|
1 /* |
|
2 ** 2001 September 15 |
|
3 ** |
|
4 ** The author disclaims copyright to this source code. In place of |
|
5 ** a legal notice, here is a blessing: |
|
6 ** |
|
7 ** May you do good and not evil. |
|
8 ** May you find forgiveness for yourself and forgive others. |
|
9 ** May you share freely, never taking more than you give. |
|
10 ** |
|
11 ************************************************************************* |
|
12 ** This is the implementation of the page cache subsystem or "pager". |
|
13 ** |
|
14 ** The pager is used to access a database disk file. It implements |
|
15 ** atomic commit and rollback through the use of a journal file that |
|
16 ** is separate from the database file. The pager also implements file |
|
17 ** locking to prevent two processes from writing the same database |
|
18 ** file simultaneously, or one process from reading the database while |
|
19 ** another is writing. |
|
20 ** |
|
21 ** @(#) $Id: pager.c,v 1.496 2008/09/29 11:49:48 danielk1977 Exp $ |
|
22 */ |
|
23 #ifndef SQLITE_OMIT_DISKIO |
|
24 #include "sqliteInt.h" |
|
25 |
|
26 /* |
|
27 ** Macros for troubleshooting. Normally turned off |
|
28 */ |
|
29 #if 0 |
|
30 #define sqlite3DebugPrintf printf |
|
31 #define PAGERTRACE1(X) sqlite3DebugPrintf(X) |
|
32 #define PAGERTRACE2(X,Y) sqlite3DebugPrintf(X,Y) |
|
33 #define PAGERTRACE3(X,Y,Z) sqlite3DebugPrintf(X,Y,Z) |
|
34 #define PAGERTRACE4(X,Y,Z,W) sqlite3DebugPrintf(X,Y,Z,W) |
|
35 #define PAGERTRACE5(X,Y,Z,W,V) sqlite3DebugPrintf(X,Y,Z,W,V) |
|
36 #else |
|
37 #define PAGERTRACE1(X) |
|
38 #define PAGERTRACE2(X,Y) |
|
39 #define PAGERTRACE3(X,Y,Z) |
|
40 #define PAGERTRACE4(X,Y,Z,W) |
|
41 #define PAGERTRACE5(X,Y,Z,W,V) |
|
42 #endif |
|
43 |
|
44 /* |
|
45 ** The following two macros are used within the PAGERTRACEX() macros above |
|
46 ** to print out file-descriptors. |
|
47 ** |
|
48 ** PAGERID() takes a pointer to a Pager struct as its argument. The |
|
49 ** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file |
|
50 ** struct as its argument. |
|
51 */ |
|
52 #define PAGERID(p) ((int)(p->fd)) |
|
53 #define FILEHANDLEID(fd) ((int)fd) |
|
54 |
|
55 /* |
|
56 ** The page cache as a whole is always in one of the following |
|
57 ** states: |
|
58 ** |
|
59 ** PAGER_UNLOCK The page cache is not currently reading or |
|
60 ** writing the database file. There is no |
|
61 ** data held in memory. This is the initial |
|
62 ** state. |
|
63 ** |
|
64 ** PAGER_SHARED The page cache is reading the database. |
|
65 ** Writing is not permitted. There can be |
|
66 ** multiple readers accessing the same database |
|
67 ** file at the same time. |
|
68 ** |
|
69 ** PAGER_RESERVED This process has reserved the database for writing |
|
70 ** but has not yet made any changes. Only one process |
|
71 ** at a time can reserve the database. The original |
|
72 ** database file has not been modified so other |
|
73 ** processes may still be reading the on-disk |
|
74 ** database file. |
|
75 ** |
|
76 ** PAGER_EXCLUSIVE The page cache is writing the database. |
|
77 ** Access is exclusive. No other processes or |
|
78 ** threads can be reading or writing while one |
|
79 ** process is writing. |
|
80 ** |
|
81 ** PAGER_SYNCED The pager moves to this state from PAGER_EXCLUSIVE |
|
82 ** after all dirty pages have been written to the |
|
83 ** database file and the file has been synced to |
|
84 ** disk. All that remains to do is to remove or |
|
85 ** truncate the journal file and the transaction |
|
86 ** will be committed. |
|
87 ** |
|
88 ** The page cache comes up in PAGER_UNLOCK. The first time a |
|
89 ** sqlite3PagerGet() occurs, the state transitions to PAGER_SHARED. |
|
90 ** After all pages have been released using sqlite_page_unref(), |
|
91 ** the state transitions back to PAGER_UNLOCK. The first time |
|
92 ** that sqlite3PagerWrite() is called, the state transitions to |
|
93 ** PAGER_RESERVED. (Note that sqlite3PagerWrite() can only be |
|
94 ** called on an outstanding page which means that the pager must |
|
95 ** be in PAGER_SHARED before it transitions to PAGER_RESERVED.) |
|
96 ** PAGER_RESERVED means that there is an open rollback journal. |
|
97 ** The transition to PAGER_EXCLUSIVE occurs before any changes |
|
98 ** are made to the database file, though writes to the rollback |
|
99 ** journal occurs with just PAGER_RESERVED. After an sqlite3PagerRollback() |
|
100 ** or sqlite3PagerCommitPhaseTwo(), the state can go back to PAGER_SHARED, |
|
101 ** or it can stay at PAGER_EXCLUSIVE if we are in exclusive access mode. |
|
102 */ |
|
103 #define PAGER_UNLOCK 0 |
|
104 #define PAGER_SHARED 1 /* same as SHARED_LOCK */ |
|
105 #define PAGER_RESERVED 2 /* same as RESERVED_LOCK */ |
|
106 #define PAGER_EXCLUSIVE 4 /* same as EXCLUSIVE_LOCK */ |
|
107 #define PAGER_SYNCED 5 |
|
108 |
|
109 /* |
|
110 ** If the SQLITE_BUSY_RESERVED_LOCK macro is set to true at compile-time, |
|
111 ** then failed attempts to get a reserved lock will invoke the busy callback. |
|
112 ** This is off by default. To see why, consider the following scenario: |
|
113 ** |
|
114 ** Suppose thread A already has a shared lock and wants a reserved lock. |
|
115 ** Thread B already has a reserved lock and wants an exclusive lock. If |
|
116 ** both threads are using their busy callbacks, it might be a long time |
|
117 ** be for one of the threads give up and allows the other to proceed. |
|
118 ** But if the thread trying to get the reserved lock gives up quickly |
|
119 ** (if it never invokes its busy callback) then the contention will be |
|
120 ** resolved quickly. |
|
121 */ |
|
122 #ifndef SQLITE_BUSY_RESERVED_LOCK |
|
123 # define SQLITE_BUSY_RESERVED_LOCK 0 |
|
124 #endif |
|
125 |
|
126 /* |
|
127 ** This macro rounds values up so that if the value is an address it |
|
128 ** is guaranteed to be an address that is aligned to an 8-byte boundary. |
|
129 */ |
|
130 #define FORCE_ALIGNMENT(X) (((X)+7)&~7) |
|
131 |
|
132 /* |
|
133 ** A macro used for invoking the codec if there is one |
|
134 */ |
|
135 #ifdef SQLITE_HAS_CODEC |
|
136 # define CODEC1(P,D,N,X) if( P->xCodec!=0 ){ P->xCodec(P->pCodecArg,D,N,X); } |
|
137 # define CODEC2(P,D,N,X) ((char*)(P->xCodec!=0?P->xCodec(P->pCodecArg,D,N,X):D)) |
|
138 #else |
|
139 # define CODEC1(P,D,N,X) /* NO-OP */ |
|
140 # define CODEC2(P,D,N,X) ((char*)D) |
|
141 #endif |
|
142 |
|
143 /* |
|
144 ** A open page cache is an instance of the following structure. |
|
145 ** |
|
146 ** Pager.errCode may be set to SQLITE_IOERR, SQLITE_CORRUPT, or |
|
147 ** or SQLITE_FULL. Once one of the first three errors occurs, it persists |
|
148 ** and is returned as the result of every major pager API call. The |
|
149 ** SQLITE_FULL return code is slightly different. It persists only until the |
|
150 ** next successful rollback is performed on the pager cache. Also, |
|
151 ** SQLITE_FULL does not affect the sqlite3PagerGet() and sqlite3PagerLookup() |
|
152 ** APIs, they may still be used successfully. |
|
153 */ |
|
154 struct Pager { |
|
155 sqlite3_vfs *pVfs; /* OS functions to use for IO */ |
|
156 u8 journalOpen; /* True if journal file descriptors is valid */ |
|
157 u8 journalStarted; /* True if header of journal is synced */ |
|
158 u8 useJournal; /* Use a rollback journal on this file */ |
|
159 u8 noReadlock; /* Do not bother to obtain readlocks */ |
|
160 u8 stmtOpen; /* True if the statement subjournal is open */ |
|
161 u8 stmtInUse; /* True we are in a statement subtransaction */ |
|
162 u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/ |
|
163 u8 noSync; /* Do not sync the journal if true */ |
|
164 u8 fullSync; /* Do extra syncs of the journal for robustness */ |
|
165 u8 sync_flags; /* One of SYNC_NORMAL or SYNC_FULL */ |
|
166 u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */ |
|
167 u8 tempFile; /* zFilename is a temporary file */ |
|
168 u8 readOnly; /* True for a read-only database */ |
|
169 u8 needSync; /* True if an fsync() is needed on the journal */ |
|
170 u8 dirtyCache; /* True if cached pages have changed */ |
|
171 u8 alwaysRollback; /* Disable DontRollback() for all pages */ |
|
172 u8 memDb; /* True to inhibit all file I/O */ |
|
173 u8 setMaster; /* True if a m-j name has been written to jrnl */ |
|
174 u8 doNotSync; /* Boolean. While true, do not spill the cache */ |
|
175 u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */ |
|
176 u8 journalMode; /* On of the PAGER_JOURNALMODE_* values */ |
|
177 u8 dbModified; /* True if there are any changes to the Db */ |
|
178 u8 changeCountDone; /* Set after incrementing the change-counter */ |
|
179 u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */ |
|
180 int errCode; /* One of several kinds of errors */ |
|
181 int dbSize; /* Number of pages in the file */ |
|
182 int origDbSize; /* dbSize before the current change */ |
|
183 int stmtSize; /* Size of database (in pages) at stmt_begin() */ |
|
184 int nRec; /* Number of pages written to the journal */ |
|
185 u32 cksumInit; /* Quasi-random value added to every checksum */ |
|
186 int stmtNRec; /* Number of records in stmt subjournal */ |
|
187 int nExtra; /* Add this many bytes to each in-memory page */ |
|
188 int pageSize; /* Number of bytes in a page */ |
|
189 int nPage; /* Total number of in-memory pages */ |
|
190 int mxPage; /* Maximum number of pages to hold in cache */ |
|
191 Pgno mxPgno; /* Maximum allowed size of the database */ |
|
192 Bitvec *pInJournal; /* One bit for each page in the database file */ |
|
193 Bitvec *pInStmt; /* One bit for each page in the database */ |
|
194 Bitvec *pAlwaysRollback; /* One bit for each page marked always-rollback */ |
|
195 char *zFilename; /* Name of the database file */ |
|
196 char *zJournal; /* Name of the journal file */ |
|
197 char *zDirectory; /* Directory hold database and journal files */ |
|
198 sqlite3_file *fd, *jfd; /* File descriptors for database and journal */ |
|
199 sqlite3_file *stfd; /* File descriptor for the statement subjournal*/ |
|
200 BusyHandler *pBusyHandler; /* Pointer to sqlite.busyHandler */ |
|
201 i64 journalOff; /* Current byte offset in the journal file */ |
|
202 i64 journalHdr; /* Byte offset to previous journal header */ |
|
203 i64 stmtHdrOff; /* First journal header written this statement */ |
|
204 i64 stmtCksum; /* cksumInit when statement was started */ |
|
205 i64 stmtJSize; /* Size of journal at stmt_begin() */ |
|
206 int sectorSize; /* Assumed sector size during rollback */ |
|
207 #ifdef SQLITE_TEST |
|
208 int nHit, nMiss; /* Cache hits and missing */ |
|
209 int nRead, nWrite; /* Database pages read/written */ |
|
210 #endif |
|
211 void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */ |
|
212 #ifdef SQLITE_HAS_CODEC |
|
213 void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ |
|
214 void *pCodecArg; /* First argument to xCodec() */ |
|
215 #endif |
|
216 char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */ |
|
217 char dbFileVers[16]; /* Changes whenever database file changes */ |
|
218 i64 journalSizeLimit; /* Size limit for persistent journal files */ |
|
219 PCache *pPCache; /* Pointer to page cache object */ |
|
220 }; |
|
221 |
|
222 /* |
|
223 ** The following global variables hold counters used for |
|
224 ** testing purposes only. These variables do not exist in |
|
225 ** a non-testing build. These variables are not thread-safe. |
|
226 */ |
|
227 #ifdef SQLITE_TEST |
|
228 int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */ |
|
229 int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */ |
|
230 int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */ |
|
231 # define PAGER_INCR(v) v++ |
|
232 #else |
|
233 # define PAGER_INCR(v) |
|
234 #endif |
|
235 |
|
236 |
|
237 |
|
238 /* |
|
239 ** Journal files begin with the following magic string. The data |
|
240 ** was obtained from /dev/random. It is used only as a sanity check. |
|
241 ** |
|
242 ** Since version 2.8.0, the journal format contains additional sanity |
|
243 ** checking information. If the power fails while the journal is begin |
|
244 ** written, semi-random garbage data might appear in the journal |
|
245 ** file after power is restored. If an attempt is then made |
|
246 ** to roll the journal back, the database could be corrupted. The additional |
|
247 ** sanity checking data is an attempt to discover the garbage in the |
|
248 ** journal and ignore it. |
|
249 ** |
|
250 ** The sanity checking information for the new journal format consists |
|
251 ** of a 32-bit checksum on each page of data. The checksum covers both |
|
252 ** the page number and the pPager->pageSize bytes of data for the page. |
|
253 ** This cksum is initialized to a 32-bit random value that appears in the |
|
254 ** journal file right after the header. The random initializer is important, |
|
255 ** because garbage data that appears at the end of a journal is likely |
|
256 ** data that was once in other files that have now been deleted. If the |
|
257 ** garbage data came from an obsolete journal file, the checksums might |
|
258 ** be correct. But by initializing the checksum to random value which |
|
259 ** is different for every journal, we minimize that risk. |
|
260 */ |
|
261 static const unsigned char aJournalMagic[] = { |
|
262 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7, |
|
263 }; |
|
264 |
|
265 /* |
|
266 ** The size of the header and of each page in the journal is determined |
|
267 ** by the following macros. |
|
268 */ |
|
269 #define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8) |
|
270 |
|
271 /* |
|
272 ** The journal header size for this pager. In the future, this could be |
|
273 ** set to some value read from the disk controller. The important |
|
274 ** characteristic is that it is the same size as a disk sector. |
|
275 */ |
|
276 #define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize) |
|
277 |
|
278 /* |
|
279 ** The macro MEMDB is true if we are dealing with an in-memory database. |
|
280 ** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set, |
|
281 ** the value of MEMDB will be a constant and the compiler will optimize |
|
282 ** out code that would never execute. |
|
283 */ |
|
284 #ifdef SQLITE_OMIT_MEMORYDB |
|
285 # define MEMDB 0 |
|
286 #else |
|
287 # define MEMDB pPager->memDb |
|
288 #endif |
|
289 |
|
290 /* |
|
291 ** Page number PAGER_MJ_PGNO is never used in an SQLite database (it is |
|
292 ** reserved for working around a windows/posix incompatibility). It is |
|
293 ** used in the journal to signify that the remainder of the journal file |
|
294 ** is devoted to storing a master journal name - there are no more pages to |
|
295 ** roll back. See comments for function writeMasterJournal() for details. |
|
296 */ |
|
297 /* #define PAGER_MJ_PGNO(x) (PENDING_BYTE/((x)->pageSize)) */ |
|
298 #define PAGER_MJ_PGNO(x) ((PENDING_BYTE/((x)->pageSize))+1) |
|
299 |
|
300 /* |
|
301 ** The maximum legal page number is (2^31 - 1). |
|
302 */ |
|
303 #define PAGER_MAX_PGNO 2147483647 |
|
304 |
|
305 /* |
|
306 ** Return true if page *pPg has already been written to the statement |
|
307 ** journal (or statement snapshot has been created, if *pPg is part |
|
308 ** of an in-memory database). |
|
309 */ |
|
310 static int pageInStatement(PgHdr *pPg){ |
|
311 Pager *pPager = pPg->pPager; |
|
312 if( MEMDB ){ |
|
313 return pPg->apSave[1]!=0; |
|
314 }else{ |
|
315 return sqlite3BitvecTest(pPager->pInStmt, pPg->pgno); |
|
316 } |
|
317 } |
|
318 |
|
319 /* |
|
320 ** Read a 32-bit integer from the given file descriptor. Store the integer |
|
321 ** that is read in *pRes. Return SQLITE_OK if everything worked, or an |
|
322 ** error code is something goes wrong. |
|
323 ** |
|
324 ** All values are stored on disk as big-endian. |
|
325 */ |
|
326 static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){ |
|
327 unsigned char ac[4]; |
|
328 int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset); |
|
329 if( rc==SQLITE_OK ){ |
|
330 *pRes = sqlite3Get4byte(ac); |
|
331 } |
|
332 return rc; |
|
333 } |
|
334 |
|
335 /* |
|
336 ** Write a 32-bit integer into a string buffer in big-endian byte order. |
|
337 */ |
|
338 #define put32bits(A,B) sqlite3Put4byte((u8*)A,B) |
|
339 |
|
340 /* |
|
341 ** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK |
|
342 ** on success or an error code is something goes wrong. |
|
343 */ |
|
344 static int write32bits(sqlite3_file *fd, i64 offset, u32 val){ |
|
345 char ac[4]; |
|
346 put32bits(ac, val); |
|
347 return sqlite3OsWrite(fd, ac, 4, offset); |
|
348 } |
|
349 |
|
350 /* |
|
351 ** If file pFd is open, call sqlite3OsUnlock() on it. |
|
352 */ |
|
353 static int osUnlock(sqlite3_file *pFd, int eLock){ |
|
354 if( !pFd->pMethods ){ |
|
355 return SQLITE_OK; |
|
356 } |
|
357 return sqlite3OsUnlock(pFd, eLock); |
|
358 } |
|
359 |
|
360 /* |
|
361 ** This function determines whether or not the atomic-write optimization |
|
362 ** can be used with this pager. The optimization can be used if: |
|
363 ** |
|
364 ** (a) the value returned by OsDeviceCharacteristics() indicates that |
|
365 ** a database page may be written atomically, and |
|
366 ** (b) the value returned by OsSectorSize() is less than or equal |
|
367 ** to the page size. |
|
368 ** |
|
369 ** If the optimization cannot be used, 0 is returned. If it can be used, |
|
370 ** then the value returned is the size of the journal file when it |
|
371 ** contains rollback data for exactly one page. |
|
372 */ |
|
373 #ifdef SQLITE_ENABLE_ATOMIC_WRITE |
|
374 static int jrnlBufferSize(Pager *pPager){ |
|
375 int dc; /* Device characteristics */ |
|
376 int nSector; /* Sector size */ |
|
377 int szPage; /* Page size */ |
|
378 sqlite3_file *fd = pPager->fd; |
|
379 |
|
380 if( fd->pMethods ){ |
|
