. In other words, *pRoot is an entry in either |
|
304 ** mem3.aiSmall[] or mem3.aiHash[]. |
|
305 ** |
|
306 ** This routine examines all entries on the given list and tries |
|
307 ** to coalesce each entries with adjacent free chunks. |
|
308 ** |
|
309 ** If it sees a chunk that is larger than mem3.iMaster, it replaces |
|
310 ** the current mem3.iMaster with the new larger chunk. In order for |
|
311 ** this mem3.iMaster replacement to work, the master chunk must be |
|
312 ** linked into the hash tables. That is not the normal state of |
|
313 ** affairs, of course. The calling routine must link the master |
|
314 ** chunk before invoking this routine, then must unlink the (possibly |
|
315 ** changed) master chunk once this routine has finished. |
|
316 */ |
|
317 static void memsys3Merge(u32 *pRoot){ |
|
318 u32 iNext, prev, size, i, x; |
|
319 |
|
320 assert( sqlite3_mutex_held(mem3.mutex) ); |
|
321 for(i=*pRoot; i>0; i=iNext){ |
|
322 iNext = mem3.aPool[i].u.list.next; |
|
323 size = mem3.aPool[i-1].u.hdr.size4x; |
|
324 assert( (size&1)==0 ); |
|
325 if( (size&2)==0 ){ |
|
326 memsys3UnlinkFromList(i, pRoot); |
|
327 assert( i > mem3.aPool[i-1].u.hdr.prevSize ); |
|
328 prev = i - mem3.aPool[i-1].u.hdr.prevSize; |
|
329 if( prev==iNext ){ |
|
330 iNext = mem3.aPool[prev].u.list.next; |
|
331 } |
|
332 memsys3Unlink(prev); |
|
333 size = i + size/4 - prev; |
|
334 x = mem3.aPool[prev-1].u.hdr.size4x & 2; |
|
335 mem3.aPool[prev-1].u.hdr.size4x = size*4 | x; |
|
336 mem3.aPool[prev+size-1].u.hdr.prevSize = size; |
|
337 memsys3Link(prev); |
|
338 i = prev; |
|
339 }else{ |
|
340 size /= 4; |
|
341 } |
|
342 if( size>mem3.szMaster ){ |
|
343 mem3.iMaster = i; |
|
344 mem3.szMaster = size; |
|
345 } |
|
346 } |
|
347 } |
|
348 |
|
349 /* |
|
350 ** Return a block of memory of at least nBytes in size. |
|
351 ** Return NULL if unable. |
|
352 ** |
|
353 ** This function assumes that the necessary mutexes, if any, are |
|
354 ** already held by the caller. Hence "Unsafe". |
|
355 */ |
|
356 static void *memsys3MallocUnsafe(int nByte){ |
|
357 u32 i; |
|
358 int nBlock; |
|
359 int toFree; |
|
360 |
|
361 assert( sqlite3_mutex_held(mem3.mutex) ); |
|
362 assert( sizeof(Mem3Block)==8 ); |
|
363 if( nByte<=12 ){ |
|
364 nBlock = 2; |
|
365 }else{ |
|
366 nBlock = (nByte + 11)/8; |
|
367 } |
|
368 assert( nBlock>=2 ); |
|
369 |
|
370 /* STEP 1: |
|
371 ** Look for an entry of the correct size in either the small |
|
372 ** chunk table or in the large chunk hash table. This is |
|
373 ** successful most of the time (about 9 times out of 10). |
|
374 */ |
|
375 if( nBlock <= MX_SMALL ){ |
|
376 i = mem3.aiSmall[nBlock-2]; |
|
377 if( i>0 ){ |
|
378 memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]); |
|
379 return memsys3Checkout(i, nBlock); |
|
380 } |
|
381 }else{ |
|
382 int hash = nBlock % N_HASH; |
|
383 for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){ |
|
384 if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){ |
|
385 memsys3UnlinkFromList(i, &mem3.aiHash[hash]); |
|
386 return memsys3Checkout(i, nBlock); |
|
387 } |
|
388 } |
|
389 } |
|
390 |
|