381 dc = sqlite3OsDeviceCharacteristics(fd); |
|
382 nSector = sqlite3OsSectorSize(fd); |
|
383 szPage = pPager->pageSize; |
|
384 } |
|
385 |
|
386 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); |
|
387 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); |
|
388 |
|
389 if( !fd->pMethods || |
|
390 (dc & (SQLITE_IOCAP_ATOMIC|(szPage>>8)) && nSector<=szPage) ){ |
|
391 return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager); |
|
392 } |
|
393 return 0; |
|
394 } |
|
395 #endif |
|
396 |
|
397 /* |
|
398 ** This function should be called when an error occurs within the pager |
|
399 ** code. The first argument is a pointer to the pager structure, the |
|
400 ** second the error-code about to be returned by a pager API function. |
|
401 ** The value returned is a copy of the second argument to this function. |
|
402 ** |
|
403 ** If the second argument is SQLITE_IOERR, SQLITE_CORRUPT, or SQLITE_FULL |
|
404 ** the error becomes persistent. Until the persisten error is cleared, |
|
405 ** subsequent API calls on this Pager will immediately return the same |
|
406 ** error code. |
|
407 ** |
|
408 ** A persistent error indicates that the contents of the pager-cache |
|
409 ** cannot be trusted. This state can be cleared by completely discarding |
|
410 ** the contents of the pager-cache. If a transaction was active when |
|
411 ** the persistent error occured, then the rollback journal may need |
|
412 ** to be replayed. |
|
413 */ |
|
414 static void pager_unlock(Pager *pPager); |
|
415 static int pager_error(Pager *pPager, int rc){ |
|
416 int rc2 = rc & 0xff; |
|
417 assert( |
|
418 pPager->errCode==SQLITE_FULL || |
|
419 pPager->errCode==SQLITE_OK || |
|
420 (pPager->errCode & 0xff)==SQLITE_IOERR |
|
421 ); |
|
422 if( |
|
423 rc2==SQLITE_FULL || |
|
424 rc2==SQLITE_IOERR || |
|
425 rc2==SQLITE_CORRUPT |
|
426 ){ |
|
427 pPager->errCode = rc; |
|
428 if( pPager->state==PAGER_UNLOCK |
|
429 && sqlite3PcacheRefCount(pPager->pPCache)==0 |
|
430 ){ |
|
431 /* If the pager is already unlocked, call pager_unlock() now to |
|
432 ** clear the error state and ensure that the pager-cache is |
|
433 ** completely empty. |
|
434 */ |
|
435 pager_unlock(pPager); |
|
436 } |
|
437 } |
|
438 return rc; |
|
439 } |
|
440 |
|
441 /* |
|
442 ** If SQLITE_CHECK_PAGES is defined then we do some sanity checking |
|
443 ** on the cache using a hash function. This is used for testing |
|
444 ** and debugging only. |
|
445 */ |
|
446 #ifdef SQLITE_CHECK_PAGES |
|
447 /* |
|
448 ** Return a 32-bit hash of the page data for pPage. |
|
449 */ |
|
450 static u32 pager_datahash(int nByte, unsigned char *pData){ |
|
451 u32 hash = 0; |
|
452 int i; |
|
453 for(i=0; i<nByte; i++){ |
|
454 hash = (hash*1039) + pData[i]; |
|
455 } |
|
456 return hash; |
|
457 } |
|
458 static u32 pager_pagehash(PgHdr *pPage){ |
|
459 return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData); |
|
460 } |
|
461 static u32 pager_set_pagehash(PgHdr *pPage){ |
|
462 pPage->pageHash = pager_pagehash(pPage); |
|
463 } |
|
464 |
|
465 /* |
|
466 ** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES |
|
467 ** is defined, and NDEBUG is not defined, an assert() statement checks |
|
468 ** that the page is either dirty or still matches the calculated page-hash. |
|
469 */ |
|
470 #define CHECK_PAGE(x) checkPage(x) |
|
471 static void checkPage(PgHdr *pPg){ |
|
472 Pager *pPager = pPg->pPager; |
|
473 assert( !pPg->pageHash || pPager->errCode || MEMDB |
|
474 || (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) ); |
|
475 } |
|
476 |
|
477 #else |
|
478 #define pager_datahash(X,Y) 0 |
|
479 #define pager_pagehash(X) 0 |
|
480 #define CHECK_PAGE(x) |
|
481 #endif /* SQLITE_CHECK_PAGES */ |
|
482 |
|
483 /* |
|
484 ** When this is called the journal file for pager pPager must be open. |
|
485 ** The master journal file name is read from the end of the file and |
|
486 ** written into memory supplied by the caller. |
|
487 ** |
|
488 ** zMaster must point to a buffer of at least nMaster bytes allocated by |
|
489 ** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is |
|
490 ** enough space to write the master journal name). If the master journal |
|
491 ** name in the journal is longer than nMaster bytes (including a |
|
492 ** nul-terminator), then this is handled as if no master journal name |
|
493 ** were present in the journal. |
|
494 ** |
|
495 ** If no master journal file name is present zMaster[0] is set to 0 and |
|
496 ** SQLITE_OK returned. |
|
497 */ |
|
498 static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, int nMaster){ |
|
499 int rc; |
|
500 u32 len; |
|
501 i64 szJ; |
|
502 u32 cksum; |
|
503 u32 u; /* Unsigned loop counter */ |
|
504 unsigned char aMagic[8]; /* A buffer to hold the magic header */ |
|
505 |
|
506 zMaster[0] = '\0'; |
|
507 |
|
508 rc = sqlite3OsFileSize(pJrnl, &szJ); |
|
509 if( rc!=SQLITE_OK || szJ<16 ) return rc; |
|
510 |
|
511 rc = read32bits(pJrnl, szJ-16, &len); |
|
512 if( rc!=SQLITE_OK ) return rc; |
|
513 |
|
514 if( len>=nMaster ){ |
|
515 return SQLITE_OK; |
|
516 } |
|
517 |
|
518 rc = read32bits(pJrnl, szJ-12, &cksum); |
|
519 if( rc!=SQLITE_OK ) return rc; |
|
520 |
|
521 rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8); |
|
522 if( rc!=SQLITE_OK || memcmp(aMagic, aJournalMagic, 8) ) return rc; |
|
523 |
|
524 rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len); |
|
525 if( rc!=SQLITE_OK ){ |
|
526 return rc; |
|
527 } |
|
528 zMaster[len] = '\0'; |
|
529 |
|
530 /* See if the checksum matches the master journal name */ |
|
531 for(u=0; u<len; u++){ |
|
532 cksum -= zMaster[u]; |
|
533 } |
|
534 if( cksum ){ |
|
535 /* If the checksum doesn't add up, then one or more of the disk sectors |
|
536 ** containing the master journal filename is corrupted. This means |
|
537 ** definitely roll back, so just return SQLITE_OK and report a (nul) |
|
538 ** master-journal filename. |
|
539 */ |
|
540 zMaster[0] = '\0'; |
|
541 } |
|
542 |
|
543 return SQLITE_OK; |
|
544 } |
|
545 |
|
546 /* |
|
547 ** Seek the journal file descriptor to the next sector boundary where a |
|
548 ** journal header may be read or written. Pager.journalOff is updated with |
|
549 ** the new seek offset. |
|
550 ** |
|
551 ** i.e for a sector size of 512: |
|
552 ** |
|
553 ** Input Offset Output Offset |
|
554 ** --------------------------------------- |
|
555 ** 0 0 |
|
556 ** 512 512 |
|
557 ** 100 512 |
|
558 ** 2000 2048 |
|
559 ** |
|
560 */ |
|
561 static void seekJournalHdr(Pager *pPager){ |
|
562 i64 offset = 0; |
|
563 i64 c = pPager->journalOff; |
|
564 if( c ){ |
|
565 offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager); |
|
566 } |
|
567 assert( offset%JOURNAL_HDR_SZ(pPager)==0 ); |
|
568 assert( offset>=c ); |
|
569 assert( (offset-c)<JOURNAL_HDR_SZ(pPager) ); |
|
570 pPager->journalOff = offset; |
|
571 } |
|
572 |
|
573 /* |
|
574 ** Write zeros over the header of the journal file. This has the |
|
575 ** effect of invalidating the journal file and committing the |
|
576 ** transaction. |
|
577 */ |
|
578 static int zeroJournalHdr(Pager *pPager, int doTruncate){ |
|
579 int rc = SQLITE_OK; |
|
580 static const char zeroHdr[28] = {0}; |
|
581 |
|
582 if( pPager->journalOff ){ |
|
583 i64 iLimit = pPager->journalSizeLimit; |
|
584 |
|
585 IOTRACE(("JZEROHDR %p\n", pPager)) |
|
586 if( doTruncate || iLimit==0 ){ |
|
587 rc = sqlite3OsTruncate(pPager->jfd, 0); |
|
588 }else{ |
|
589 rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0); |
|
590 } |
|
591 if( rc==SQLITE_OK && !pPager->noSync ){ |
|
592 rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->sync_flags); |
|
593 } |
|
594 |
|
595 /* At this point the transaction is committed but the write lock |
|
596 ** is still held on the file. If there is a size limit configured for |
|
597 ** the persistent journal and the journal file currently consumes more |
|
598 ** space than that limit allows for, truncate it now. There is no need |
|
599 ** to sync the file following this operation. |
|
600 */ |
|
601 if( rc==SQLITE_OK && iLimit>0 ){ |
|
602 i64 sz; |
|
603 rc = sqlite3OsFileSize(pPager->jfd, &sz); |
|
604 if( rc==SQLITE_OK && sz>iLimit ){ |
|
605 rc = sqlite3OsTruncate(pPager->jfd, iLimit); |
|
606 } |
|
607 } |
|
608 } |
|
609 return rc; |
|
610 } |
|
611 |
|
612 /* |
|
613 ** The journal file must be open when this routine is called. A journal |
|
614 ** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the |
|
615 ** current location. |
|
616 ** |
|
617 ** The format for the journal header is as follows: |
|
618 ** - 8 bytes: Magic identifying journal format. |
|
619 ** - 4 bytes: Number of records in journal, or -1 no-sync mode is on. |
|
620 ** - 4 bytes: Random number used for page hash. |
|
621 ** - 4 bytes: Initial database page count. |
|
622 ** - 4 bytes: Sector size used by the process that wrote this journal. |
|
623 ** - 4 bytes: Database page size. |
|
624 ** |
|
625 ** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space. |
|
626 */ |
|
627 static int writeJournalHdr(Pager *pPager){ |
|
628 int rc = SQLITE_OK; |
|
629 char *zHeader = pPager->pTmpSpace; |
|
630 int nHeader = pPager->pageSize; |
|
631 int nWrite; |
|
632 |
|
633 if( nHeader>JOURNAL_HDR_SZ(pPager) ){ |
|
634 nHeader = JOURNAL_HDR_SZ(pPager); |
|
635 } |
|
636 |
|
637 if( pPager->stmtHdrOff==0 ){ |
|
638 pPager->stmtHdrOff = pPager->journalOff; |
|
639 } |
|
640 |
|
641 seekJournalHdr(pPager); |
|
642 pPager->journalHdr = pPager->journalOff; |
|
643 |
|
644 memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic)); |
|
645 |
|
646 /* |
|
647 ** Write the nRec Field - the number of page records that follow this |
|
648 ** journal header. Normally, zero is written to this value at this time. |
|
649 ** After the records are added to the journal (and the journal synced, |
|
650 ** if in full-sync mode), the zero is overwritten with the true number |
|
651 ** of records (see syncJournal()). |
|
652 ** |
|
653 ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When |
|
654 ** reading the journal this value tells SQLite to assume that the |
|
655 ** rest of the journal file contains valid page records. This assumption |
|
656 ** is dangerous, as if a failure occured whilst writing to the journal |
|
657 ** file it may contain some garbage data. There are two scenarios |
|
658 ** where this risk can be ignored: |
|
659 ** |
|
660 ** * When the pager is in no-sync mode. Corruption can follow a |
|
661 ** power failure in this case anyway. |
|
662 ** |
|
663 ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees |
|
664 ** that garbage data is never appended to the journal file. |
|
665 */ |
|
666 assert(pPager->fd->pMethods||pPager->noSync); |
|
667 if( (pPager->noSync) |
|
668 || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) |
|
669 ){ |
|
670 put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff); |
|
671 }else{ |
|
672 put32bits(&zHeader[sizeof(aJournalMagic)], 0); |
|
673 } |
|
674 |
|
675 /* The random check-hash initialiser */ |
|
676 sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit); |
|
677 put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit); |
|
678 /* The initial database size */ |
|
679 put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbSize); |
|
680 /* The assumed sector size for this process */ |
|
681 put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize); |
|
682 if( pPager->journalHdr==0 ){ |
|
683 /* The page size */ |
|
684 put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize); |
|
685 } |
|
686 |
|
687 for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){ |
|
688 IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader)) |
|
689 rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff); |
|
690 pPager->journalOff += nHeader; |
|
691 } |
|
692 |
|
693 return rc; |
|
694 } |
|
695 |
|
696 /* |
|
697 ** The journal file must be open when this is called. A journal header file |
|
698 ** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal |
|
699 ** file. See comments above function writeJournalHdr() for a description of |
|
700 ** the journal header format. |
|
701 ** |
|
702 ** If the header is read successfully, *nRec is set to the number of |
|
703 ** page records following this header and *dbSize is set to the size of the |
|
704 ** database before the transaction began, in pages. Also, pPager->cksumInit |
|
705 ** is set to the value read from the journal header. SQLITE_OK is returned |
|
706 ** in this case. |
|
707 ** |
|
708 ** If the journal header file appears to be corrupted, SQLITE_DONE is |
|
709 ** returned and *nRec and *dbSize are not set. If JOURNAL_HDR_SZ bytes |
|
710 ** cannot be read from the journal file an error code is returned. |
|
711 */ |
|
712 static int readJournalHdr( |
|
713 Pager *pPager, |
|
714 i64 journalSize, |
|
715 u32 *pNRec, |
|
716 u32 *pDbSize |
|
717 ){ |
|
718 int rc; |
|
719 unsigned char aMagic[8]; /* A buffer to hold the magic header */ |
|
720 i64 jrnlOff; |
|
721 int iPageSize; |
|
722 |
|
723 seekJournalHdr(pPager); |
|
724 if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){ |
|
725 return SQLITE_DONE; |
|
726 } |
|
727 jrnlOff = pPager->journalOff; |
|
728 |
|
729 rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), jrnlOff); |
|
730 if( rc ) return rc; |
|
731 jrnlOff += sizeof(aMagic); |
|
732 |
|
733 if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){ |
|
734 return SQLITE_DONE; |
|
735 } |
|
736 |
|
737 rc = read32bits(pPager->jfd, jrnlOff, pNRec); |
|
738 if( rc ) return rc; |
|
739 |
|
740 rc = read32bits(pPager->jfd, jrnlOff+4, &pPager->cksumInit); |
|
741 if( rc ) return rc; |
|
742 |
|
743 rc = read32bits(pPager->jfd, jrnlOff+8, pDbSize); |
|
744 if( rc ) return rc; |
|
745 |
|
746 rc = read32bits(pPager->jfd, jrnlOff+16, (u32 *)&iPageSize); |
|
747 if( rc==SQLITE_OK |
|
748 && iPageSize>=512 |
|
749 && iPageSize<=SQLITE_MAX_PAGE_SIZE |
|
750 && ((iPageSize-1)&iPageSize)==0 |
|
751 ){ |
|
752 u16 pagesize = iPageSize; |
|
753 rc = sqlite3PagerSetPagesize(pPager, &pagesize); |
|
754 } |
|
755 if( rc ) return rc; |
|
756 |
|
757 /* Update the assumed sector-size to match the value used by |
|
758 ** the process that created this journal. If this journal was |
|
759 ** created by a process other than this one, then this routine |
|
760 ** is being called from within pager_playback(). The local value |
|
761 ** of Pager.sectorSize is restored at the end of that routine. |
|
762 */ |
|
763 rc = read32bits(pPager->jfd, jrnlOff+12, (u32 *)&pPager->sectorSize); |
|
764 if( rc ) return rc; |
|
765 |
|
766 pPager->journalOff += JOURNAL_HDR_SZ(pPager); |
|
767 return SQLITE_OK; |
|
768 } |
|
769 |
|
770 |
|
771 /* |
|
772 ** Write the supplied master journal name into the journal file for pager |
|
773 ** pPager at the current location. The master journal name must be the last |
|
774 ** thing written to a journal file. If the pager is in full-sync mode, the |
|
775 ** journal file descriptor is advanced to the next sector boundary before |
|
776 ** anything is written. The format is: |
|
777 ** |
|
778 ** + 4 bytes: PAGER_MJ_PGNO. |
|
779 ** + N bytes: length of master journal name. |
|
780 ** + 4 bytes: N |
|
781 ** + 4 bytes: Master journal name checksum. |
|
782 ** + 8 bytes: aJournalMagic[]. |
|
783 ** |
|
784 ** The master journal page checksum is the sum of the bytes in the master |
|
785 ** journal name. |
|
786 ** |
|
787 ** If zMaster is a NULL pointer (occurs for a single database transaction), |
|
788 ** this call is a no-op. |
|
789 */ |
|
790 static int writeMasterJournal(Pager *pPager, const char *zMaster){ |
|
791 int rc; |
|
792 int len; |
|
793 int i; |
|
794 i64 jrnlOff; |
|
795 i64 jrnlSize; |
|
796 u32 cksum = 0; |
|
797 char zBuf[sizeof(aJournalMagic)+2*4]; |
|
798 |
|
799 if( !zMaster || pPager->setMaster) return SQLITE_OK; |
|
800 pPager->setMaster = 1; |
|
801 |
|
802 len = strlen(zMaster); |
|
803 for(i=0; i<len; i++){ |
|
804 cksum += zMaster[i]; |
|
805 } |
|
806 |
|
807 /* If in full-sync mode, advance to the next disk sector before writing |
|
808 ** the master journal name. This is in case the previous page written to |
|
809 ** the journal has already been synced. |
|
810 */ |
|
811 if( pPager->fullSync ){ |
|
812 seekJournalHdr(pPager); |
|
813 } |
|
814 jrnlOff = pPager->journalOff; |
|
815 pPager->journalOff += (len+20); |
|
816 |
|
817 rc = write32bits(pPager->jfd, jrnlOff, PAGER_MJ_PGNO(pPager)); |
|
818 if( rc!=SQLITE_OK ) return rc; |
|
819 jrnlOff += 4; |
|
820 |
|
821 rc = sqlite3OsWrite(pPager->jfd, zMaster, len, jrnlOff); |
|
822 if( rc!=SQLITE_OK ) return rc; |
|
823 jrnlOff += len; |
|
824 |
|
825 put32bits(zBuf, len); |
|
826 put32bits(&zBuf[4], cksum); |
|
827 memcpy(&zBuf[8], aJournalMagic, sizeof(aJournalMagic)); |
|
828 rc = sqlite3OsWrite(pPager->jfd, zBuf, 8+sizeof(aJournalMagic), jrnlOff); |
|
829 jrnlOff += 8+sizeof(aJournalMagic); |
|
830 pPager->needSync = !pPager->noSync; |
|
831 |
|
832 /* If the pager is in peristent-journal mode, then the physical |
|
833 ** journal-file may extend past the end of the master-journal name |
|
834 ** and 8 bytes of magic data just written to the file. This is |
|
835 ** dangerous because the code to rollback a hot-journal file |
|
836 ** will not be able to find the master-journal name to determine |
|
837 ** whether or not the journal is hot. |
|
838 ** |
|
839 ** Easiest thing to do in this scenario is to truncate the journal |
|
840 ** file to the required size. |
|
841 */ |
|
842 if( (rc==SQLITE_OK) |
|
843 && (rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize))==SQLITE_OK |
|
844 && jrnlSize>jrnlOff |
|
845 ){ |
|
846 rc = sqlite3OsTruncate(pPager->jfd, jrnlOff); |
|
847 } |
|
848 return rc; |
|
849 } |
|
850 |
|
851 /* |
|
852 ** Find a page in the hash table given its page number. Return |
|
853 ** a pointer to the page or NULL if not found. |
|
854 */ |
|
855 static PgHdr *pager_lookup(Pager *pPager, Pgno pgno){ |
|
856 PgHdr *p; |
|
857 sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &p); |
|
858 return p; |
|
859 } |
|
860 |
|
861 /* |
|
862 ** Clear the in-memory cache. This routine |
|
863 ** sets the state of the pager back to what it was when it was first |
|
864 ** opened. Any outstanding pages are invalidated and subsequent attempts |
|
865 ** to access those pages will likely result in a coredump. |
|
866 */ |
|
867 static void pager_reset(Pager *pPager){ |
|
868 if( pPager->errCode ) return; |
|
869 sqlite3PcacheClear(pPager->pPCache); |
|
870 } |
|
871 |
|
872 /* |
|
873 ** Unlock the database file. |
|
874 ** |
|
875 ** If the pager is currently in error state, discard the contents of |
|
876 ** the cache and reset the Pager structure internal state. If there is |
|
877 ** an open journal-file, then the next time a shared-lock is obtained |
|
878 ** on the pager file (by this or any other process), it will be |
|
879 ** treated as a hot-journal and rolled back. |
|
880 */ |
|
881 static void pager_unlock(Pager *pPager){ |
|
882 if( !pPager->exclusiveMode ){ |
|
883 if( !MEMDB ){ |
|
884 int rc = osUnlock(pPager->fd, NO_LOCK); |
|
885 if( rc ) pPager->errCode = rc; |
|
886 pPager->dbSize = -1; |
|
887 IOTRACE(("UNLOCK %p\n", pPager)) |
|
888 |
|
889 /* Always close the journal file when dropping the database lock. |
|
890 ** Otherwise, another connection with journal_mode=delete might |
|
891 ** delete the file out from under us. |
|
892 */ |
|
893 if( pPager->journalOpen ){ |
|
894 sqlite3OsClose(pPager->jfd); |
|
895 pPager->journalOpen = 0; |
|
896 sqlite3BitvecDestroy(pPager->pInJournal); |
|
897 pPager->pInJournal = 0; |
|
898 sqlite3BitvecDestroy(pPager->pAlwaysRollback); |
|
899 pPager->pAlwaysRollback = 0; |
|
900 } |
|
901 |
|
902 /* If Pager.errCode is set, the contents of the pager cache cannot be |
|
903 ** trusted. Now that the pager file is unlocked, the contents of the |
|
904 ** cache can be discarded and the error code safely cleared. |
|
905 */ |
|
906 if( pPager->errCode ){ |
|
907 if( rc==SQLITE_OK ) pPager->errCode = SQLITE_OK; |
|
908 pager_reset(pPager); |
|
909 if( pPager->stmtOpen ){ |
|
910 sqlite3OsClose(pPager->stfd); |
|
911 sqlite3BitvecDestroy(pPager->pInStmt); |
|
912 pPager->pInStmt = 0; |
|
913 } |
|
914 pPager->stmtOpen = 0; |
|
915 pPager->stmtInUse = 0; |
|
916 pPager->journalOff = 0; |
|
917 pPager->journalStarted = 0; |
|
918 pPager->stmtAutoopen = 0; |
|
919 pPager->origDbSize = 0; |
|
920 } |
|
921 } |
|
922 |
|
923 if( !MEMDB || pPager->errCode==SQLITE_OK ){ |
|
924 pPager->state = PAGER_UNLOCK; |
|
925 pPager->changeCountDone = 0; |
|
926 } |
|
927 } |
|
928 } |
|
929 |
|
930 /* |
|
931 ** Execute a rollback if a transaction is active and unlock the |
|
932 ** database file. If the pager has already entered the error state, |
|
933 ** do not attempt the rollback. |
|
934 */ |
|
935 static void pagerUnlockAndRollback(Pager *p){ |
|
936 if( p->errCode==SQLITE_OK && p->state>=PAGER_RESERVED ){ |
|
937 sqlite3BeginBenignMalloc(); |
|
938 sqlite3PagerRollback(p); |
|
939 sqlite3EndBenignMalloc(); |
|
940 } |
|
941 pager_unlock(p); |
|
942 } |
|
943 |
|
944 /* |
|
945 ** This routine ends a transaction. A transaction is ended by either |
|
946 ** a COMMIT or a ROLLBACK. |
|
947 ** |
|
948 ** When this routine is called, the pager has the journal file open and |
|
949 ** a RESERVED or EXCLUSIVE lock on the database. This routine will release |
|
950 ** the database lock and acquires a SHARED lock in its place if that is |
|
951 ** the appropriate thing to do. Release locks usually is appropriate, |
|
952 ** unless we are in exclusive access mode or unless this is a |
|
953 ** COMMIT AND BEGIN or ROLLBACK AND BEGIN operation. |
|
954 ** |
|
955 ** The journal file is either deleted or truncated. |
|
956 ** |
|
957 ** TODO: Consider keeping the journal file open for temporary databases. |
|
958 ** This might give a performance improvement on windows where opening |
|
959 ** a file is an expensive operation. |
|
960 */ |
|
961 static int pager_end_transaction(Pager *pPager, int hasMaster){ |
|
962 int rc = SQLITE_OK; |
|
963 int rc2 = SQLITE_OK; |
|
964 assert( !MEMDB ); |
|
965 if( pPager->state<PAGER_RESERVED ){ |
|
966 return SQLITE_OK; |
|
967 } |
|
968 sqlite3PagerStmtCommit(pPager); |
|
969 if( pPager->stmtOpen && !pPager->exclusiveMode ){ |
|
970 sqlite3OsClose(pPager->stfd); |
|
971 pPager->stmtOpen = 0; |
|
972 } |
|
973 if( pPager->journalOpen ){ |
|
974 if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE |
|
975 && (rc = sqlite3OsTruncate(pPager->jfd, 0))==SQLITE_OK ){ |
|
976 pPager->journalOff = 0; |
|
977 pPager->journalStarted = 0; |
|
978 }else if( pPager->exclusiveMode |
|
979 || pPager->journalMode==PAGER_JOURNALMODE_PERSIST |
|
980 ){ |
|
981 rc = zeroJournalHdr(pPager, hasMaster); |
|
982 pager_error(pPager, rc); |
|
983 pPager->journalOff = 0; |
|
984 pPager->journalStarted = 0; |
|
985 }else{ |
|
986 assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE || rc ); |
|
987 sqlite3OsClose(pPager->jfd); |
|
988 pPager->journalOpen = 0; |
|
989 if( rc==SQLITE_OK && !pPager->tempFile ){ |
|
990 rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0); |
|
991 } |
|
992 } |
|
993 sqlite3BitvecDestroy(pPager->pInJournal); |
|
994 pPager->pInJournal = 0; |
|
995 sqlite3BitvecDestroy(pPager->pAlwaysRollback); |
|
996 pPager->pAlwaysRollback = 0; |
|
997 sqlite3PcacheCleanAll(pPager->pPCache); |
|
998 #ifdef SQLITE_CHECK_PAGES |
|
999 sqlite3PcacheIterate(pPager->pPCache, pager_set_pagehash); |
|
1000 #endif |
|
1001 sqlite3PcacheClearFlags(pPager->pPCache, |
|
1002 PGHDR_IN_JOURNAL | PGHDR_NEED_SYNC |
|
1003 ); |
|
1004 pPager->dirtyCache = 0; |
|
1005 pPager->nRec = 0; |
|
1006 }else{ |
|
1007 assert( pPager->pInJournal==0 ); |
|
1008 } |
|
1009 |
|
1010 if( !pPager->exclusiveMode ){ |
|
1011 rc2 = osUnlock(pPager->fd, SHARED_LOCK); |
|
1012 pPager->state = PAGER_SHARED; |
|
1013 }else if( pPager->state==PAGER_SYNCED ){ |
|
1014 pPager->state = PAGER_EXCLUSIVE; |
|
1015 } |
|
1016 pPager->origDbSize = 0; |
|
1017 pPager->setMaster = 0; |
|
1018 pPager->needSync = 0; |
|
1019 /* lruListSetFirstSynced(pPager); */ |
|
1020 pPager->dbSize = -1; |
|
1021 pPager->dbModified = 0; |
|
1022 |
|
1023 return (rc==SQLITE_OK?rc2:rc); |
|
1024 } |
|
1025 |
|
1026 /* |
|
1027 ** Compute and return a checksum for the page of data. |
|
1028 ** |
|
1029 ** This is not a real checksum. It is really just the sum of the |
|
1030 ** random initial value and the page number. We experimented with |
|
1031 ** a checksum of the entire data, but that was found to be too slow. |
|
1032 ** |
|
1033 ** Note that the page number is stored at the beginning of data and |
|
1034 ** the checksum is stored at the end. This is important. If journal |
|
1035 ** corruption occurs due to a power failure, the most likely scenario |
|
1036 ** is that one end or the other of the record will be changed. It is |
|
1037 ** much less likely that the two ends of the journal record will be |
|
1038 ** correct and the middle be corrupt. Thus, this "checksum" scheme, |
|
1039 ** though fast and simple, catches the mostly likely kind of corruption. |
|
1040 ** |
|
1041 ** FIX ME: Consider adding every 200th (or so) byte of the data to the |
|
1042 ** checksum. That way if a single page spans 3 or more disk sectors and |
|
1043 ** only the middle sector is corrupt, we will still have a reasonable |
|
1044 ** chance of failing the checksum and thus detecting the problem. |
|
1045 */ |
|
1046 static u32 pager_cksum(Pager *pPager, const u8 *aData){ |
|
1047 u32 cksum = pPager->cksumInit; |
|
1048 int i = pPager->pageSize-200; |
|
1049 while( i>0 ){ |
|
1050 cksum += aData[i]; |
|
1051 i -= 200; |
|
1052 } |
|
1053 return cksum; |
|
1054 } |
|
1055 |
|
1056 /* Forward declaration */ |
|
1057 static void makeClean(PgHdr*); |
|
1058 |
|
1059 /* |
|
1060 ** Read a single page from the journal file opened on file descriptor |
|
1061 ** jfd. Playback this one page. |
|
1062 ** |
|
1063 ** The isMainJrnl flag is true if this is the main rollback journal and |
|
1064 ** false for the statement journal. The main rollback journal uses |
|
1065 ** checksums - the statement journal does not. |
|
1066 */ |
|
1067 static int pager_playback_one_page( |
|
1068 Pager *pPager, /* The pager being played back */ |
|
1069 sqlite3_file *jfd, /* The file that is the journal being rolled back */ |
|
1070 i64 offset, /* Offset of the page within the journal */ |
|
1071 int isMainJrnl /* True for main rollback journal. False for Stmt jrnl */ |
|
1072 ){ |
|
1073 int rc; |
|
1074 PgHdr *pPg; /* An existing page in the cache */ |
|
1075 Pgno pgno; /* The page number of a page in journal */ |
|
1076 u32 cksum; /* Checksum used for sanity checking */ |
|
1077 u8 *aData = (u8 *)pPager->pTmpSpace; /* Temp storage for a page */ |
|
1078 |
|
1079 /* isMainJrnl should be true for the main journal and false for |
|
1080 ** statement journals. Verify that this is always the case |
|
1081 */ |
|
1082 assert( jfd == (isMainJrnl ? pPager->jfd : pPager->stfd) ); |
|
1083 assert( aData ); |
|
1084 |
|
1085 rc = read32bits(jfd, offset, &pgno); |
|
1086 if( rc!=SQLITE_OK ) return rc; |
|
1087 rc = sqlite3OsRead(jfd, aData, pPager->pageSize, offset+4); |
|
1088 if( rc!=SQLITE_OK ) return rc; |
|
1089 pPager->journalOff += pPager->pageSize + 4; |
|
1090 |
|
1091 /* Sanity checking on the page. This is more important that I originally |
|
1092 ** thought. If a power failure occurs while the journal is being written, |
|
1093 ** it could cause invalid data to be written into the journal. We need to |
|
1094 ** detect this invalid data (with high probability) and ignore it. |
|
1095 */ |
|
1096 if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ |
|
1097 return SQLITE_DONE; |
|
1098 } |
|
1099 if( pgno>(unsigned)pPager->dbSize ){ |
|
1100 return SQLITE_OK; |
|
1101 } |
|
1102 if( isMainJrnl ){ |
|
1103 rc = read32bits(jfd, offset+pPager->pageSize+4, &cksum); |
|
1104 if( rc ) return rc; |
|
1105 pPager->journalOff += 4; |
|
1106 if( pager_cksum(pPager, aData)!=cksum ){ |
|
1107 return SQLITE_DONE; |
|
1108 } |
|
1109 } |
|
1110 |
|
1111 assert( pPager->state==PAGER_RESERVED || pPager->state>=PAGER_EXCLUSIVE ); |
|
1112 |
|
1113 /* If the pager is in RESERVED state, then there must be a copy of this |
|
1114 ** page in the pager cache. In this case just update the pager cache, |
|
1115 ** not the database file. The page is left marked dirty in this case. |
|
1116 ** |
|
1117 ** An exception to the above rule: If the database is in no-sync mode |
|
1118 ** and a page is moved during an incremental vacuum then the page may |
|
1119 ** not be in the pager cache. Later: if a malloc() or IO error occurs |
|
1120 ** during a Movepage() call, then the page may not be in the cache |
|
1121 ** either. So the condition described in the above paragraph is not |
|
1122 ** assert()able. |
|
1123 ** |
|
1124 ** If in EXCLUSIVE state, then we update the pager cache if it exists |
|
1125 ** and the main file. The page is then marked not dirty. |
|
1126 ** |
|
1127 ** Ticket #1171: The statement journal might contain page content that is |
|
1128 ** different from the page content at the start of the transaction. |
|
1129 ** This occurs when a page is changed prior to the start of a statement |
|
1130 ** then changed again within the statement. When rolling back such a |
|
1131 ** statement we must not write to the original database unless we know |
|
1132 ** for certain that original page contents are synced into the main rollback |
|
1133 ** journal. Otherwise, a power loss might leave modified data in the |
|
1134 ** database file without an entry in the rollback journal that can |
|
1135 ** restore the database to its original form. Two conditions must be |
|
1136 ** met before writing to the database files. (1) the database must be |
|
1137 ** locked. (2) we know that the original page content is fully synced |
|
1138 ** in the main journal either because the page is not in cache or else |
|
1139 ** the page is marked as needSync==0. |
|
1140 ** |
|
1141 ** 2008-04-14: When attempting to vacuum a corrupt database file, it |
|
1142 ** is possible to fail a statement on a database that does not yet exist. |
|
1143 ** Do not attempt to write if database file has never been opened. |
|
1144 */ |
|
1145 pPg = pager_lookup(pPager, pgno); |
|
1146 PAGERTRACE4("PLAYBACK %d page %d hash(%08x)\n", |
|
1147 PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, aData)); |
|
1148 if( (pPager->state>=PAGER_EXCLUSIVE) |
|
1149 && (pPg==0 || 0==(pPg->flags&PGHDR_NEED_SYNC)) |
|
1150 && (pPager->fd->pMethods) |
|
1151 ){ |
|
1152 i64 ofst = (pgno-1)*(i64)pPager->pageSize; |
|
1153 rc = sqlite3OsWrite(pPager->fd, aData, pPager->pageSize, ofst); |
|
1154 } |
|
1155 if( pPg ){ |
|
1156 /* No page should ever be explicitly rolled back that is in use, except |
|
1157 ** for page 1 which is held in use in order to keep the lock on the |
|
1158 ** database active. However such a page may be rolled back as a result |
|
1159 ** of an internal error resulting in an automatic call to |
|
1160 ** sqlite3PagerRollback(). |
|
1161 */ |
|
1162 void *pData; |
|
1163 pData = pPg->pData; |
|
1164 memcpy(pData, aData, pPager->pageSize); |
|
1165 if( pPager->xReiniter ){ |
|
1166 pPager->xReiniter(pPg); |
|
1167 } |
|
1168 if( isMainJrnl ) makeClean(pPg); |
|
1169 #ifdef SQLITE_CHECK_PAGES |
|
1170 pPg->pageHash = pager_pagehash(pPg); |
|
1171 #endif |
|
1172 /* If this was page 1, then restore the value of Pager.dbFileVers. |
|
1173 ** Do this before any decoding. */ |
|
1174 if( pgno==1 ){ |
|
1175 memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers)); |
|
1176 } |
|
1177 |
|
1178 /* Decode the page just read from disk */ |
|
1179 CODEC1(pPager, pData, pPg->pgno, 3); |
|
1180 sqlite3PcacheRelease(pPg); |
|
1181 } |
|
1182 return rc; |
|
1183 } |
|
1184 |
|
1185 /* |
|
1186 ** Parameter zMaster is the name of a master journal file. A single journal |
|
1187 ** file that referred to the master journal file has just been rolled back. |
|
1188 ** This routine checks if it is possible to delete the master journal file, |
|
1189 ** and does so if it is. |
|
1190 ** |
|
1191 ** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not |
|
1192 ** available for use within this function. |
|
1193 ** |
|
1194 ** |
|
1195 ** The master journal file contains the names of all child journals. |
|
1196 ** To tell if a master journal can be deleted, check to each of the |
|
1197 ** children. If all children are either missing or do not refer to |
|
1198 ** a different master journal, then this master journal can be deleted. |
|
1199 */ |
|
1200 static int pager_delmaster(Pager *pPager, const char *zMaster){ |
|
1201 sqlite3_vfs *pVfs = pPager->pVfs; |
|
1202 int rc; |
|
1203 int master_open = 0; |
|
1204 sqlite3_file *pMaster; |
|
1205 sqlite3_file *pJournal; |
|
1206 char *zMasterJournal = 0; /* Contents of master journal file */ |
|
1207 i64 nMasterJournal; /* Size of master journal file */ |
|
1208 |
|
1209 /* Open the master journal file exclusively in case some other process |
|
1210 ** is running this routine also. Not that it makes too much difference. |
|
1211 */ |
|
1212 pMaster = (sqlite3_file *)sqlite3Malloc(pVfs->szOsFile * 2); |
|
1213 pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile); |
|
1214 if( !pMaster ){ |
|
1215 rc = SQLITE_NOMEM; |
|
1216 }else{ |
|
1217 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL); |
|
1218 rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0); |
|
1219 } |
|
1220 if( rc!=SQLITE_OK ) goto delmaster_out; |
|
1221 master_open = 1; |
|
1222 |
|
1223 rc = sqlite3OsFileSize(pMaster, &nMasterJournal); |
|
1224 if( rc!=SQLITE_OK ) goto delmaster_out; |
|
1225 |
|
1226 if( nMasterJournal>0 ){ |
|
1227 char *zJournal; |
|
1228 char *zMasterPtr = 0; |
|
1229 int nMasterPtr = pPager->pVfs->mxPathname+1; |
|
1230 |
|
1231 /* Load the entire master journal file into space obtained from |
|
1232 ** sqlite3_malloc() and pointed to by zMasterJournal. |
|
1233 */ |
|
1234 zMasterJournal = (char *)sqlite3Malloc(nMasterJournal + nMasterPtr); |
|
1235 if( !zMasterJournal ){ |
|
1236 rc = SQLITE_NOMEM; |
|
1237 goto delmaster_out; |
|
1238 } |
|
1239 zMasterPtr = &zMasterJournal[nMasterJournal]; |
|
1240 rc = sqlite3OsRead(pMaster, zMasterJournal, nMasterJournal, 0); |
|
1241 if( rc!=SQLITE_OK ) goto delmaster_out; |
|
1242 |
|
1243 zJournal = zMasterJournal; |
|
1244 while( (zJournal-zMasterJournal)<nMasterJournal ){ |
|
1245 int exists; |
|
1246 rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists); |
|
1247 if( rc!=SQLITE_OK ){ |
|
1248 goto delmaster_out; |
|
1249 } |
|
1250 if( exists ){ |
|
1251 /* One of the journals pointed to by the master journal exists. |
|
1252 ** Open it and check if it points at the master journal. If |
|
1253 ** so, return without deleting the master journal file. |
|
1254 */ |
|
1255 int c; |
|
1256 int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL); |
|
1257 rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0); |
|
1258 if( rc!=SQLITE_OK ){ |
|
1259 goto delmaster_out; |
|
1260 } |
|
1261 |
|
1262 rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr); |
|
1263 sqlite3OsClose(pJournal); |
|
1264 if( rc!=SQLITE_OK ){ |
|
1265 goto delmaster_out; |
|
1266 } |
|
1267 |
|
1268 c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0; |
|
1269 if( c ){ |
|
1270 /* We have a match. Do not delete the master journal file. */ |
|
1271 goto delmaster_out; |
|
1272 } |
|
1273 } |
|
1274 zJournal += (strlen(zJournal)+1); |
|
1275 } |
|
1276 } |
|
1277 |
|