391 /* STEP 2: |
|
392 ** Try to satisfy the allocation by carving a piece off of the end |
|
393 ** of the master chunk. This step usually works if step 1 fails. |
|
394 */ |
|
395 if( mem3.szMaster>=nBlock ){ |
|
396 return memsys3FromMaster(nBlock); |
|
397 } |
|
398 |
|
399 |
|
400 /* STEP 3: |
|
401 ** Loop through the entire memory pool. Coalesce adjacent free |
|
402 ** chunks. Recompute the master chunk as the largest free chunk. |
|
403 ** Then try again to satisfy the allocation by carving a piece off |
|
404 ** of the end of the master chunk. This step happens very |
|
405 ** rarely (we hope!) |
|
406 */ |
|
407 for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){ |
|
408 memsys3OutOfMemory(toFree); |
|
409 if( mem3.iMaster ){ |
|
410 memsys3Link(mem3.iMaster); |
|
411 mem3.iMaster = 0; |
|
412 mem3.szMaster = 0; |
|
413 } |
|
414 for(i=0; i<N_HASH; i++){ |
|
415 memsys3Merge(&mem3.aiHash[i]); |
|
416 } |
|
417 for(i=0; i<MX_SMALL-1; i++){ |
|
418 memsys3Merge(&mem3.aiSmall[i]); |
|
419 } |
|
420 if( mem3.szMaster ){ |
|
421 memsys3Unlink(mem3.iMaster); |
|
422 if( mem3.szMaster>=nBlock ){ |
|
423 return memsys3FromMaster(nBlock); |
|
424 } |
|
425 } |
|
426 } |
|
427 |
|
428 /* If none of the above worked, then we fail. */ |
|
429 return 0; |
|
430 } |
|
431 |
|
432 /* |
|
433 ** Free an outstanding memory allocation. |
|
434 ** |
|
435 ** This function assumes that the necessary mutexes, if any, are |
|
436 ** already held by the caller. Hence "Unsafe". |
|
437 */ |
|
438 void memsys3FreeUnsafe(void *pOld){ |
|
439 Mem3Block *p = (Mem3Block*)pOld; |
|
440 int i; |
|
441 u32 size, x; |
|
442 assert( sqlite3_mutex_held(mem3.mutex) ); |
|
443 assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] ); |
|
444 i = p - mem3.aPool; |
|
445 assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 ); |
|
446 size = mem3.aPool[i-1].u.hdr.size4x/4; |
|
447 assert( i+size<=mem3.nPool+1 ); |
|
448 mem3.aPool[i-1].u.hdr.size4x &= ~1; |
|
449 mem3.aPool[i+size-1].u.hdr.prevSize = size; |
|
450 mem3.aPool[i+size-1].u.hdr.size4x &= ~2; |
|
451 memsys3Link(i); |
|
452 |
|
453 /* Try to expand the master using the newly freed chunk */ |
|
454 if( mem3.iMaster ){ |
|
455 while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){ |
|
456 size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize; |
|
457 mem3.iMaster -= size; |
|
458 mem3.szMaster += size; |
|
459 memsys3Unlink(mem3.iMaster); |
|
460 x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; |
|
461 mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; |
|
462 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; |
|
463 } |
|
464 x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2; |
|
465 while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){ |
|
466 memsys3Unlink(mem3.iMaster+mem3.szMaster); |
|
467 mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4; |
|
468 mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x; |
|
469 mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster; |
|
470 } |
|
471 } |
|
472 } |
|
473 |
|
474 /* |
|
475 ** Return the size of an outstanding allocation, in bytes. The |