1278 rc = sqlite3OsDelete(pVfs, zMaster, 0); |
|
1279 |
|
1280 delmaster_out: |
|
1281 if( zMasterJournal ){ |
|
1282 sqlite3_free(zMasterJournal); |
|
1283 } |
|
1284 if( master_open ){ |
|
1285 sqlite3OsClose(pMaster); |
|
1286 } |
|
1287 sqlite3_free(pMaster); |
|
1288 return rc; |
|
1289 } |
|
1290 |
|
1291 |
|
1292 static void pager_truncate_cache(Pager *pPager); |
|
1293 |
|
1294 /* |
|
1295 ** Truncate the main file of the given pager to the number of pages |
|
1296 ** indicated. Also truncate the cached representation of the file. |
|
1297 ** |
|
1298 ** Might might be the case that the file on disk is smaller than nPage. |
|
1299 ** This can happen, for example, if we are in the middle of a transaction |
|
1300 ** which has extended the file size and the new pages are still all held |
|
1301 ** in cache, then an INSERT or UPDATE does a statement rollback. Some |
|
1302 ** operating system implementations can get confused if you try to |
|
1303 ** truncate a file to some size that is larger than it currently is, |
|
1304 ** so detect this case and write a single zero byte to the end of the new |
|
1305 ** file instead. |
|
1306 */ |
|
1307 static int pager_truncate(Pager *pPager, int nPage){ |
|
1308 int rc = SQLITE_OK; |
|
1309 if( pPager->state>=PAGER_EXCLUSIVE && pPager->fd->pMethods ){ |
|
1310 i64 currentSize, newSize; |
|
1311 rc = sqlite3OsFileSize(pPager->fd, ¤tSize); |
|
1312 newSize = pPager->pageSize*(i64)nPage; |
|
1313 if( rc==SQLITE_OK && currentSize!=newSize ){ |
|
1314 if( currentSize>newSize ){ |
|
1315 rc = sqlite3OsTruncate(pPager->fd, newSize); |
|
1316 }else{ |
|
1317 rc = sqlite3OsWrite(pPager->fd, "", 1, newSize-1); |
|
1318 } |
|
1319 } |
|
1320 } |
|
1321 if( rc==SQLITE_OK ){ |
|
1322 pPager->dbSize = nPage; |
|
1323 pager_truncate_cache(pPager); |
|
1324 } |
|
1325 return rc; |
|
1326 } |
|
1327 |
|
1328 /* |
|
1329 ** Set the sectorSize for the given pager. |
|
1330 ** |
|
1331 ** The sector size is at least as big as the sector size reported |
|
1332 ** by sqlite3OsSectorSize(). The minimum sector size is 512. |
|
1333 */ |
|
1334 static void setSectorSize(Pager *pPager){ |
|
1335 assert(pPager->fd->pMethods||pPager->tempFile); |
|
1336 if( !pPager->tempFile ){ |
|
1337 /* Sector size doesn't matter for temporary files. Also, the file |
|
1338 ** may not have been opened yet, in whcih case the OsSectorSize() |
|
1339 ** call will segfault. |
|
1340 */ |
|
1341 pPager->sectorSize = sqlite3OsSectorSize(pPager->fd); |
|
1342 } |
|
1343 if( pPager->sectorSize<512 ){ |
|
1344 pPager->sectorSize = 512; |
|
1345 } |
|
1346 } |
|
1347 |
|
1348 /* |
|
1349 ** Playback the journal and thus restore the database file to |
|
1350 ** the state it was in before we started making changes. |
|
1351 ** |
|
1352 ** The journal file format is as follows: |
|
1353 ** |
|
1354 ** (1) 8 byte prefix. A copy of aJournalMagic[]. |
|
1355 ** (2) 4 byte big-endian integer which is the number of valid page records |
|
1356 ** in the journal. If this value is 0xffffffff, then compute the |
|
1357 ** number of page records from the journal size. |
|
1358 ** (3) 4 byte big-endian integer which is the initial value for the |
|
1359 ** sanity checksum. |
|
1360 ** (4) 4 byte integer which is the number of pages to truncate the |
|
1361 ** database to during a rollback. |
|
1362 ** (5) 4 byte big-endian integer which is the sector size. The header |
|
1363 ** is this many bytes in size. |
|
1364 ** (6) 4 byte big-endian integer which is the page case. |
|
1365 ** (7) 4 byte integer which is the number of bytes in the master journal |
|
1366 ** name. The value may be zero (indicate that there is no master |
|
1367 ** journal.) |
|
1368 ** (8) N bytes of the master journal name. The name will be nul-terminated |
|
1369 ** and might be shorter than the value read from (5). If the first byte |
|
1370 ** of the name is \000 then there is no master journal. The master |
|
1371 ** journal name is stored in UTF-8. |
|
1372 ** (9) Zero or more pages instances, each as follows: |
|
1373 ** + 4 byte page number. |
|
1374 ** + pPager->pageSize bytes of data. |
|
1375 ** + 4 byte checksum |
|
1376 ** |
|
1377 ** When we speak of the journal header, we mean the first 8 items above. |
|
1378 ** Each entry in the journal is an instance of the 9th item. |
|
1379 ** |
|
1380 ** Call the value from the second bullet "nRec". nRec is the number of |
|
1381 ** valid page entries in the journal. In most cases, you can compute the |
|
1382 ** value of nRec from the size of the journal file. But if a power |
|
1383 ** failure occurred while the journal was being written, it could be the |
|
1384 ** case that the size of the journal file had already been increased but |
|
1385 ** the extra entries had not yet made it safely to disk. In such a case, |
|
1386 ** the value of nRec computed from the file size would be too large. For |
|
1387 ** that reason, we always use the nRec value in the header. |
|
1388 ** |
|
1389 ** If the nRec value is 0xffffffff it means that nRec should be computed |
|
1390 ** from the file size. This value is used when the user selects the |
|
1391 ** no-sync option for the journal. A power failure could lead to corruption |
|
1392 ** in this case. But for things like temporary table (which will be |
|
1393 ** deleted when the power is restored) we don't care. |
|
1394 ** |
|
1395 ** If the file opened as the journal file is not a well-formed |
|
1396 ** journal file then all pages up to the first corrupted page are rolled |
|
1397 ** back (or no pages if the journal header is corrupted). The journal file |
|
1398 ** is then deleted and SQLITE_OK returned, just as if no corruption had |
|
1399 ** been encountered. |
|
1400 ** |
|
1401 ** If an I/O or malloc() error occurs, the journal-file is not deleted |
|
1402 ** and an error code is returned. |
|
1403 */ |
|
1404 static int pager_playback(Pager *pPager, int isHot){ |
|
1405 sqlite3_vfs *pVfs = pPager->pVfs; |
|
1406 i64 szJ; /* Size of the journal file in bytes */ |
|
1407 u32 nRec; /* Number of Records in the journal */ |
|
1408 u32 u; /* Unsigned loop counter */ |
|
1409 Pgno mxPg = 0; /* Size of the original file in pages */ |
|
1410 int rc; /* Result code of a subroutine */ |
|
1411 int res = 1; /* Value returned by sqlite3OsAccess() */ |
|
1412 char *zMaster = 0; /* Name of master journal file if any */ |
|
1413 |
|
1414 /* Figure out how many records are in the journal. Abort early if |
|
1415 ** the journal is empty. |
|
1416 */ |
|
1417 assert( pPager->journalOpen ); |
|
1418 rc = sqlite3OsFileSize(pPager->jfd, &szJ); |
|
1419 if( rc!=SQLITE_OK || szJ==0 ){ |
|
1420 goto end_playback; |
|
1421 } |
|
1422 |
|
1423 /* Read the master journal name from the journal, if it is present. |
|
1424 ** If a master journal file name is specified, but the file is not |
|
1425 ** present on disk, then the journal is not hot and does not need to be |
|
1426 ** played back. |
|
1427 */ |
|
1428 zMaster = pPager->pTmpSpace; |
|
1429 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); |
|
1430 if( rc==SQLITE_OK && zMaster[0] ){ |
|
1431 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); |
|
1432 } |
|
1433 zMaster = 0; |
|
1434 if( rc!=SQLITE_OK || !res ){ |
|
1435 goto end_playback; |
|
1436 } |
|
1437 pPager->journalOff = 0; |
|
1438 |
|
1439 /* This loop terminates either when the readJournalHdr() call returns |
|
1440 ** SQLITE_DONE or an IO error occurs. */ |
|
1441 while( 1 ){ |
|
1442 |
|
1443 /* Read the next journal header from the journal file. If there are |
|
1444 ** not enough bytes left in the journal file for a complete header, or |
|
1445 ** it is corrupted, then a process must of failed while writing it. |
|
1446 ** This indicates nothing more needs to be rolled back. |
|
1447 */ |
|
1448 rc = readJournalHdr(pPager, szJ, &nRec, &mxPg); |
|
1449 if( rc!=SQLITE_OK ){ |
|
1450 if( rc==SQLITE_DONE ){ |
|
1451 rc = SQLITE_OK; |
|
1452 } |
|
1453 goto end_playback; |
|
1454 } |
|
1455 |
|
1456 /* If nRec is 0xffffffff, then this journal was created by a process |
|
1457 ** working in no-sync mode. This means that the rest of the journal |
|
1458 ** file consists of pages, there are no more journal headers. Compute |
|
1459 ** the value of nRec based on this assumption. |
|
1460 */ |
|
1461 if( nRec==0xffffffff ){ |
|
1462 assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ); |
|
1463 nRec = (szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager); |
|
1464 } |
|
1465 |
|
1466 /* If nRec is 0 and this rollback is of a transaction created by this |
|
1467 ** process and if this is the final header in the journal, then it means |
|
1468 ** that this part of the journal was being filled but has not yet been |
|
1469 ** synced to disk. Compute the number of pages based on the remaining |
|
1470 ** size of the file. |
|
1471 ** |
|
1472 ** The third term of the test was added to fix ticket #2565. |
|
1473 */ |
|
1474 if( nRec==0 && !isHot && |
|
1475 pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){ |
|
1476 nRec = (szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager); |
|
1477 } |
|
1478 |
|
1479 /* If this is the first header read from the journal, truncate the |
|
1480 ** database file back to its original size. |
|
1481 */ |
|
1482 if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){ |
|
1483 rc = pager_truncate(pPager, mxPg); |
|
1484 if( rc!=SQLITE_OK ){ |
|
1485 goto end_playback; |
|
1486 } |
|
1487 } |
|
1488 |
|
1489 /* Copy original pages out of the journal and back into the database file. |
|
1490 */ |
|
1491 for(u=0; u<nRec; u++){ |
|
1492 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); |
|
1493 if( rc!=SQLITE_OK ){ |
|
1494 if( rc==SQLITE_DONE ){ |
|
1495 rc = SQLITE_OK; |
|
1496 pPager->journalOff = szJ; |
|
1497 break; |
|
1498 }else{ |
|
1499 /* If we are unable to rollback, then the database is probably |
|
1500 ** going to end up being corrupt. It is corrupt to us, anyhow. |
|
1501 ** Perhaps the next process to come along can fix it.... |
|
1502 */ |
|
1503 rc = SQLITE_CORRUPT_BKPT; |
|
1504 goto end_playback; |
|
1505 } |
|
1506 } |
|
1507 } |
|
1508 } |
|
1509 /*NOTREACHED*/ |
|
1510 assert( 0 ); |
|
1511 |
|
1512 end_playback: |
|
1513 if( rc==SQLITE_OK ){ |
|
1514 zMaster = pPager->pTmpSpace; |
|
1515 rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1); |
|
1516 } |
|
1517 if( rc==SQLITE_OK ){ |
|
1518 rc = pager_end_transaction(pPager, zMaster[0]!='\0'); |
|
1519 } |
|
1520 if( rc==SQLITE_OK && zMaster[0] ){ |
|
1521 /* If there was a master journal and this routine will return success, |
|
1522 ** see if it is possible to delete the master journal. |
|
1523 */ |
|
1524 rc = pager_delmaster(pPager, zMaster); |
|
1525 } |
|
1526 |
|
1527 /* The Pager.sectorSize variable may have been updated while rolling |
|
1528 ** back a journal created by a process with a different sector size |
|
1529 ** value. Reset it to the correct value for this process. |
|
1530 */ |
|
1531 setSectorSize(pPager); |
|
1532 return rc; |
|
1533 } |
|
1534 |
|
1535 /* |
|
1536 ** Playback the statement journal. |
|
1537 ** |
|
1538 ** This is similar to playing back the transaction journal but with |
|
1539 ** a few extra twists. |
|
1540 ** |
|
1541 ** (1) The number of pages in the database file at the start of |
|
1542 ** the statement is stored in pPager->stmtSize, not in the |
|
1543 ** journal file itself. |
|
1544 ** |
|
1545 ** (2) In addition to playing back the statement journal, also |
|
1546 ** playback all pages of the transaction journal beginning |
|
1547 ** at offset pPager->stmtJSize. |
|
1548 */ |
|
1549 static int pager_stmt_playback(Pager *pPager){ |
|
1550 i64 szJ; /* Size of the full journal */ |
|
1551 i64 hdrOff; |
|
1552 int nRec; /* Number of Records */ |
|
1553 int i; /* Loop counter */ |
|
1554 int rc; |
|
1555 |
|
1556 szJ = pPager->journalOff; |
|
1557 |
|
1558 /* Set hdrOff to be the offset just after the end of the last journal |
|
1559 ** page written before the first journal-header for this statement |
|
1560 ** transaction was written, or the end of the file if no journal |
|
1561 ** header was written. |
|
1562 */ |
|
1563 hdrOff = pPager->stmtHdrOff; |
|
1564 assert( pPager->fullSync || !hdrOff ); |
|
1565 if( !hdrOff ){ |
|
1566 hdrOff = szJ; |
|
1567 } |
|
1568 |
|
1569 /* Truncate the database back to its original size. |
|
1570 */ |
|
1571 rc = pager_truncate(pPager, pPager->stmtSize); |
|
1572 assert( pPager->state>=PAGER_SHARED ); |
|
1573 |
|
1574 /* Figure out how many records are in the statement journal. |
|
1575 */ |
|
1576 assert( pPager->stmtInUse && pPager->journalOpen ); |
|
1577 nRec = pPager->stmtNRec; |
|
1578 |
|
1579 /* Copy original pages out of the statement journal and back into the |
|
1580 ** database file. Note that the statement journal omits checksums from |
|
1581 ** each record since power-failure recovery is not important to statement |
|
1582 ** journals. |
|
1583 */ |
|
1584 for(i=0; i<nRec; i++){ |
|
1585 i64 offset = i*(4+pPager->pageSize); |
|
1586 rc = pager_playback_one_page(pPager, pPager->stfd, offset, 0); |
|
1587 assert( rc!=SQLITE_DONE ); |
|
1588 if( rc!=SQLITE_OK ) goto end_stmt_playback; |
|
1589 } |
|
1590 |
|
1591 /* Now roll some pages back from the transaction journal. Pager.stmtJSize |
|
1592 ** was the size of the journal file when this statement was started, so |
|
1593 ** everything after that needs to be rolled back, either into the |
|
1594 ** database, the memory cache, or both. |
|
1595 ** |
|
1596 ** If it is not zero, then Pager.stmtHdrOff is the offset to the start |
|
1597 ** of the first journal header written during this statement transaction. |
|
1598 */ |
|
1599 pPager->journalOff = pPager->stmtJSize; |
|
1600 pPager->cksumInit = pPager->stmtCksum; |
|
1601 while( pPager->journalOff < hdrOff ){ |
|
1602 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); |
|
1603 assert( rc!=SQLITE_DONE ); |
|
1604 if( rc!=SQLITE_OK ) goto end_stmt_playback; |
|
1605 } |
|
1606 |
|
1607 while( pPager->journalOff < szJ ){ |
|
1608 u32 nJRec; /* Number of Journal Records */ |
|
1609 u32 dummy; |
|
1610 rc = readJournalHdr(pPager, szJ, &nJRec, &dummy); |
|
1611 if( rc!=SQLITE_OK ){ |
|
1612 assert( rc!=SQLITE_DONE ); |
|
1613 goto end_stmt_playback; |
|
1614 } |
|
1615 if( nJRec==0 ){ |
|
1616 nJRec = (szJ - pPager->journalOff) / (pPager->pageSize+8); |
|
1617 } |
|
1618 for(i=nJRec-1; i>=0 && pPager->journalOff < szJ; i--){ |
|
1619 rc = pager_playback_one_page(pPager, pPager->jfd, pPager->journalOff, 1); |
|
1620 assert( rc!=SQLITE_DONE ); |
|
1621 if( rc!=SQLITE_OK ) goto end_stmt_playback; |
|
1622 } |
|
1623 } |
|
1624 |
|
1625 pPager->journalOff = szJ; |
|
1626 |
|
1627 end_stmt_playback: |
|
1628 if( rc==SQLITE_OK) { |
|
1629 pPager->journalOff = szJ; |
|
1630 /* pager_reload_cache(pPager); */ |
|
1631 } |
|
1632 return rc; |
|
1633 } |
|
1634 |
|
1635 /* |
|
1636 ** Change the maximum number of in-memory pages that are allowed. |
|
1637 */ |
|
1638 void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){ |
|
1639 sqlite3PcacheSetCachesize(pPager->pPCache, mxPage); |
|
1640 } |
|
1641 |
|
1642 /* |
|
1643 ** Adjust the robustness of the database to damage due to OS crashes |
|
1644 ** or power failures by changing the number of syncs()s when writing |
|
1645 ** the rollback journal. There are three levels: |
|
1646 ** |
|
1647 ** OFF sqlite3OsSync() is never called. This is the default |
|
1648 ** for temporary and transient files. |
|
1649 ** |
|
1650 ** NORMAL The journal is synced once before writes begin on the |
|
1651 ** database. This is normally adequate protection, but |
|
1652 ** it is theoretically possible, though very unlikely, |
|
1653 ** that an inopertune power failure could leave the journal |
|
1654 ** in a state which would cause damage to the database |
|
1655 ** when it is rolled back. |
|
1656 ** |
|
1657 ** FULL The journal is synced twice before writes begin on the |
|
1658 ** database (with some additional information - the nRec field |
|
1659 ** of the journal header - being written in between the two |
|
1660 ** syncs). If we assume that writing a |
|
1661 ** single disk sector is atomic, then this mode provides |
|
1662 ** assurance that the journal will not be corrupted to the |
|
1663 ** point of causing damage to the database during rollback. |
|
1664 ** |
|
1665 ** Numeric values associated with these states are OFF==1, NORMAL=2, |
|
1666 ** and FULL=3. |
|
1667 */ |
|
1668 #ifndef SQLITE_OMIT_PAGER_PRAGMAS |
|
1669 void sqlite3PagerSetSafetyLevel(Pager *pPager, int level, int bFullFsync){ |
|
1670 pPager->noSync = level==1 || pPager->tempFile || MEMDB; |
|
1671 pPager->fullSync = level==3 && !pPager->tempFile; |
|
1672 pPager->sync_flags = (bFullFsync?SQLITE_SYNC_FULL:SQLITE_SYNC_NORMAL); |
|
1673 if( pPager->noSync ) pPager->needSync = 0; |
|
1674 } |
|
1675 #endif |
|
1676 |
|
1677 /* |
|
1678 ** The following global variable is incremented whenever the library |
|
1679 ** attempts to open a temporary file. This information is used for |
|
1680 ** testing and analysis only. |
|
1681 */ |
|
1682 #ifdef SQLITE_TEST |
|
1683 int sqlite3_opentemp_count = 0; |
|
1684 #endif |
|
1685 |
|
1686 /* |
|
1687 ** Open a temporary file. |
|
1688 ** |
|
1689 ** Write the file descriptor into *fd. Return SQLITE_OK on success or some |
|
1690 ** other error code if we fail. The OS will automatically delete the temporary |
|
1691 ** file when it is closed. |
|
1692 */ |
|
1693 static int sqlite3PagerOpentemp( |
|
1694 Pager *pPager, /* The pager object */ |
|
1695 sqlite3_file *pFile, /* Write the file descriptor here */ |
|
1696 int vfsFlags /* Flags passed through to the VFS */ |
|
1697 ){ |
|
1698 int rc; |
|
1699 |
|
1700 #ifdef SQLITE_TEST |
|
1701 sqlite3_opentemp_count++; /* Used for testing and analysis only */ |
|
1702 #endif |
|
1703 |
|
1704 vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | |
|
1705 SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE; |
|
1706 rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0); |
|
1707 assert( rc!=SQLITE_OK || pFile->pMethods ); |
|
1708 return rc; |
|
1709 } |
|
1710 |
|
1711 static int pagerStress(void *,PgHdr *); |
|
1712 |
|
1713 /* |
|
1714 ** Create a new page cache and put a pointer to the page cache in *ppPager. |
|
1715 ** The file to be cached need not exist. The file is not locked until |
|
1716 ** the first call to sqlite3PagerGet() and is only held open until the |
|
1717 ** last page is released using sqlite3PagerUnref(). |
|
1718 ** |
|
1719 ** If zFilename is NULL then a randomly-named temporary file is created |
|
1720 ** and used as the file to be cached. The file will be deleted |
|
1721 ** automatically when it is closed. |
|
1722 ** |
|
1723 ** If zFilename is ":memory:" then all information is held in cache. |
|
1724 ** It is never written to disk. This can be used to implement an |
|
1725 ** in-memory database. |
|
1726 */ |
|
1727 int sqlite3PagerOpen( |
|
1728 sqlite3_vfs *pVfs, /* The virtual file system to use */ |
|
1729 Pager **ppPager, /* Return the Pager structure here */ |
|
1730 const char *zFilename, /* Name of the database file to open */ |
|
1731 int nExtra, /* Extra bytes append to each in-memory page */ |
|
1732 int flags, /* flags controlling this file */ |
|
1733 int vfsFlags /* flags passed through to sqlite3_vfs.xOpen() */ |
|
1734 ){ |
|
1735 u8 *pPtr; |
|
1736 Pager *pPager = 0; |
|
1737 int rc = SQLITE_OK; |
|
1738 int i; |
|
1739 int tempFile = 0; |
|
1740 int memDb = 0; |
|
1741 int readOnly = 0; |
|
1742 int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; |
|
1743 int noReadlock = (flags & PAGER_NO_READLOCK)!=0; |
|
1744 int journalFileSize = sqlite3JournalSize(pVfs); |
|
1745 int pcacheSize = sqlite3PcacheSize(); |
|
1746 int szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; |
|
1747 char *zPathname = 0; |
|
1748 int nPathname = 0; |
|
1749 |
|
1750 /* The default return is a NULL pointer */ |
|
1751 *ppPager = 0; |
|
1752 |
|
1753 /* Compute and store the full pathname in an allocated buffer pointed |
|
1754 ** to by zPathname, length nPathname. Or, if this is a temporary file, |
|
1755 ** leave both nPathname and zPathname set to 0. |
|
1756 */ |
|
1757 if( zFilename && zFilename[0] ){ |
|
1758 nPathname = pVfs->mxPathname+1; |
|
1759 zPathname = sqlite3Malloc(nPathname*2); |
|
1760 if( zPathname==0 ){ |
|
1761 return SQLITE_NOMEM; |
|
1762 } |
|
1763 #ifndef SQLITE_OMIT_MEMORYDB |
|
1764 if( strcmp(zFilename,":memory:")==0 ){ |
|
1765 memDb = 1; |
|
1766 zPathname[0] = 0; |
|
1767 useJournal = 0; |
|
1768 }else |
|
1769 #endif |
|
1770 { |
|
1771 rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname); |
|
1772 } |
|
1773 if( rc!=SQLITE_OK ){ |
|
1774 sqlite3_free(zPathname); |
|
1775 return rc; |
|
1776 } |
|
1777 nPathname = strlen(zPathname); |
|
1778 } |
|
1779 |
|
1780 /* Allocate memory for the pager structure */ |
|
1781 pPager = sqlite3MallocZero( |
|
1782 sizeof(*pPager) + /* Pager structure */ |
|
1783 pcacheSize + /* PCache object */ |
|
1784 journalFileSize + /* The journal file structure */ |
|
1785 pVfs->szOsFile * 3 + /* The main db and two journal files */ |
|
1786 3*nPathname + 40 /* zFilename, zDirectory, zJournal */ |
|
1787 ); |
|
1788 if( !pPager ){ |
|
1789 sqlite3_free(zPathname); |
|
1790 return SQLITE_NOMEM; |
|
1791 } |
|
1792 pPager->pPCache = (PCache *)&pPager[1]; |
|
1793 pPtr = ((u8 *)&pPager[1]) + pcacheSize; |
|
1794 pPager->vfsFlags = vfsFlags; |
|
1795 pPager->fd = (sqlite3_file*)&pPtr[pVfs->szOsFile*0]; |
|
1796 pPager->stfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*1]; |
|
1797 pPager->jfd = (sqlite3_file*)&pPtr[pVfs->szOsFile*2]; |
|
1798 pPager->zFilename = (char*)&pPtr[pVfs->szOsFile*2+journalFileSize]; |
|
1799 pPager->zDirectory = &pPager->zFilename[nPathname+1]; |
|
1800 pPager->zJournal = &pPager->zDirectory[nPathname+1]; |
|
1801 pPager->pVfs = pVfs; |
|
1802 if( zPathname ){ |
|
1803 memcpy(pPager->zFilename, zPathname, nPathname+1); |
|
1804 sqlite3_free(zPathname); |
|
1805 } |
|
1806 |
|
1807 /* Open the pager file. |
|
1808 */ |
|
1809 if( zFilename && zFilename[0] && !memDb ){ |
|
1810 if( nPathname>(pVfs->mxPathname - sizeof("-journal")) ){ |
|
1811 rc = SQLITE_CANTOPEN; |
|
1812 }else{ |
|
1813 int fout = 0; |
|
1814 rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, |
|
1815 pPager->vfsFlags, &fout); |
|
1816 readOnly = (fout&SQLITE_OPEN_READONLY); |
|
1817 |
|
1818 /* If the file was successfully opened for read/write access, |
|
1819 ** choose a default page size in case we have to create the |
|
1820 ** database file. The default page size is the maximum of: |
|
1821 ** |
|
1822 ** + SQLITE_DEFAULT_PAGE_SIZE, |
|
1823 ** + The value returned by sqlite3OsSectorSize() |
|
1824 ** + The largest page size that can be written atomically. |
|
1825 */ |
|
1826 if( rc==SQLITE_OK && !readOnly ){ |
|
1827 int iSectorSize = sqlite3OsSectorSize(pPager->fd); |
|
1828 if( szPageDflt<iSectorSize ){ |
|
1829 szPageDflt = iSectorSize; |
|
1830 } |
|
1831 #ifdef SQLITE_ENABLE_ATOMIC_WRITE |
|
1832 { |
|
1833 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); |
|
1834 int ii; |
|
1835 assert(SQLITE_IOCAP_ATOMIC512==(512>>8)); |
|
1836 assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8)); |
|
1837 assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536); |
|
1838 for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){ |
|
1839 if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ) szPageDflt = ii; |
|
1840 } |
|
1841 } |
|
1842 #endif |
|
1843 if( szPageDflt>SQLITE_MAX_DEFAULT_PAGE_SIZE ){ |
|
1844 szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE; |
|
1845 } |
|
1846 } |
|
1847 } |
|
1848 }else if( !memDb ){ |
|
1849 /* If a temporary file is requested, it is not opened immediately. |
|
1850 ** In this case we accept the default page size and delay actually |
|
1851 ** opening the file until the first call to OsWrite(). |
|
1852 */ |
|
1853 tempFile = 1; |
|
1854 pPager->state = PAGER_EXCLUSIVE; |
|
1855 } |
|
1856 |
|
1857 if( pPager && rc==SQLITE_OK ){ |
|
1858 pPager->pTmpSpace = sqlite3PageMalloc(szPageDflt); |
|
1859 } |
|
1860 |
|
1861 /* If an error occured in either of the blocks above. |
|
1862 ** Free the Pager structure and close the file. |
|
1863 ** Since the pager is not allocated there is no need to set |
|
1864 ** any Pager.errMask variables. |
|
1865 */ |
|
1866 if( !pPager || !pPager->pTmpSpace ){ |
|
1867 sqlite3OsClose(pPager->fd); |
|
1868 sqlite3_free(pPager); |
|
1869 return ((rc==SQLITE_OK)?SQLITE_NOMEM:rc); |
|
1870 } |
|
1871 nExtra = FORCE_ALIGNMENT(nExtra); |
|
1872 sqlite3PcacheOpen(szPageDflt, nExtra, !memDb, |
|
1873 !memDb?pagerStress:0, (void *)pPager, pPager->pPCache); |
|
1874 |
|
1875 PAGERTRACE3("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename); |
|
1876 IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename)) |
|
1877 |
|
1878 /* Fill in Pager.zDirectory[] */ |
|
1879 memcpy(pPager->zDirectory, pPager->zFilename, nPathname+1); |
|
1880 for(i=strlen(pPager->zDirectory); i>0 && pPager->zDirectory[i-1]!='/'; i--){} |
|
1881 if( i>0 ) pPager->zDirectory[i-1] = 0; |
|
1882 |
|
1883 /* Fill in Pager.zJournal[] */ |
|
1884 if( zPathname ){ |
|
1885 memcpy(pPager->zJournal, pPager->zFilename, nPathname); |
|
1886 memcpy(&pPager->zJournal[nPathname], "-journal", 9); |
|
1887 }else{ |
|
1888 pPager->zJournal = 0; |
|
1889 } |
|
1890 |
|
1891 /* pPager->journalOpen = 0; */ |
|
1892 pPager->useJournal = useJournal; |
|
1893 pPager->noReadlock = noReadlock && readOnly; |
|
1894 /* pPager->stmtOpen = 0; */ |
|
1895 /* pPager->stmtInUse = 0; */ |
|
1896 /* pPager->nRef = 0; */ |
|
1897 pPager->dbSize = memDb-1; |
|
1898 pPager->pageSize = szPageDflt; |
|
1899 /* pPager->stmtSize = 0; */ |
|
1900 /* pPager->stmtJSize = 0; */ |
|
1901 /* pPager->nPage = 0; */ |
|
1902 pPager->mxPage = 100; |
|
1903 pPager->mxPgno = SQLITE_MAX_PAGE_COUNT; |
|
1904 /* pPager->state = PAGER_UNLOCK; */ |
|
1905 assert( pPager->state == (tempFile ? PAGER_EXCLUSIVE : PAGER_UNLOCK) ); |
|
1906 /* pPager->errMask = 0; */ |
|
1907 pPager->tempFile = tempFile; |
|
1908 assert( tempFile==PAGER_LOCKINGMODE_NORMAL |
|
1909 || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE ); |
|
1910 assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 ); |
|
1911 pPager->exclusiveMode = tempFile; |
|
1912 pPager->memDb = memDb; |
|
1913 pPager->readOnly = readOnly; |
|
1914 /* pPager->needSync = 0; */ |
|
1915 pPager->noSync = pPager->tempFile || !useJournal; |
|
1916 pPager->fullSync = (pPager->noSync?0:1); |
|
1917 pPager->sync_flags = SQLITE_SYNC_NORMAL; |
|
1918 /* pPager->pFirst = 0; */ |
|
1919 /* pPager->pFirstSynced = 0; */ |
|
1920 /* pPager->pLast = 0; */ |
|
1921 pPager->nExtra = nExtra; |
|
1922 pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT; |
|
1923 assert(pPager->fd->pMethods||memDb||tempFile); |
|
1924 if( !memDb ){ |
|
1925 setSectorSize(pPager); |
|
1926 } |
|
1927 /* pPager->pBusyHandler = 0; */ |
|
1928 /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */ |
|
1929 *ppPager = pPager; |
|
1930 return SQLITE_OK; |
|
1931 } |
|
1932 |
|
1933 /* |
|
1934 ** Set the busy handler function. |
|
1935 */ |
|
1936 void sqlite3PagerSetBusyhandler(Pager *pPager, BusyHandler *pBusyHandler){ |
|
1937 pPager->pBusyHandler = pBusyHandler; |
|
1938 } |
|
1939 |
|
1940 /* |
|
1941 ** Set the reinitializer for this pager. If not NULL, the reinitializer |
|
1942 ** is called when the content of a page in cache is restored to its original |
|
1943 ** value as a result of a rollback. The callback gives higher-level code |
|
1944 ** an opportunity to restore the EXTRA section to agree with the restored |
|
1945 ** page data. |
|
1946 */ |
|
1947 void sqlite3PagerSetReiniter(Pager *pPager, void (*xReinit)(DbPage*)){ |
|
1948 pPager->xReiniter = xReinit; |
|
1949 } |
|
1950 |
|
1951 /* |
|
1952 ** Set the page size to *pPageSize. If the suggest new page size is |
|
1953 ** inappropriate, then an alternative page size is set to that |
|
1954 ** value before returning. |
|
1955 */ |
|
1956 int sqlite3PagerSetPagesize(Pager *pPager, u16 *pPageSize){ |
|
1957 int rc = pPager->errCode; |
|
1958 if( rc==SQLITE_OK ){ |
|
1959 u16 pageSize = *pPageSize; |
|
1960 assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) ); |
|
1961 if( pageSize && pageSize!=pPager->pageSize |
|
1962 && (pPager->memDb==0 || pPager->dbSize==0) |
|
1963 && sqlite3PcacheRefCount(pPager->pPCache)==0 |
|
1964 ){ |
|
1965 char *pNew = (char *)sqlite3PageMalloc(pageSize); |
|
1966 if( !pNew ){ |
|
1967 rc = SQLITE_NOMEM; |
|
1968 }else{ |
|
1969 pager_reset(pPager); |
|
1970 pPager->pageSize = pageSize; |
|
1971 if( !pPager->memDb ) setSectorSize(pPager); |
|
1972 sqlite3PageFree(pPager->pTmpSpace); |
|
1973 pPager->pTmpSpace = pNew; |
|
1974 sqlite3PcacheSetPageSize(pPager->pPCache, pageSize); |
|
1975 } |
|
1976 } |
|
1977 *pPageSize = pPager->pageSize; |
|
1978 } |
|
1979 return rc; |
|
1980 } |
|
1981 |
|
1982 /* |
|
1983 ** Return a pointer to the "temporary page" buffer held internally |
|
1984 ** by the pager. This is a buffer that is big enough to hold the |
|
1985 ** entire content of a database page. This buffer is used internally |
|
1986 ** during rollback and will be overwritten whenever a rollback |
|
1987 ** occurs. But other modules are free to use it too, as long as |
|
1988 ** no rollbacks are happening. |
|
1989 */ |
|
1990 void *sqlite3PagerTempSpace(Pager *pPager){ |
|
1991 return pPager->pTmpSpace; |
|
1992 } |
|
1993 |
|
1994 /* |
|
1995 ** Attempt to set the maximum database page count if mxPage is positive. |
|
1996 ** Make no changes if mxPage is zero or negative. And never reduce the |
|
1997 ** maximum page count below the current size of the database. |
|
1998 ** |
|
1999 ** Regardless of mxPage, return the current maximum page count. |
|
2000 */ |
|
2001 int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){ |
|
2002 if( mxPage>0 ){ |
|
2003 pPager->mxPgno = mxPage; |
|
2004 } |
|
2005 sqlite3PagerPagecount(pPager, 0); |
|
2006 return pPager->mxPgno; |
|
2007 } |
|
2008 |
|
2009 /* |
|
2010 ** The following set of routines are used to disable the simulated |
|
2011 ** I/O error mechanism. These routines are used to avoid simulated |
|
2012 ** errors in places where we do not care about errors. |
|
2013 ** |
|
2014 ** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops |
|
2015 ** and generate no code. |
|
2016 */ |
|
2017 #ifdef SQLITE_TEST |
|
2018 extern int sqlite3_io_error_pending; |
|
2019 extern int sqlite3_io_error_hit; |
|
2020 static int saved_cnt; |
|
2021 void disable_simulated_io_errors(void){ |
|
2022 saved_cnt = sqlite3_io_error_pending; |
|
2023 sqlite3_io_error_pending = -1; |
|
2024 } |
|
2025 void enable_simulated_io_errors(void){ |
|
2026 sqlite3_io_error_pending = saved_cnt; |
|
2027 } |
|
2028 #else |
|
2029 # define disable_simulated_io_errors() |
|
2030 # define enable_simulated_io_errors() |
|
2031 #endif |
|
2032 |
|
2033 /* |
|
2034 ** Read the first N bytes from the beginning of the file into memory |
|
2035 ** that pDest points to. |
|
2036 ** |
|
2037 ** No error checking is done. The rational for this is that this function |
|
2038 ** may be called even if the file does not exist or contain a header. In |
|
2039 ** these cases sqlite3OsRead() will return an error, to which the correct |
|
2040 ** response is to zero the memory at pDest and continue. A real IO error |
|
2041 ** will presumably recur and be picked up later (Todo: Think about this). |
|
2042 */ |
|
2043 int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){ |
|
2044 int rc = SQLITE_OK; |
|
2045 memset(pDest, 0, N); |
|
2046 assert(MEMDB||pPager->fd->pMethods||pPager->tempFile); |
|
2047 if( pPager->fd->pMethods ){ |
|
2048 IOTRACE(("DBHDR %p 0 %d\n", pPager, N)) |
|
2049 rc = sqlite3OsRead(pPager->fd, pDest, N, 0); |
|
2050 if( rc==SQLITE_IOERR_SHORT_READ ){ |
|
2051 rc = SQLITE_OK; |
|
2052 } |
|
2053 } |
|
2054 return rc; |
|
2055 } |
|
2056 |
|
2057 /* |
|
2058 ** Return the total number of pages in the disk file associated with |
|
2059 ** pPager. |
|
2060 ** |
|
2061 ** If the PENDING_BYTE lies on the page directly after the end of the |
|
2062 ** file, then consider this page part of the file too. For example, if |
|
2063 ** PENDING_BYTE is byte 4096 (the first byte of page 5) and the size of the |
|
2064 ** file is 4096 bytes, 5 is returned instead of 4. |
|
2065 */ |
|
2066 int sqlite3PagerPagecount(Pager *pPager, int *pnPage){ |
|
2067 i64 n = 0; |
|
2068 int rc; |
|
2069 assert( pPager!=0 ); |
|
2070 if( pPager->errCode ){ |
|
2071 rc = pPager->errCode; |
|
2072 return rc; |
|
2073 } |
|
2074 if( pPager->dbSize>=0 ){ |
|
2075 n = pPager->dbSize; |
|
2076 } else { |
|
2077 assert(pPager->fd->pMethods||pPager->tempFile); |
|
2078 if( (pPager->fd->pMethods) |
|
2079 && (rc = sqlite3OsFileSize(pPager->fd, &n))!=SQLITE_OK ){ |
|
2080 pager_error(pPager, rc); |
|
2081 return rc; |
|
2082 } |
|
2083 if( n>0 && n<pPager->pageSize ){ |
|
2084 n = 1; |
|
2085 }else{ |
|
2086 n /= pPager->pageSize; |
|
2087 } |
|
2088 if( pPager->state!=PAGER_UNLOCK ){ |
|
2089 pPager->dbSize = n; |
|
2090 } |
|
2091 } |
|
2092 if( n==(PENDING_BYTE/pPager->pageSize) ){ |
|
2093 n++; |
|
2094 } |
|
2095 if( n>pPager->mxPgno ){ |
|
2096 pPager->mxPgno = n; |
|
2097 } |
|
2098 if( pnPage ){ |
|
2099 *pnPage = n; |
|
2100 } |
|
2101 return SQLITE_OK; |
|
2102 } |
|
2103 |
|
2104 /* |
|
2105 ** Forward declaration |
|
2106 */ |
|
2107 static int syncJournal(Pager*); |
|
2108 |
|
2109 /* |
|
2110 ** This routine is used to truncate the cache when a database |
|
2111 ** is truncated. Drop from the cache all pages whose pgno is |
|
2112 ** larger than pPager->dbSize and is unreferenced. |
|
2113 ** |
|
2114 ** Referenced pages larger than pPager->dbSize are zeroed. |
|
2115 ** |
|
2116 ** Actually, at the point this routine is called, it would be |
|
2117 ** an error to have a referenced page. But rather than delete |
|
2118 ** that page and guarantee a subsequent segfault, it seems better |
|
2119 ** to zero it and hope that we error out sanely. |
|
2120 */ |
|
2121 static void pager_truncate_cache(Pager *pPager){ |
|
2122 sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize); |
|
2123 } |
|
2124 |
|
2125 /* |
|
2126 ** Try to obtain a lock on a file. Invoke the busy callback if the lock |
|
2127 ** is currently not available. Repeat until the busy callback returns |
|
2128 ** false or until the lock succeeds. |
|
2129 ** |
|
2130 ** Return SQLITE_OK on success and an error code if we cannot obtain |
|
2131 ** the lock. |
|
2132 */ |
|
2133 static int pager_wait_on_lock(Pager *pPager, int locktype){ |
|
2134 int rc; |
|
2135 |
|
2136 /* The OS lock values must be the same as the Pager lock values */ |
|
2137 assert( PAGER_SHARED==SHARED_LOCK ); |
|
2138 assert( PAGER_RESERVED==RESERVED_LOCK ); |
|
2139 assert( PAGER_EXCLUSIVE==EXCLUSIVE_LOCK ); |
|
2140 |
|
2141 /* If the file is currently unlocked then the size must be unknown */ |
|
2142 assert( pPager->state>=PAGER_SHARED || pPager->dbSize<0 || MEMDB ); |
|
2143 |
|
2144 if( pPager->state>=locktype ){ |
|
2145 rc = SQLITE_OK; |
|
2146 }else{ |
|
2147 if( pPager->pBusyHandler ) pPager->pBusyHandler->nBusy = 0; |
|
2148 do { |
|
2149 rc = sqlite3OsLock(pPager->fd, locktype); |
|
2150 }while( rc==SQLITE_BUSY && sqlite3InvokeBusyHandler(pPager->pBusyHandler) ); |
|
2151 if( rc==SQLITE_OK ){ |
|
2152 pPager->state = locktype; |
|
2153 IOTRACE(("LOCK %p %d\n", pPager, locktype)) |
|
2154 } |
|
2155 } |
|