|
476 ** size returned omits the 8-byte header overhead. This only |
|
477 ** works for chunks that are currently checked out. |
|
478 */ |
|
479 static int memsys3Size(void *p){ |
|
480 Mem3Block *pBlock; |
|
481 if( p==0 ) return 0; |
|
482 pBlock = (Mem3Block*)p; |
|
483 assert( (pBlock[-1].u.hdr.size4x&1)!=0 ); |
|
484 return (pBlock[-1].u.hdr.size4x&~3)*2 - 4; |
|
485 } |
|
486 |
|
487 /* |
|
488 ** Round up a request size to the next valid allocation size. |
|
489 */ |
|
490 static int memsys3Roundup(int n){ |
|
491 if( n<=12 ){ |
|
492 return 12; |
|
493 }else{ |
|
494 return ((n+11)&~7) - 4; |
|
495 } |
|
496 } |
|
497 |
|
498 /* |
|
499 ** Allocate nBytes of memory. |
|
500 */ |
|
501 static void *memsys3Malloc(int nBytes){ |
|
502 sqlite3_int64 *p; |
|
503 assert( nBytes>0 ); /* malloc.c filters out 0 byte requests */ |
|
504 memsys3Enter(); |
|
505 p = memsys3MallocUnsafe(nBytes); |
|
506 memsys3Leave(); |
|
507 return (void*)p; |
|
508 } |
|
509 |
|
510 /* |
|
511 ** Free memory. |
|
512 */ |
|
513 void memsys3Free(void *pPrior){ |
|
514 assert( pPrior ); |
|
515 memsys3Enter(); |
|
516 memsys3FreeUnsafe(pPrior); |
|
517 memsys3Leave(); |
|
518 } |
|
519 |
|
520 /* |
|
521 ** Change the size of an existing memory allocation |
|
522 */ |
|
523 void *memsys3Realloc(void *pPrior, int nBytes){ |
|
524 int nOld; |
|
525 void *p; |
|
526 if( pPrior==0 ){ |
|
527 return sqlite3_malloc(nBytes); |
|
528 } |
|
529 if( nBytes<=0 ){ |
|
530 sqlite3_free(pPrior); |
|
531 return 0; |
|
532 } |
|
533 nOld = memsys3Size(pPrior); |
|
534 if( nBytes<=nOld && nBytes>=nOld-128 ){ |
|
535 return pPrior; |
|
536 } |
|
537 memsys3Enter(); |
|
538 p = memsys3MallocUnsafe(nBytes); |
|
539 if( p ){ |
|
540 if( nOld<nBytes ){ |
|
541 memcpy(p, pPrior, nOld); |
|
542 }else{ |
|
543 memcpy(p, pPrior, nBytes); |
|
544 } |
|
545 memsys3FreeUnsafe(pPrior); |
|
546 } |
|
547 memsys3Leave(); |
|
548 return p; |
|
549 } |
|
550 |
|
551 /* |
|
552 ** Initialize this module. |
|
553 */ |
|
554 static int memsys3Init(void *NotUsed){ |
|
555 if( !sqlite3GlobalConfig.pHeap ){ |
|
556 return SQLITE_ERROR; |
|
557 } |
|
558 |
|
559 /* Store a pointer to the memory block in global structure mem3. */ |
|
560 assert( sizeof(Mem3Block)==8 ); |
|
561 mem3.aPool = (Mem3Block *)sqlite3GlobalConfig.pHeap; |
|
562 mem3.nPool = (sqlite3GlobalConfig.nHeap / sizeof(Mem3Block)) - 2; |
|
563 |
|
564 /* Initialize the master block. */ |
|
565 mem3.szMaster = mem3.nPool; |
|
566 mem3.mnMaster = mem3.szMaster; |
|
567 mem3.iMaster = 1; |
|
568 mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2; |
|
569 mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool; |
|
570 mem3.aPool[mem3.nPool].u.hdr.size4x = 1; |
|
571 |
|
572 return SQLITE_OK; |
|
573 } |
|
574 |
|
575 /* |
|
576 ** Deinitialize this module. |
|
577 */ |
|
578 static void memsys3Shutdown(void *NotUsed){ |
|
579 return; |
|
580 } |
|
581 |
|
582 |
|
583 |
|
584 /* |
|
585 ** Open the file indicated and write a log of all unfreed memory |
|
586 ** allocations into that log. |
|
587 */ |
|
588 void sqlite3Memsys3Dump(const char *zFilename){ |
|