2156 return rc; |
|
2157 } |
|
2158 |
|
2159 /* |
|
2160 ** Truncate the file to the number of pages specified. |
|
2161 */ |
|
2162 int sqlite3PagerTruncate(Pager *pPager, Pgno nPage){ |
|
2163 int rc = SQLITE_OK; |
|
2164 assert( pPager->state>=PAGER_SHARED || MEMDB ); |
|
2165 |
|
2166 |
|
2167 sqlite3PagerPagecount(pPager, 0); |
|
2168 if( pPager->errCode ){ |
|
2169 rc = pPager->errCode; |
|
2170 }else if( nPage<(unsigned)pPager->dbSize ){ |
|
2171 if( MEMDB ){ |
|
2172 pPager->dbSize = nPage; |
|
2173 pager_truncate_cache(pPager); |
|
2174 }else{ |
|
2175 rc = syncJournal(pPager); |
|
2176 if( rc==SQLITE_OK ){ |
|
2177 /* Get an exclusive lock on the database before truncating. */ |
|
2178 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); |
|
2179 } |
|
2180 if( rc==SQLITE_OK ){ |
|
2181 rc = pager_truncate(pPager, nPage); |
|
2182 } |
|
2183 } |
|
2184 } |
|
2185 |
|
2186 return rc; |
|
2187 } |
|
2188 |
|
2189 /* |
|
2190 ** Shutdown the page cache. Free all memory and close all files. |
|
2191 ** |
|
2192 ** If a transaction was in progress when this routine is called, that |
|
2193 ** transaction is rolled back. All outstanding pages are invalidated |
|
2194 ** and their memory is freed. Any attempt to use a page associated |
|
2195 ** with this page cache after this function returns will likely |
|
2196 ** result in a coredump. |
|
2197 ** |
|
2198 ** This function always succeeds. If a transaction is active an attempt |
|
2199 ** is made to roll it back. If an error occurs during the rollback |
|
2200 ** a hot journal may be left in the filesystem but no error is returned |
|
2201 ** to the caller. |
|
2202 */ |
|
2203 int sqlite3PagerClose(Pager *pPager){ |
|
2204 |
|
2205 disable_simulated_io_errors(); |
|
2206 sqlite3BeginBenignMalloc(); |
|
2207 pPager->errCode = 0; |
|
2208 pPager->exclusiveMode = 0; |
|
2209 pager_reset(pPager); |
|
2210 pagerUnlockAndRollback(pPager); |
|
2211 enable_simulated_io_errors(); |
|
2212 sqlite3EndBenignMalloc(); |
|
2213 PAGERTRACE2("CLOSE %d\n", PAGERID(pPager)); |
|
2214 IOTRACE(("CLOSE %p\n", pPager)) |
|
2215 if( pPager->journalOpen ){ |
|
2216 sqlite3OsClose(pPager->jfd); |
|
2217 } |
|
2218 sqlite3BitvecDestroy(pPager->pInJournal); |
|
2219 sqlite3BitvecDestroy(pPager->pAlwaysRollback); |
|
2220 if( pPager->stmtOpen ){ |
|
2221 sqlite3OsClose(pPager->stfd); |
|
2222 } |
|
2223 sqlite3OsClose(pPager->fd); |
|
2224 /* Temp files are automatically deleted by the OS |
|
2225 ** if( pPager->tempFile ){ |
|
2226 ** sqlite3OsDelete(pPager->zFilename); |
|
2227 ** } |
|
2228 */ |
|
2229 |
|
2230 sqlite3PageFree(pPager->pTmpSpace); |
|
2231 sqlite3PcacheClose(pPager->pPCache); |
|
2232 sqlite3_free(pPager); |
|
2233 return SQLITE_OK; |
|
2234 } |
|
2235 |
|
2236 #if !defined(NDEBUG) || defined(SQLITE_TEST) |
|
2237 /* |
|
2238 ** Return the page number for the given page data. |
|
2239 */ |
|
2240 Pgno sqlite3PagerPagenumber(DbPage *p){ |
|
2241 return p->pgno; |
|
2242 } |
|
2243 #endif |
|
2244 |
|
2245 /* |
|
2246 ** Increment the reference count for a page. The input pointer is |
|
2247 ** a reference to the page data. |
|
2248 */ |
|
2249 int sqlite3PagerRef(DbPage *pPg){ |
|
2250 sqlite3PcacheRef(pPg); |
|
2251 return SQLITE_OK; |
|
2252 } |
|
2253 |
|
2254 /* |
|
2255 ** Sync the journal. In other words, make sure all the pages that have |
|
2256 ** been written to the journal have actually reached the surface of the |
|
2257 ** disk. It is not safe to modify the original database file until after |
|
2258 ** the journal has been synced. If the original database is modified before |
|
2259 ** the journal is synced and a power failure occurs, the unsynced journal |
|
2260 ** data would be lost and we would be unable to completely rollback the |
|
2261 ** database changes. Database corruption would occur. |
|
2262 ** |
|
2263 ** This routine also updates the nRec field in the header of the journal. |
|
2264 ** (See comments on the pager_playback() routine for additional information.) |
|
2265 ** If the sync mode is FULL, two syncs will occur. First the whole journal |
|
2266 ** is synced, then the nRec field is updated, then a second sync occurs. |
|
2267 ** |
|
2268 ** For temporary databases, we do not care if we are able to rollback |
|
2269 ** after a power failure, so no sync occurs. |
|
2270 ** |
|
2271 ** If the IOCAP_SEQUENTIAL flag is set for the persistent media on which |
|
2272 ** the database is stored, then OsSync() is never called on the journal |
|
2273 ** file. In this case all that is required is to update the nRec field in |
|
2274 ** the journal header. |
|
2275 ** |
|
2276 ** This routine clears the needSync field of every page current held in |
|
2277 ** memory. |
|
2278 */ |
|
2279 static int syncJournal(Pager *pPager){ |
|
2280 int rc = SQLITE_OK; |
|
2281 |
|
2282 /* Sync the journal before modifying the main database |
|
2283 ** (assuming there is a journal and it needs to be synced.) |
|
2284 */ |
|
2285 if( pPager->needSync ){ |
|
2286 if( !pPager->tempFile ){ |
|
2287 int iDc = sqlite3OsDeviceCharacteristics(pPager->fd); |
|
2288 assert( pPager->journalOpen ); |
|
2289 |
|
2290 if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){ |
|
2291 /* Write the nRec value into the journal file header. If in |
|
2292 ** full-synchronous mode, sync the journal first. This ensures that |
|
2293 ** all data has really hit the disk before nRec is updated to mark |
|
2294 ** it as a candidate for rollback. |
|
2295 ** |
|
2296 ** This is not required if the persistent media supports the |
|
2297 ** SAFE_APPEND property. Because in this case it is not possible |
|
2298 ** for garbage data to be appended to the file, the nRec field |
|
2299 ** is populated with 0xFFFFFFFF when the journal header is written |
|
2300 ** and never needs to be updated. |
|
2301 */ |
|
2302 i64 jrnlOff; |
|
2303 if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ |
|
2304 PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager)); |
|
2305 IOTRACE(("JSYNC %p\n", pPager)) |
|
2306 rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags); |
|
2307 if( rc!=0 ) return rc; |
|
2308 } |
|
2309 |
|
2310 jrnlOff = pPager->journalHdr + sizeof(aJournalMagic); |
|
2311 IOTRACE(("JHDR %p %lld %d\n", pPager, jrnlOff, 4)); |
|
2312 rc = write32bits(pPager->jfd, jrnlOff, pPager->nRec); |
|
2313 if( rc ) return rc; |
|
2314 } |
|
2315 if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){ |
|
2316 PAGERTRACE2("SYNC journal of %d\n", PAGERID(pPager)); |
|
2317 IOTRACE(("JSYNC %p\n", pPager)) |
|
2318 rc = sqlite3OsSync(pPager->jfd, pPager->sync_flags| |
|
2319 (pPager->sync_flags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0) |
|
2320 ); |
|
2321 if( rc!=0 ) return rc; |
|
2322 } |
|
2323 pPager->journalStarted = 1; |
|
2324 } |
|
2325 pPager->needSync = 0; |
|
2326 |
|
2327 /* Erase the needSync flag from every page. |
|
2328 */ |
|
2329 sqlite3PcacheClearFlags(pPager->pPCache, PGHDR_NEED_SYNC); |
|
2330 } |
|
2331 |
|
2332 #ifndef NDEBUG |
|
2333 /* If the Pager.needSync flag is clear then the PgHdr.needSync |
|
2334 ** flag must also be clear for all pages. Verify that this |
|
2335 ** invariant is true. |
|
2336 */ |
|
2337 else{ |
|
2338 sqlite3PcacheAssertFlags(pPager->pPCache, 0, PGHDR_NEED_SYNC); |
|
2339 } |
|
2340 #endif |
|
2341 |
|
2342 return rc; |
|
2343 } |
|
2344 |
|
2345 /* |
|
2346 ** Given a list of pages (connected by the PgHdr.pDirty pointer) write |
|
2347 ** every one of those pages out to the database file. No calls are made |
|
2348 ** to the page-cache to mark the pages as clean. It is the responsibility |
|
2349 ** of the caller to use PcacheCleanAll() or PcacheMakeClean() to mark |
|
2350 ** the pages as clean. |
|
2351 */ |
|
2352 static int pager_write_pagelist(PgHdr *pList){ |
|
2353 Pager *pPager; |
|
2354 int rc; |
|
2355 |
|
2356 if( pList==0 ) return SQLITE_OK; |
|
2357 pPager = pList->pPager; |
|
2358 |
|
2359 /* At this point there may be either a RESERVED or EXCLUSIVE lock on the |
|
2360 ** database file. If there is already an EXCLUSIVE lock, the following |
|
2361 ** calls to sqlite3OsLock() are no-ops. |
|
2362 ** |
|
2363 ** Moving the lock from RESERVED to EXCLUSIVE actually involves going |
|
2364 ** through an intermediate state PENDING. A PENDING lock prevents new |
|
2365 ** readers from attaching to the database but is unsufficient for us to |
|
2366 ** write. The idea of a PENDING lock is to prevent new readers from |
|
2367 ** coming in while we wait for existing readers to clear. |
|
2368 ** |
|
2369 ** While the pager is in the RESERVED state, the original database file |
|
2370 ** is unchanged and we can rollback without having to playback the |
|
2371 ** journal into the original database file. Once we transition to |
|
2372 ** EXCLUSIVE, it means the database file has been changed and any rollback |
|
2373 ** will require a journal playback. |
|
2374 */ |
|
2375 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); |
|
2376 if( rc!=SQLITE_OK ){ |
|
2377 return rc; |
|
2378 } |
|
2379 |
|
2380 while( pList ){ |
|
2381 |
|
2382 /* If the file has not yet been opened, open it now. */ |
|
2383 if( !pPager->fd->pMethods ){ |
|
2384 assert(pPager->tempFile); |
|
2385 rc = sqlite3PagerOpentemp(pPager, pPager->fd, pPager->vfsFlags); |
|
2386 if( rc ) return rc; |
|
2387 } |
|
2388 |
|
2389 /* If there are dirty pages in the page cache with page numbers greater |
|
2390 ** than Pager.dbSize, this means sqlite3PagerTruncate() was called to |
|
2391 ** make the file smaller (presumably by auto-vacuum code). Do not write |
|
2392 ** any such pages to the file. |
|
2393 */ |
|
2394 if( pList->pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){ |
|
2395 i64 offset = (pList->pgno-1)*(i64)pPager->pageSize; |
|
2396 char *pData = CODEC2(pPager, pList->pData, pList->pgno, 6); |
|
2397 PAGERTRACE4("STORE %d page %d hash(%08x)\n", |
|
2398 PAGERID(pPager), pList->pgno, pager_pagehash(pList)); |
|
2399 IOTRACE(("PGOUT %p %d\n", pPager, pList->pgno)); |
|
2400 rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset); |
|
2401 PAGER_INCR(sqlite3_pager_writedb_count); |
|
2402 PAGER_INCR(pPager->nWrite); |
|
2403 if( pList->pgno==1 ){ |
|
2404 memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers)); |
|
2405 } |
|
2406 } |
|
2407 #ifndef NDEBUG |
|
2408 else{ |
|
2409 PAGERTRACE3("NOSTORE %d page %d\n", PAGERID(pPager), pList->pgno); |
|
2410 } |
|
2411 #endif |
|
2412 if( rc ) return rc; |
|
2413 #ifdef SQLITE_CHECK_PAGES |
|
2414 pList->pageHash = pager_pagehash(pList); |
|
2415 #endif |
|
2416 pList = pList->pDirty; |
|
2417 } |
|
2418 |
|
2419 return SQLITE_OK; |
|
2420 } |
|
2421 |
|
2422 /* |
|
2423 ** This function is called by the pcache layer when it has reached some |
|
2424 ** soft memory limit. The argument is a pointer to a purgeable Pager |
|
2425 ** object. This function attempts to make a single dirty page that has no |
|
2426 ** outstanding references (if one exists) clean so that it can be recycled |
|
2427 ** by the pcache layer. |
|
2428 */ |
|
2429 static int pagerStress(void *p, PgHdr *pPg){ |
|
2430 Pager *pPager = (Pager *)p; |
|
2431 int rc = SQLITE_OK; |
|
2432 |
|
2433 if( pPager->doNotSync ){ |
|
2434 return SQLITE_OK; |
|
2435 } |
|
2436 |
|
2437 assert( pPg->flags&PGHDR_DIRTY ); |
|
2438 if( pPager->errCode==SQLITE_OK ){ |
|
2439 if( pPg->flags&PGHDR_NEED_SYNC ){ |
|
2440 rc = syncJournal(pPager); |
|
2441 if( rc==SQLITE_OK && pPager->fullSync && |
|
2442 !(sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND) |
|
2443 ){ |
|
2444 pPager->nRec = 0; |
|
2445 rc = writeJournalHdr(pPager); |
|
2446 } |
|
2447 } |
|
2448 if( rc==SQLITE_OK ){ |
|
2449 pPg->pDirty = 0; |
|
2450 rc = pager_write_pagelist(pPg); |
|
2451 } |
|
2452 if( rc!=SQLITE_OK ){ |
|
2453 pager_error(pPager, rc); |
|
2454 } |
|
2455 } |
|
2456 |
|
2457 if( rc==SQLITE_OK ){ |
|
2458 sqlite3PcacheMakeClean(pPg); |
|
2459 } |
|
2460 return rc; |
|
2461 } |
|
2462 |
|
2463 |
|
2464 /* |
|
2465 ** Return 1 if there is a hot journal on the given pager. |
|
2466 ** A hot journal is one that needs to be played back. |
|
2467 ** |
|
2468 ** If the current size of the database file is 0 but a journal file |
|
2469 ** exists, that is probably an old journal left over from a prior |
|
2470 ** database with the same name. Just delete the journal. |
|
2471 ** |
|
2472 ** Return negative if unable to determine the status of the journal. |
|
2473 ** |
|
2474 ** This routine does not open the journal file to examine its |
|
2475 ** content. Hence, the journal might contain the name of a master |
|
2476 ** journal file that has been deleted, and hence not be hot. Or |
|
2477 ** the header of the journal might be zeroed out. This routine |
|
2478 ** does not discover these cases of a non-hot journal - if the |
|
2479 ** journal file exists and is not empty this routine assumes it |
|
2480 ** is hot. The pager_playback() routine will discover that the |
|
2481 ** journal file is not really hot and will no-op. |
|
2482 */ |
|
2483 static int hasHotJournal(Pager *pPager, int *pExists){ |
|
2484 sqlite3_vfs *pVfs = pPager->pVfs; |
|
2485 int rc = SQLITE_OK; |
|
2486 int exists; |
|
2487 int locked; |
|
2488 assert( pPager!=0 ); |
|
2489 assert( pPager->useJournal ); |
|
2490 assert( pPager->fd->pMethods ); |
|
2491 *pExists = 0; |
|
2492 rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists); |
|
2493 if( rc==SQLITE_OK && exists ){ |
|
2494 rc = sqlite3OsCheckReservedLock(pPager->fd, &locked); |
|
2495 } |
|
2496 if( rc==SQLITE_OK && exists && !locked ){ |
|
2497 int nPage; |
|
2498 rc = sqlite3PagerPagecount(pPager, &nPage); |
|
2499 if( rc==SQLITE_OK ){ |
|
2500 if( nPage==0 ){ |
|
2501 sqlite3OsDelete(pVfs, pPager->zJournal, 0); |
|
2502 }else{ |
|
2503 *pExists = 1; |
|
2504 } |
|
2505 } |
|
2506 } |
|
2507 return rc; |
|
2508 } |
|
2509 |
|
2510 /* |
|
2511 ** Read the content of page pPg out of the database file. |
|
2512 */ |
|
2513 static int readDbPage(Pager *pPager, PgHdr *pPg, Pgno pgno){ |
|
2514 int rc; |
|
2515 i64 offset; |
|
2516 assert( MEMDB==0 ); |
|
2517 assert(pPager->fd->pMethods||pPager->tempFile); |
|
2518 if( !pPager->fd->pMethods ){ |
|
2519 return SQLITE_IOERR_SHORT_READ; |
|
2520 } |
|
2521 offset = (pgno-1)*(i64)pPager->pageSize; |
|
2522 rc = sqlite3OsRead(pPager->fd, pPg->pData, pPager->pageSize, offset); |
|
2523 PAGER_INCR(sqlite3_pager_readdb_count); |
|
2524 PAGER_INCR(pPager->nRead); |
|
2525 IOTRACE(("PGIN %p %d\n", pPager, pgno)); |
|
2526 if( pgno==1 ){ |
|
2527 memcpy(&pPager->dbFileVers, &((u8*)pPg->pData)[24], |
|
2528 sizeof(pPager->dbFileVers)); |
|
2529 } |
|
2530 CODEC1(pPager, pPg->pData, pPg->pgno, 3); |
|
2531 PAGERTRACE4("FETCH %d page %d hash(%08x)\n", |
|
2532 PAGERID(pPager), pPg->pgno, pager_pagehash(pPg)); |
|
2533 return rc; |
|
2534 } |
|
2535 |
|
2536 |
|
2537 /* |
|
2538 ** This function is called to obtain the shared lock required before |
|
2539 ** data may be read from the pager cache. If the shared lock has already |
|
2540 ** been obtained, this function is a no-op. |
|
2541 ** |
|
2542 ** Immediately after obtaining the shared lock (if required), this function |
|
2543 ** checks for a hot-journal file. If one is found, an emergency rollback |
|
2544 ** is performed immediately. |
|
2545 */ |
|
2546 static int pagerSharedLock(Pager *pPager){ |
|
2547 int rc = SQLITE_OK; |
|
2548 int isErrorReset = 0; |
|
2549 |
|
2550 /* If this database is opened for exclusive access, has no outstanding |
|
2551 ** page references and is in an error-state, now is the chance to clear |
|
2552 ** the error. Discard the contents of the pager-cache and treat any |
|
2553 ** open journal file as a hot-journal. |
|
2554 */ |
|
2555 if( !MEMDB && pPager->exclusiveMode |
|
2556 && sqlite3PcacheRefCount(pPager->pPCache)==0 && pPager->errCode |
|
2557 ){ |
|
2558 if( pPager->journalOpen ){ |
|
2559 isErrorReset = 1; |
|
2560 } |
|
2561 pPager->errCode = SQLITE_OK; |
|
2562 pager_reset(pPager); |
|
2563 } |
|
2564 |
|
2565 /* If the pager is still in an error state, do not proceed. The error |
|
2566 ** state will be cleared at some point in the future when all page |
|
2567 ** references are dropped and the cache can be discarded. |
|
2568 */ |
|
2569 if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ |
|
2570 return pPager->errCode; |
|
2571 } |
|
2572 |
|
2573 if( pPager->state==PAGER_UNLOCK || isErrorReset ){ |
|
2574 sqlite3_vfs *pVfs = pPager->pVfs; |
|
2575 if( !MEMDB ){ |
|
2576 int isHotJournal; |
|
2577 assert( sqlite3PcacheRefCount(pPager->pPCache)==0 ); |
|
2578 if( !pPager->noReadlock ){ |
|
2579 rc = pager_wait_on_lock(pPager, SHARED_LOCK); |
|
2580 if( rc!=SQLITE_OK ){ |
|
2581 assert( pPager->state==PAGER_UNLOCK ); |
|
2582 return pager_error(pPager, rc); |
|
2583 } |
|
2584 assert( pPager->state>=SHARED_LOCK ); |
|
2585 } |
|
2586 |
|
2587 /* If a journal file exists, and there is no RESERVED lock on the |
|
2588 ** database file, then it either needs to be played back or deleted. |
|
2589 */ |
|
2590 if( !isErrorReset ){ |
|
2591 rc = hasHotJournal(pPager, &isHotJournal); |
|
2592 if( rc!=SQLITE_OK ){ |
|
2593 goto failed; |
|
2594 } |
|
2595 } |
|
2596 if( isErrorReset || isHotJournal ){ |
|
2597 /* Get an EXCLUSIVE lock on the database file. At this point it is |
|
2598 ** important that a RESERVED lock is not obtained on the way to the |
|
2599 ** EXCLUSIVE lock. If it were, another process might open the |
|
2600 ** database file, detect the RESERVED lock, and conclude that the |
|
2601 ** database is safe to read while this process is still rolling it |
|
2602 ** back. |
|
2603 ** |
|
2604 ** Because the intermediate RESERVED lock is not requested, the |
|
2605 ** second process will get to this point in the code and fail to |
|
2606 ** obtain its own EXCLUSIVE lock on the database file. |
|
2607 */ |
|
2608 if( pPager->state<EXCLUSIVE_LOCK ){ |
|
2609 rc = sqlite3OsLock(pPager->fd, EXCLUSIVE_LOCK); |
|
2610 if( rc!=SQLITE_OK ){ |
|
2611 rc = pager_error(pPager, rc); |
|
2612 goto failed; |
|
2613 } |
|
2614 pPager->state = PAGER_EXCLUSIVE; |
|
2615 } |
|
2616 |
|
2617 /* Open the journal for read/write access. This is because in |
|
2618 ** exclusive-access mode the file descriptor will be kept open and |
|
2619 ** possibly used for a transaction later on. On some systems, the |
|
2620 ** OsTruncate() call used in exclusive-access mode also requires |
|
2621 ** a read/write file handle. |
|
2622 */ |
|
2623 if( !isErrorReset && pPager->journalOpen==0 ){ |
|
2624 int res; |
|
2625 rc = sqlite3OsAccess(pVfs,pPager->zJournal,SQLITE_ACCESS_EXISTS,&res); |
|
2626 if( rc==SQLITE_OK ){ |
|
2627 if( res ){ |
|
2628 int fout = 0; |
|
2629 int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL; |
|
2630 assert( !pPager->tempFile ); |
|
2631 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout); |
|
2632 assert( rc!=SQLITE_OK || pPager->jfd->pMethods ); |
|
2633 if( fout&SQLITE_OPEN_READONLY ){ |
|
2634 rc = SQLITE_BUSY; |
|
2635 sqlite3OsClose(pPager->jfd); |
|
2636 } |
|
2637 }else{ |
|
2638 /* If the journal does not exist, that means some other process |
|
2639 ** has already rolled it back */ |
|
2640 rc = SQLITE_BUSY; |
|
2641 } |
|
2642 } |
|
2643 } |
|
2644 if( rc!=SQLITE_OK ){ |
|
2645 if( rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_UNLOCK |
|
2646 && rc!=SQLITE_IOERR_NOMEM |
|
2647 ){ |
|
2648 rc = SQLITE_BUSY; |
|
2649 } |
|
2650 goto failed; |
|
2651 } |
|
2652 pPager->journalOpen = 1; |
|
2653 pPager->journalStarted = 0; |
|
2654 pPager->journalOff = 0; |
|
2655 pPager->setMaster = 0; |
|
2656 pPager->journalHdr = 0; |
|
2657 |
|
2658 /* Playback and delete the journal. Drop the database write |
|
2659 ** lock and reacquire the read lock. |
|
2660 */ |
|
2661 rc = pager_playback(pPager, 1); |
|
2662 if( rc!=SQLITE_OK ){ |
|
2663 rc = pager_error(pPager, rc); |
|
2664 goto failed; |
|
2665 } |
|
2666 assert(pPager->state==PAGER_SHARED || |
|
2667 (pPager->exclusiveMode && pPager->state>PAGER_SHARED) |
|
2668 ); |
|
2669 } |
|
2670 |
|
2671 if( sqlite3PcachePagecount(pPager->pPCache)>0 ){ |
|
2672 /* The shared-lock has just been acquired on the database file |
|
2673 ** and there are already pages in the cache (from a previous |
|
2674 ** read or write transaction). Check to see if the database |
|
2675 ** has been modified. If the database has changed, flush the |
|
2676 ** cache. |
|
2677 ** |
|
2678 ** Database changes is detected by looking at 15 bytes beginning |
|
2679 ** at offset 24 into the file. The first 4 of these 16 bytes are |
|
2680 ** a 32-bit counter that is incremented with each change. The |
|
2681 ** other bytes change randomly with each file change when |
|
2682 ** a codec is in use. |
|
2683 ** |
|
2684 ** There is a vanishingly small chance that a change will not be |
|
2685 ** detected. The chance of an undetected change is so small that |
|
2686 ** it can be neglected. |
|
2687 */ |
|
2688 char dbFileVers[sizeof(pPager->dbFileVers)]; |
|
2689 sqlite3PagerPagecount(pPager, 0); |
|
2690 |
|
2691 if( pPager->errCode ){ |
|
2692 rc = pPager->errCode; |
|
2693 goto failed; |
|
2694 } |
|
2695 |
|
2696 if( pPager->dbSize>0 ){ |
|
2697 IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers))); |
|
2698 rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24); |
|
2699 if( rc!=SQLITE_OK ){ |
|
2700 goto failed; |
|
2701 } |
|
2702 }else{ |
|
2703 memset(dbFileVers, 0, sizeof(dbFileVers)); |
|
2704 } |
|
2705 |
|
2706 if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){ |
|
2707 pager_reset(pPager); |
|
2708 } |
|
2709 } |
|
2710 } |
|
2711 assert( pPager->exclusiveMode || pPager->state<=PAGER_SHARED ); |
|
2712 if( pPager->state==PAGER_UNLOCK ){ |
|
2713 pPager->state = PAGER_SHARED; |
|
2714 } |
|
2715 } |
|
2716 |
|
2717 failed: |
|
2718 if( rc!=SQLITE_OK ){ |
|
2719 /* pager_unlock() is a no-op for exclusive mode and in-memory databases. */ |
|
2720 pager_unlock(pPager); |
|
2721 } |
|
2722 return rc; |
|
2723 } |
|
2724 |
|
2725 /* |
|
2726 ** Make sure we have the content for a page. If the page was |
|
2727 ** previously acquired with noContent==1, then the content was |
|
2728 ** just initialized to zeros instead of being read from disk. |
|
2729 ** But now we need the real data off of disk. So make sure we |
|
2730 ** have it. Read it in if we do not have it already. |
|
2731 */ |
|
2732 static int pager_get_content(PgHdr *pPg){ |
|
2733 if( pPg->flags&PGHDR_NEED_READ ){ |
|
2734 int rc = readDbPage(pPg->pPager, pPg, pPg->pgno); |
|
2735 if( rc==SQLITE_OK ){ |
|
2736 pPg->flags &= ~PGHDR_NEED_READ; |
|
2737 }else{ |
|
2738 return rc; |
|
2739 } |
|
2740 } |
|
2741 return SQLITE_OK; |
|
2742 } |
|
2743 |
|
2744 /* |
|
2745 ** If the reference count has reached zero, and the pager is not in the |
|
2746 ** middle of a write transaction or opened in exclusive mode, unlock it. |
|
2747 */ |
|
2748 static void pagerUnlockIfUnused(Pager *pPager){ |
|
2749 if( (sqlite3PcacheRefCount(pPager->pPCache)==0) |
|
2750 && (!pPager->exclusiveMode || pPager->journalOff>0) |
|
2751 ){ |
|
2752 pagerUnlockAndRollback(pPager); |
|
2753 } |
|
2754 } |
|
2755 |
|
2756 /* |
|
2757 ** Drop a page from the cache using sqlite3PcacheDrop(). |
|
2758 ** |
|
2759 ** If this means there are now no pages with references to them, a rollback |
|
2760 ** occurs and the lock on the database is removed. |
|
2761 */ |
|
2762 static void pagerDropPage(DbPage *pPg){ |
|
2763 Pager *pPager = pPg->pPager; |
|
2764 sqlite3PcacheDrop(pPg); |
|
2765 pagerUnlockIfUnused(pPager); |
|
2766 } |
|
2767 |
|
2768 /* |
|
2769 ** Acquire a page. |
|
2770 ** |
|
2771 ** A read lock on the disk file is obtained when the first page is acquired. |
|
2772 ** This read lock is dropped when the last page is released. |
|
2773 ** |
|
2774 ** This routine works for any page number greater than 0. If the database |
|
2775 ** file is smaller than the requested page, then no actual disk |
|
2776 ** read occurs and the memory image of the page is initialized to |
|
2777 ** all zeros. The extra data appended to a page is always initialized |
|
2778 ** to zeros the first time a page is loaded into memory. |
|
2779 ** |
|
2780 ** The acquisition might fail for several reasons. In all cases, |
|
2781 ** an appropriate error code is returned and *ppPage is set to NULL. |
|
2782 ** |
|
2783 ** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt |
|
2784 ** to find a page in the in-memory cache first. If the page is not already |
|
2785 ** in memory, this routine goes to disk to read it in whereas Lookup() |
|
2786 ** just returns 0. This routine acquires a read-lock the first time it |
|
2787 ** has to go to disk, and could also playback an old journal if necessary. |
|
2788 ** Since Lookup() never goes to disk, it never has to deal with locks |
|
2789 ** or journal files. |
|
2790 ** |
|
2791 ** If noContent is false, the page contents are actually read from disk. |
|
2792 ** If noContent is true, it means that we do not care about the contents |
|
2793 ** of the page at this time, so do not do a disk read. Just fill in the |
|
2794 ** page content with zeros. But mark the fact that we have not read the |
|
2795 ** content by setting the PgHdr.needRead flag. Later on, if |
|
2796 ** sqlite3PagerWrite() is called on this page or if this routine is |
|
2797 ** called again with noContent==0, that means that the content is needed |
|
2798 ** and the disk read should occur at that point. |
|
2799 */ |
|
2800 int sqlite3PagerAcquire( |
|
2801 Pager *pPager, /* The pager open on the database file */ |
|
2802 Pgno pgno, /* Page number to fetch */ |
|
2803 DbPage **ppPage, /* Write a pointer to the page here */ |
|
2804 int noContent /* Do not bother reading content from disk if true */ |
|
2805 ){ |
|
2806 PgHdr *pPg = 0; |
|
2807 int rc; |
|
2808 |
|
2809 assert( pPager->state==PAGER_UNLOCK |
|
2810 || sqlite3PcacheRefCount(pPager->pPCache)>0 |
|
2811 || pgno==1 |
|
2812 ); |
|
2813 |
|
2814 /* The maximum page number is 2^31. Return SQLITE_CORRUPT if a page |
|
2815 ** number greater than this, or zero, is requested. |
|
2816 */ |
|
2817 if( pgno>PAGER_MAX_PGNO || pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){ |
|
2818 return SQLITE_CORRUPT_BKPT; |
|
2819 } |
|
2820 |
|
2821 /* Make sure we have not hit any critical errors. |
|
2822 */ |
|
2823 assert( pPager!=0 ); |
|
2824 *ppPage = 0; |
|
2825 |
|
2826 /* If this is the first page accessed, then get a SHARED lock |
|
2827 ** on the database file. pagerSharedLock() is a no-op if |
|
2828 ** a database lock is already held. |
|
2829 */ |
|
2830 rc = pagerSharedLock(pPager); |
|
2831 if( rc!=SQLITE_OK ){ |
|
2832 return rc; |
|
2833 } |
|
2834 assert( pPager->state!=PAGER_UNLOCK ); |
|
2835 |
|
2836 rc = sqlite3PcacheFetch(pPager->pPCache, pgno, 1, &pPg); |
|
2837 if( rc!=SQLITE_OK ){ |
|
2838 return rc; |
|
2839 } |
|
2840 if( pPg->pPager==0 ){ |
|
2841 /* The pager cache has created a new page. Its content needs to |
|
2842 ** be initialized. |
|
2843 */ |
|
2844 int nMax; |
|
2845 PAGER_INCR(pPager->nMiss); |
|
2846 pPg->pPager = pPager; |
|
2847 if( sqlite3BitvecTest(pPager->pInJournal, pgno) ){ |
|
2848 assert( !MEMDB ); |
|
2849 pPg->flags |= PGHDR_IN_JOURNAL; |
|
2850 } |
|
2851 memset(pPg->pExtra, 0, pPager->nExtra); |
|
2852 |
|
2853 rc = sqlite3PagerPagecount(pPager, &nMax); |
|
2854 if( rc!=SQLITE_OK ){ |
|
2855 sqlite3PagerUnref(pPg); |
|
2856 return rc; |
|
2857 } |
|
2858 |
|
2859 if( nMax<(int)pgno || MEMDB || noContent ){ |
|
2860 if( pgno>pPager->mxPgno ){ |
|
2861 sqlite3PagerUnref(pPg); |
|
2862 return SQLITE_FULL; |
|
2863 } |
|
2864 memset(pPg->pData, 0, pPager->pageSize); |
|
2865 if( noContent ){ |
|
2866 pPg->flags |= PGHDR_NEED_READ; |
|
2867 } |
|
2868 IOTRACE(("ZERO %p %d\n", pPager, pgno)); |
|
2869 }else{ |
|
2870 rc = readDbPage(pPager, pPg, pgno); |
|
2871 if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){ |
|
2872 /* sqlite3PagerUnref(pPg); */ |
|
2873 pagerDropPage(pPg); |
|
2874 return rc; |
|
2875 } |
|
2876 } |
|
2877 #ifdef SQLITE_CHECK_PAGES |
|
2878 pPg->pageHash = pager_pagehash(pPg); |
|
2879 #endif |
|
2880 }else{ |
|
2881 /* The requested page is in the page cache. */ |
|
2882 assert(sqlite3PcacheRefCount(pPager->pPCache)>0 || pgno==1); |
|
2883 PAGER_INCR(pPager->nHit); |
|
2884 if( !noContent ){ |
|
2885 rc = pager_get_content(pPg); |
|
2886 if( rc ){ |
|
2887 sqlite3PagerUnref(pPg); |
|
2888 return rc; |
|
2889 } |
|
2890 } |
|
2891 } |
|
2892 |
|
2893 *ppPage = pPg; |
|
2894 return SQLITE_OK; |
|
2895 } |
|
2896 |
|
2897 /* |
|
2898 ** Acquire a page if it is already in the in-memory cache. Do |
|
2899 ** not read the page from disk. Return a pointer to the page, |
|
2900 ** or 0 if the page is not in cache. |
|
2901 ** |
|
2902 ** See also sqlite3PagerGet(). The difference between this routine |
|
2903 ** and sqlite3PagerGet() is that _get() will go to the disk and read |
|
2904 ** in the page if the page is not already in cache. This routine |
|
2905 ** returns NULL if the page is not in cache or if a disk I/O error |
|
2906 ** has ever happened. |
|
2907 */ |
|
2908 DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){ |
|
2909 PgHdr *pPg = 0; |
|
2910 assert( pPager!=0 ); |
|
2911 assert( pgno!=0 ); |
|
2912 |
|
2913 if( (pPager->state!=PAGER_UNLOCK) |
|
2914 && (pPager->errCode==SQLITE_OK || pPager->errCode==SQLITE_FULL) |
|
2915 ){ |
|
2916 sqlite3PcacheFetch(pPager->pPCache, pgno, 0, &pPg); |
|
2917 } |
|
2918 |
|
2919 return pPg; |
|
2920 } |
|
2921 |
|
2922 /* |
|
2923 ** Release a page. |
|
2924 ** |
|
2925 ** If the number of references to the page drop to zero, then the |
|
2926 ** page is added to the LRU list. When all references to all pages |
|
2927 ** are released, a rollback occurs and the lock on the database is |
|
2928 ** removed. |
|
2929 */ |
|
2930 int sqlite3PagerUnref(DbPage *pPg){ |
|
2931 if( pPg ){ |
|
2932 Pager *pPager = pPg->pPager; |
|
2933 sqlite3PcacheRelease(pPg); |
|
2934 pagerUnlockIfUnused(pPager); |
|
2935 } |
|
2936 return SQLITE_OK; |
|
2937 } |
|
2938 |
|
2939 /* |
|
2940 ** Create a journal file for pPager. There should already be a RESERVED |
|
2941 ** or EXCLUSIVE lock on the database file when this routine is called. |
|
2942 ** |
|
2943 ** Return SQLITE_OK if everything. Return an error code and release the |
|
2944 ** write lock if anything goes wrong. |
|
2945 */ |
|
2946 static int pager_open_journal(Pager *pPager){ |
|
2947 sqlite3_vfs *pVfs = pPager->pVfs; |
|
2948 int flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_CREATE); |
|
2949 |
|
2950 int rc; |
|
2951 assert( !MEMDB ); |
|
2952 assert( pPager->state>=PAGER_RESERVED ); |
|
2953 assert( pPager->useJournal ); |
|
2954 assert( pPager->pInJournal==0 ); |
|
2955 sqlite3PagerPagecount(pPager, 0); |
|
2956 pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize); |
|
2957 if( pPager->pInJournal==0 ){ |
|
2958 rc = SQLITE_NOMEM; |
|
2959 goto failed_to_open_journal; |
|
2960 } |
|
2961 |
|
2962 if( pPager->journalOpen==0 ){ |
|
2963 if( pPager->tempFile ){ |
|
2964 flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL); |
|
2965 }else{ |
|
2966 flags |= (SQLITE_OPEN_MAIN_JOURNAL); |
|
2967 } |
|
2968 #ifdef SQLITE_ENABLE_ATOMIC_WRITE |
|
2969 rc = sqlite3JournalOpen( |
|
2970 pVfs, pPager->zJournal, pPager->jfd, flags, jrnlBufferSize(pPager) |
|
2971 ); |
|
2972 #else |
|
2973 rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, flags, 0); |
|
2974 #endif |
|
2975 assert( rc!=SQLITE_OK || pPager->jfd->pMethods ); |
|
2976 pPager->journalOff = 0; |
|
2977 pPager->setMaster = 0; |
|
2978 pPager->journalHdr = 0; |
|
2979 if( rc!=SQLITE_OK ){ |
|
2980 if( rc==SQLITE_NOMEM ){ |
|
2981 sqlite3OsDelete(pVfs, pPager->zJournal, 0); |
|
2982 } |
|
2983 goto failed_to_open_journal; |
|
2984 } |
|
2985 } |
|
2986 pPager->journalOpen = 1; |
|
2987 pPager->journalStarted = 0; |
|
2988 pPager->needSync = 0; |
|
2989 pPager->nRec = 0; |
|
2990 if( pPager->errCode ){ |
|
2991 rc = pPager->errCode; |
|
2992 goto failed_to_open_journal; |
|
2993 } |
|
2994 pPager->origDbSize = pPager->dbSize; |
|
2995 |
|
2996 rc = writeJournalHdr(pPager); |
|
2997 |
|
2998 if( pPager->stmtAutoopen && rc==SQLITE_OK ){ |
|
2999 rc = sqlite3PagerStmtBegin(pPager); |
|
3000 } |
|
3001 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && rc!=SQLITE_IOERR_NOMEM ){ |
|
3002 rc = pager_end_transaction(pPager, 0); |
|
3003 if( rc==SQLITE_OK ){ |
|
3004 rc = SQLITE_FULL; |
|
3005 } |
|
3006 } |
|
3007 return rc; |
|
3008 |
|
3009 failed_to_open_journal: |
|
3010 sqlite3BitvecDestroy(pPager->pInJournal); |
|
3011 pPager->pInJournal = 0; |
|
3012 return rc; |
|
3013 } |
|
3014 |
|
3015 /* |
|
3016 ** Acquire a write-lock on the database. The lock is removed when |
|
3017 ** the any of the following happen: |
|
3018 ** |
|
3019 ** * sqlite3PagerCommitPhaseTwo() is called. |
|
3020 ** * sqlite3PagerRollback() is called. |
|
3021 ** * sqlite3PagerClose() is called. |
|
3022 ** * sqlite3PagerUnref() is called to on every outstanding page. |
|
3023 ** |
|
3024 ** The first parameter to this routine is a pointer to any open page of the |
|
3025 ** database file. Nothing changes about the page - it is used merely to |
|
3026 ** acquire a pointer to the Pager structure and as proof that there is |
|
3027 ** already a read-lock on the database. |
|
3028 ** |
|
3029 ** The second parameter indicates how much space in bytes to reserve for a |
|
3030 ** master journal file-name at the start of the journal when it is created. |
|
3031 ** |
|
3032 ** A journal file is opened if this is not a temporary file. For temporary |
|
3033 ** files, the opening of the journal file is deferred until there is an |
|
3034 ** actual need to write to the journal. |
|
3035 ** |
|
3036 ** If the database is already reserved for writing, this routine is a no-op. |
|
3037 ** |
|
3038 ** If exFlag is true, go ahead and get an EXCLUSIVE lock on the file |
|
3039 ** immediately instead of waiting until we try to flush the cache. The |
|
3040 ** exFlag is ignored if a transaction is already active. |
|
3041 */ |
|
3042 int sqlite3PagerBegin(DbPage *pPg, int exFlag){ |
|
3043 Pager *pPager = pPg->pPager; |
|
3044 int rc = SQLITE_OK; |
|
3045 assert( pPg->nRef>0 ); |
|
3046 assert( pPager->state!=PAGER_UNLOCK ); |
|
3047 if( pPager->state==PAGER_SHARED ){ |
|
3048 assert( pPager->pInJournal==0 ); |
|
3049 sqlite3PcacheAssertFlags(pPager->pPCache, 0, PGHDR_IN_JOURNAL); |
|
3050 if( MEMDB ){ |
|
3051 pPager->state = PAGER_EXCLUSIVE; |
|
3052 pPager->origDbSize = pPager->dbSize; |
|
3053 }else{ |
|
3054 rc = sqlite3OsLock(pPager->fd, RESERVED_LOCK); |
|
3055 if( rc==SQLITE_OK ){ |
|
3056 pPager->state = PAGER_RESERVED; |
|
3057 if( exFlag ){ |
|
3058 rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK); |
|
3059 } |
|
3060 } |
|
3061 if( rc!=SQLITE_OK ){ |
|
3062 return rc; |
|
3063 } |
|
3064 pPager->dirtyCache = 0; |
|
3065 PAGERTRACE2("TRANSACTION %d\n", PAGERID(pPager)); |
|
3066 if( pPager->useJournal && !pPager->tempFile |
|
3067 && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ |
|
3068 rc = pager_open_journal(pPager); |
|
3069 } |
|
3070 } |
|
3071 }else if( pPager->journalOpen && pPager->journalOff==0 ){ |
|
3072 /* This happens when the pager was in exclusive-access mode the last |
|
3073 ** time a (read or write) transaction was successfully concluded |
|
3074 ** by this connection. Instead of deleting the journal file it was |
|
3075 ** kept open and either was truncated to 0 bytes or its header was |
|
3076 ** overwritten with zeros. |
|
3077 */ |
|
3078 assert( pPager->nRec==0 ); |