589 #ifdef SQLITE_DEBUG |
|
590 FILE *out; |
|
591 int i, j; |
|
592 u32 size; |
|
593 if( zFilename==0 || zFilename[0]==0 ){ |
|
594 out = stdout; |
|
595 }else{ |
|
596 out = fopen(zFilename, "w"); |
|
597 if( out==0 ){ |
|
598 fprintf(stderr, "** Unable to output memory debug output log: %s **\n", |
|
599 zFilename); |
|
600 return; |
|
601 } |
|
602 } |
|
603 memsys3Enter(); |
|
604 fprintf(out, "CHUNKS:\n"); |
|
605 for(i=1; i<=mem3.nPool; i+=size/4){ |
|
606 size = mem3.aPool[i-1].u.hdr.size4x; |
|
607 if( size/4<=1 ){ |
|
608 fprintf(out, "%p size error\n", &mem3.aPool[i]); |
|
609 assert( 0 ); |
|
610 break; |
|
611 } |
|
612 if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){ |
|
613 fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]); |
|
614 assert( 0 ); |
|
615 break; |
|
616 } |
|
617 if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){ |
|
618 fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]); |
|
619 assert( 0 ); |
|
620 break; |
|
621 } |
|
622 if( size&1 ){ |
|
623 fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8); |
|
624 }else{ |
|
625 fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8, |
|
626 i==mem3.iMaster ? " **master**" : ""); |
|
627 } |
|
628 } |
|
629 for(i=0; i<MX_SMALL-1; i++){ |
|
630 if( mem3.aiSmall[i]==0 ) continue; |
|
631 fprintf(out, "small(%2d):", i); |
|
632 for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){ |
|
633 fprintf(out, " %p(%d)", &mem3.aPool[j], |
|
634 (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); |
|
635 } |
|
636 fprintf(out, "\n"); |
|
637 } |
|
638 for(i=0; i<N_HASH; i++){ |
|
639 if( mem3.aiHash[i]==0 ) continue; |
|
640 fprintf(out, "hash(%2d):", i); |
|
641 for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){ |
|
642 fprintf(out, " %p(%d)", &mem3.aPool[j], |
|
643 (mem3.aPool[j-1].u.hdr.size4x/4)*8-8); |
|
644 } |
|
645 fprintf(out, "\n"); |
|
646 } |
|
647 fprintf(out, "master=%d\n", mem3.iMaster); |
|
648 fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8); |
|
649 fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8); |
|
650 sqlite3_mutex_leave(mem3.mutex); |
|
651 if( out==stdout ){ |
|
652 fflush(stdout); |
|
653 }else{ |
|
654 fclose(out); |
|
655 } |
|
656 #endif |
|
657 } |
|
658 |
|
659 /* |
|
660 ** This routine is the only routine in this file with external |
|
661 ** linkage. |
|
662 ** |
|
663 ** Populate the low-level memory allocation function pointers in |
|
664 ** sqlite3GlobalConfig.m with pointers to the routines in this file. The |
|
665 ** arguments specify the block of memory to manage. |
|
666 ** |
|
667 ** This routine is only called by sqlite3_config(), and therefore |
|
668 ** is not required to be threadsafe (it is not). |
|
669 */ |
|
670 const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){ |
|
671 static const sqlite3_mem_methods mempoolMethods = { |
|
672 memsys3Malloc, |
|
673 memsys3Free, |
|
674 memsys3Realloc, |
|
675 memsys3Size, |
|
676 memsys3Roundup, |
|
677 memsys3Init, |
|
678 memsys3Shutdown, |
|
679 0 |
|
680 }; |
|
681 return &mempoolMethods; |
|
682 } |
|
683 |
|
684 #endif /* SQLITE_ENABLE_MEMSYS3 */ |