|
3079 assert( pPager->origDbSize==0 ); |
|
3080 assert( pPager->pInJournal==0 ); |
|
3081 sqlite3PagerPagecount(pPager, 0); |
|
3082 pPager->pInJournal = sqlite3BitvecCreate( pPager->dbSize ); |
|
3083 if( !pPager->pInJournal ){ |
|
3084 rc = SQLITE_NOMEM; |
|
3085 }else{ |
|
3086 pPager->origDbSize = pPager->dbSize; |
|
3087 rc = writeJournalHdr(pPager); |
|
3088 } |
|
3089 } |
|
3090 assert( !pPager->journalOpen || pPager->journalOff>0 || rc!=SQLITE_OK ); |
|
3091 return rc; |
|
3092 } |
|
3093 |
|
3094 /* |
|
3095 ** Make a page dirty. Set its dirty flag and add it to the dirty |
|
3096 ** page list. |
|
3097 */ |
|
3098 static void makeDirty(PgHdr *pPg){ |
|
3099 sqlite3PcacheMakeDirty(pPg); |
|
3100 } |
|
3101 |
|
3102 /* |
|
3103 ** Make a page clean. Clear its dirty bit and remove it from the |
|
3104 ** dirty page list. |
|
3105 */ |
|
3106 static void makeClean(PgHdr *pPg){ |
|
3107 sqlite3PcacheMakeClean(pPg); |
|
3108 } |
|
3109 |
|
3110 |
|
3111 /* |
|
3112 ** Mark a data page as writeable. The page is written into the journal |
|
3113 ** if it is not there already. This routine must be called before making |
|
3114 ** changes to a page. |
|
3115 ** |
|
3116 ** The first time this routine is called, the pager creates a new |
|
3117 ** journal and acquires a RESERVED lock on the database. If the RESERVED |
|
3118 ** lock could not be acquired, this routine returns SQLITE_BUSY. The |
|
3119 ** calling routine must check for that return value and be careful not to |
|
3120 ** change any page data until this routine returns SQLITE_OK. |
|
3121 ** |
|
3122 ** If the journal file could not be written because the disk is full, |
|
3123 ** then this routine returns SQLITE_FULL and does an immediate rollback. |
|
3124 ** All subsequent write attempts also return SQLITE_FULL until there |
|
3125 ** is a call to sqlite3PagerCommit() or sqlite3PagerRollback() to |
|
3126 ** reset. |
|
3127 */ |
|
3128 static int pager_write(PgHdr *pPg){ |
|
3129 void *pData = pPg->pData; |
|
3130 Pager *pPager = pPg->pPager; |
|
3131 int rc = SQLITE_OK; |
|
3132 |
|
3133 /* Check for errors |
|
3134 */ |
|
3135 if( pPager->errCode ){ |
|
3136 return pPager->errCode; |
|
3137 } |
|
3138 if( pPager->readOnly ){ |
|
3139 return SQLITE_PERM; |
|
3140 } |
|
3141 |
|
3142 assert( !pPager->setMaster ); |
|
3143 |
|
3144 CHECK_PAGE(pPg); |
|
3145 |
|
3146 /* If this page was previously acquired with noContent==1, that means |
|
3147 ** we didn't really read in the content of the page. This can happen |
|
3148 ** (for example) when the page is being moved to the freelist. But |
|
3149 ** now we are (perhaps) moving the page off of the freelist for |
|
3150 ** reuse and we need to know its original content so that content |
|
3151 ** can be stored in the rollback journal. So do the read at this |
|
3152 ** time. |
|
3153 */ |
|
3154 rc = pager_get_content(pPg); |
|
3155 if( rc ){ |
|
3156 return rc; |
|
3157 } |
|
3158 |
|
3159 /* Mark the page as dirty. If the page has already been written |
|
3160 ** to the journal then we can return right away. |
|
3161 */ |
|
3162 makeDirty(pPg); |
|
3163 if( (pPg->flags&PGHDR_IN_JOURNAL) |
|
3164 && (pageInStatement(pPg) || pPager->stmtInUse==0) |
|
3165 ){ |
|
3166 pPager->dirtyCache = 1; |
|
3167 pPager->dbModified = 1; |
|
3168 }else{ |
|
3169 |
|
3170 /* If we get this far, it means that the page needs to be |
|
3171 ** written to the transaction journal or the ckeckpoint journal |
|
3172 ** or both. |
|
3173 ** |
|
3174 ** First check to see that the transaction journal exists and |
|
3175 ** create it if it does not. |
|
3176 */ |
|
3177 assert( pPager->state!=PAGER_UNLOCK ); |
|
3178 rc = sqlite3PagerBegin(pPg, 0); |
|
3179 if( rc!=SQLITE_OK ){ |
|
3180 return rc; |
|
3181 } |
|
3182 assert( pPager->state>=PAGER_RESERVED ); |
|
3183 if( !pPager->journalOpen && pPager->useJournal |
|
3184 && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ |
|
3185 rc = pager_open_journal(pPager); |
|
3186 if( rc!=SQLITE_OK ) return rc; |
|
3187 } |
|
3188 pPager->dirtyCache = 1; |
|
3189 pPager->dbModified = 1; |
|
3190 |
|
3191 /* The transaction journal now exists and we have a RESERVED or an |
|
3192 ** EXCLUSIVE lock on the main database file. Write the current page to |
|
3193 ** the transaction journal if it is not there already. |
|
3194 */ |
|
3195 if( !(pPg->flags&PGHDR_IN_JOURNAL) && (pPager->journalOpen || MEMDB) ){ |
|
3196 if( (int)pPg->pgno <= pPager->origDbSize ){ |
|
3197 if( MEMDB ){ |
|
3198 PAGERTRACE3("JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); |
|
3199 rc = sqlite3PcachePreserve(pPg, 0); |
|
3200 if( rc!=SQLITE_OK ){ |
|
3201 return rc; |
|
3202 } |
|
3203 }else{ |
|
3204 u32 cksum; |
|
3205 char *pData2; |
|
3206 |
|
3207 /* We should never write to the journal file the page that |
|
3208 ** contains the database locks. The following assert verifies |
|
3209 ** that we do not. */ |
|
3210 assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) ); |
|
3211 pData2 = CODEC2(pPager, pData, pPg->pgno, 7); |
|
3212 cksum = pager_cksum(pPager, (u8*)pData2); |
|
3213 rc = write32bits(pPager->jfd, pPager->journalOff, pPg->pgno); |
|
3214 if( rc==SQLITE_OK ){ |
|
3215 rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, |
|
3216 pPager->journalOff + 4); |
|
3217 pPager->journalOff += pPager->pageSize+4; |
|
3218 } |
|
3219 if( rc==SQLITE_OK ){ |
|
3220 rc = write32bits(pPager->jfd, pPager->journalOff, cksum); |
|
3221 pPager->journalOff += 4; |
|
3222 } |
|
3223 IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno, |
|
3224 pPager->journalOff, pPager->pageSize)); |
|
3225 PAGER_INCR(sqlite3_pager_writej_count); |
|
3226 PAGERTRACE5("JOURNAL %d page %d needSync=%d hash(%08x)\n", |
|
3227 PAGERID(pPager), pPg->pgno, |
|
3228 ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg)); |
|
3229 |
|
3230 /* An error has occured writing to the journal file. The |
|
3231 ** transaction will be rolled back by the layer above. |
|
3232 */ |
|
3233 if( rc!=SQLITE_OK ){ |
|
3234 return rc; |
|
3235 } |
|
3236 |
|
3237 pPager->nRec++; |
|
3238 assert( pPager->pInJournal!=0 ); |
|
3239 sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); |
|
3240 if( !pPager->noSync ){ |
|
3241 pPg->flags |= PGHDR_NEED_SYNC; |
|
3242 } |
|
3243 if( pPager->stmtInUse ){ |
|
3244 sqlite3BitvecSet(pPager->pInStmt, pPg->pgno); |
|
3245 } |
|
3246 } |
|
3247 }else{ |
|
3248 if( !pPager->journalStarted && !pPager->noSync ){ |
|
3249 pPg->flags |= PGHDR_NEED_SYNC; |
|
3250 } |
|
3251 PAGERTRACE4("APPEND %d page %d needSync=%d\n", |
|
3252 PAGERID(pPager), pPg->pgno, |
|
3253 ((pPg->flags&PGHDR_NEED_SYNC)?1:0)); |
|
3254 } |
|
3255 if( pPg->flags&PGHDR_NEED_SYNC ){ |
|
3256 pPager->needSync = 1; |
|
3257 } |
|
3258 pPg->flags |= PGHDR_IN_JOURNAL; |
|
3259 } |
|
3260 |
|
3261 /* If the statement journal is open and the page is not in it, |
|
3262 ** then write the current page to the statement journal. Note that |
|
3263 ** the statement journal format differs from the standard journal format |
|
3264 ** in that it omits the checksums and the header. |
|
3265 */ |
|
3266 if( pPager->stmtInUse |
|
3267 && !pageInStatement(pPg) |
|
3268 && (int)pPg->pgno<=pPager->stmtSize |
|
3269 ){ |
|
3270 assert( (pPg->flags&PGHDR_IN_JOURNAL) |
|
3271 || (int)pPg->pgno>pPager->origDbSize ); |
|
3272 if( MEMDB ){ |
|
3273 rc = sqlite3PcachePreserve(pPg, 1); |
|
3274 if( rc!=SQLITE_OK ){ |
|
3275 return rc; |
|
3276 } |
|
3277 PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); |
|
3278 }else{ |
|
3279 i64 offset = pPager->stmtNRec*(4+pPager->pageSize); |
|
3280 char *pData2 = CODEC2(pPager, pData, pPg->pgno, 7); |
|
3281 rc = write32bits(pPager->stfd, offset, pPg->pgno); |
|
3282 if( rc==SQLITE_OK ){ |
|
3283 rc = sqlite3OsWrite(pPager->stfd, pData2, pPager->pageSize, offset+4); |
|
3284 } |
|
3285 PAGERTRACE3("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno); |
|
3286 if( rc!=SQLITE_OK ){ |
|
3287 return rc; |
|
3288 } |
|
3289 pPager->stmtNRec++; |
|
3290 assert( pPager->pInStmt!=0 ); |
|
3291 sqlite3BitvecSet(pPager->pInStmt, pPg->pgno); |
|
3292 } |
|
3293 } |
|
3294 } |
|
3295 |
|
3296 /* Update the database size and return. |
|
3297 */ |
|
3298 assert( pPager->state>=PAGER_SHARED ); |
|
3299 if( pPager->dbSize<(int)pPg->pgno ){ |
|
3300 pPager->dbSize = pPg->pgno; |
|
3301 if( !MEMDB && pPager->dbSize==PENDING_BYTE/pPager->pageSize ){ |
|
3302 pPager->dbSize++; |
|
3303 } |
|
3304 } |
|
3305 return rc; |
|
3306 } |
|
3307 |
|
3308 /* |
|
3309 ** This function is used to mark a data-page as writable. It uses |
|
3310 ** pager_write() to open a journal file (if it is not already open) |
|
3311 ** and write the page *pData to the journal. |
|
3312 ** |
|
3313 ** The difference between this function and pager_write() is that this |
|
3314 ** function also deals with the special case where 2 or more pages |
|
3315 ** fit on a single disk sector. In this case all co-resident pages |
|
3316 ** must have been written to the journal file before returning. |
|
3317 */ |
|
3318 int sqlite3PagerWrite(DbPage *pDbPage){ |
|
3319 int rc = SQLITE_OK; |
|
3320 |
|
3321 PgHdr *pPg = pDbPage; |
|
3322 Pager *pPager = pPg->pPager; |
|
3323 Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize); |
|
3324 |
|
3325 if( !MEMDB && nPagePerSector>1 ){ |
|
3326 Pgno nPageCount; /* Total number of pages in database file */ |
|
3327 Pgno pg1; /* First page of the sector pPg is located on. */ |
|
3328 int nPage; /* Number of pages starting at pg1 to journal */ |
|
3329 int ii; |
|
3330 int needSync = 0; |
|
3331 |
|
3332 /* Set the doNotSync flag to 1. This is because we cannot allow a journal |
|
3333 ** header to be written between the pages journaled by this function. |
|
3334 */ |
|
3335 assert( pPager->doNotSync==0 ); |
|
3336 pPager->doNotSync = 1; |
|
3337 |
|
3338 /* This trick assumes that both the page-size and sector-size are |
|
3339 ** an integer power of 2. It sets variable pg1 to the identifier |
|
3340 ** of the first page of the sector pPg is located on. |
|
3341 */ |
|
3342 pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; |
|
3343 |
|
3344 sqlite3PagerPagecount(pPager, (int *)&nPageCount); |
|
3345 if( pPg->pgno>nPageCount ){ |
|
3346 nPage = (pPg->pgno - pg1)+1; |
|
3347 }else if( (pg1+nPagePerSector-1)>nPageCount ){ |
|
3348 nPage = nPageCount+1-pg1; |
|
3349 }else{ |
|
3350 nPage = nPagePerSector; |
|
3351 } |
|
3352 assert(nPage>0); |
|
3353 assert(pg1<=pPg->pgno); |
|
3354 assert((pg1+nPage)>pPg->pgno); |
|
3355 |
|
3356 for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){ |
|
3357 Pgno pg = pg1+ii; |
|
3358 PgHdr *pPage; |
|
3359 if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){ |
|
3360 if( pg!=PAGER_MJ_PGNO(pPager) ){ |
|
3361 rc = sqlite3PagerGet(pPager, pg, &pPage); |
|
3362 if( rc==SQLITE_OK ){ |
|
3363 rc = pager_write(pPage); |
|
3364 if( pPage->flags&PGHDR_NEED_SYNC ){ |
|
3365 needSync = 1; |
|
3366 } |
|
3367 sqlite3PagerUnref(pPage); |
|
3368 } |
|
3369 } |
|
3370 }else if( (pPage = pager_lookup(pPager, pg))!=0 ){ |
|
3371 if( pPage->flags&PGHDR_NEED_SYNC ){ |
|
3372 needSync = 1; |
|
3373 } |
|
3374 sqlite3PagerUnref(pPage); |
|
3375 } |
|
3376 } |
|
3377 |
|
3378 /* If the PgHdr.needSync flag is set for any of the nPage pages |
|
3379 ** starting at pg1, then it needs to be set for all of them. Because |
|
3380 ** writing to any of these nPage pages may damage the others, the |
|
3381 ** journal file must contain sync()ed copies of all of them |
|
3382 ** before any of them can be written out to the database file. |
|
3383 */ |
|
3384 if( needSync ){ |
|
3385 assert( !MEMDB && pPager->noSync==0 ); |
|
3386 for(ii=0; ii<nPage && needSync; ii++){ |
|
3387 PgHdr *pPage = pager_lookup(pPager, pg1+ii); |
|
3388 if( pPage ) pPage->flags |= PGHDR_NEED_SYNC; |
|
3389 sqlite3PagerUnref(pPage); |
|
3390 } |
|
3391 assert(pPager->needSync); |
|
3392 } |
|
3393 |
|
3394 assert( pPager->doNotSync==1 ); |
|
3395 pPager->doNotSync = 0; |
|
3396 }else{ |
|
3397 rc = pager_write(pDbPage); |
|
3398 } |
|
3399 return rc; |
|
3400 } |
|
3401 |
|
3402 /* |
|
3403 ** Return TRUE if the page given in the argument was previously passed |
|
3404 ** to sqlite3PagerWrite(). In other words, return TRUE if it is ok |
|
3405 ** to change the content of the page. |
|
3406 */ |
|
3407 #ifndef NDEBUG |
|
3408 int sqlite3PagerIswriteable(DbPage *pPg){ |
|
3409 return pPg->flags&PGHDR_DIRTY; |
|
3410 } |
|
3411 #endif |
|
3412 |
|
3413 /* |
|
3414 ** A call to this routine tells the pager that it is not necessary to |
|
3415 ** write the information on page pPg back to the disk, even though |
|
3416 ** that page might be marked as dirty. |
|
3417 ** |
|
3418 ** The overlying software layer calls this routine when all of the data |
|
3419 ** on the given page is unused. The pager marks the page as clean so |
|
3420 ** that it does not get written to disk. |
|
3421 ** |
|
3422 ** Tests show that this optimization, together with the |
|
3423 ** sqlite3PagerDontRollback() below, more than double the speed |
|
3424 ** of large INSERT operations and quadruple the speed of large DELETEs. |
|
3425 ** |
|
3426 ** When this routine is called, set the alwaysRollback flag to true. |
|
3427 ** Subsequent calls to sqlite3PagerDontRollback() for the same page |
|
3428 ** will thereafter be ignored. This is necessary to avoid a problem |
|
3429 ** where a page with data is added to the freelist during one part of |
|
3430 ** a transaction then removed from the freelist during a later part |
|
3431 ** of the same transaction and reused for some other purpose. When it |
|
3432 ** is first added to the freelist, this routine is called. When reused, |
|
3433 ** the sqlite3PagerDontRollback() routine is called. But because the |
|
3434 ** page contains critical data, we still need to be sure it gets |
|
3435 ** rolled back in spite of the sqlite3PagerDontRollback() call. |
|
3436 */ |
|
3437 int sqlite3PagerDontWrite(DbPage *pDbPage){ |
|
3438 PgHdr *pPg = pDbPage; |
|
3439 Pager *pPager = pPg->pPager; |
|
3440 int rc; |
|
3441 |
|
3442 if( MEMDB || pPg->pgno>pPager->origDbSize ){ |
|
3443 return SQLITE_OK; |
|
3444 } |
|
3445 if( pPager->pAlwaysRollback==0 ){ |
|
3446 assert( pPager->pInJournal ); |
|
3447 pPager->pAlwaysRollback = sqlite3BitvecCreate(pPager->origDbSize); |
|
3448 if( !pPager->pAlwaysRollback ){ |
|
3449 return SQLITE_NOMEM; |
|
3450 } |
|
3451 } |
|
3452 rc = sqlite3BitvecSet(pPager->pAlwaysRollback, pPg->pgno); |
|
3453 |
|
3454 if( rc==SQLITE_OK && (pPg->flags&PGHDR_DIRTY) && !pPager->stmtInUse ){ |
|
3455 assert( pPager->state>=PAGER_SHARED ); |
|
3456 if( pPager->dbSize==(int)pPg->pgno && pPager->origDbSize<pPager->dbSize ){ |
|
3457 /* If this pages is the last page in the file and the file has grown |
|
3458 ** during the current transaction, then do NOT mark the page as clean. |
|
3459 ** When the database file grows, we must make sure that the last page |
|
3460 ** gets written at least once so that the disk file will be the correct |
|
3461 ** size. If you do not write this page and the size of the file |
|
3462 ** on the disk ends up being too small, that can lead to database |
|
3463 ** corruption during the next transaction. |
|
3464 */ |
|
3465 }else{ |
|
3466 PAGERTRACE3("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)); |
|
3467 IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno)) |
|
3468 pPg->flags |= PGHDR_DONT_WRITE; |
|
3469 #ifdef SQLITE_CHECK_PAGES |
|
3470 pPg->pageHash = pager_pagehash(pPg); |
|
3471 #endif |
|
3472 } |
|
3473 } |
|
3474 return rc; |
|
3475 } |
|
3476 |
|
3477 /* |
|
3478 ** A call to this routine tells the pager that if a rollback occurs, |
|
3479 ** it is not necessary to restore the data on the given page. This |
|
3480 ** means that the pager does not have to record the given page in the |
|
3481 ** rollback journal. |
|
3482 ** |
|
3483 ** If we have not yet actually read the content of this page (if |
|
3484 ** the PgHdr.needRead flag is set) then this routine acts as a promise |
|
3485 ** that we will never need to read the page content in the future. |
|
3486 ** so the needRead flag can be cleared at this point. |
|
3487 */ |
|
3488 void sqlite3PagerDontRollback(DbPage *pPg){ |
|
3489 Pager *pPager = pPg->pPager; |
|
3490 |
|
3491 assert( pPager->state>=PAGER_RESERVED ); |
|
3492 |
|
3493 /* If the journal file is not open, or DontWrite() has been called on |
|
3494 ** this page (DontWrite() sets the alwaysRollback flag), then this |
|
3495 ** function is a no-op. |
|
3496 */ |
|
3497 if( pPager->journalOpen==0 |
|
3498 || sqlite3BitvecTest(pPager->pAlwaysRollback, pPg->pgno) |
|
3499 || pPg->pgno>pPager->origDbSize |
|
3500 ){ |
|
3501 return; |
|
3502 } |
|
3503 assert( !MEMDB ); /* For a memdb, pPager->journalOpen is always 0 */ |
|
3504 |
|
3505 #ifdef SQLITE_SECURE_DELETE |
|
3506 if( (pPg->flags & PGHDR_IN_JOURNAL)!=0 || (int)pPg->pgno>pPager->origDbSize ){ |
|
3507 return; |
|
3508 } |
|
3509 #endif |
|
3510 |
|
3511 /* If SECURE_DELETE is disabled, then there is no way that this |
|
3512 ** routine can be called on a page for which sqlite3PagerDontWrite() |
|
3513 ** has not been previously called during the same transaction. |
|
3514 ** And if DontWrite() has previously been called, the following |
|
3515 ** conditions must be met. |
|
3516 ** |
|
3517 ** (Later:) Not true. If the database is corrupted by having duplicate |
|
3518 ** pages on the freelist (ex: corrupt9.test) then the following is not |
|
3519 ** necessarily true: |
|
3520 */ |
|
3521 /* assert( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ); */ |
|
3522 |
|
3523 assert( pPager->pInJournal!=0 ); |
|
3524 sqlite3BitvecSet(pPager->pInJournal, pPg->pgno); |
|
3525 pPg->flags |= PGHDR_IN_JOURNAL; |
|
3526 pPg->flags &= ~PGHDR_NEED_READ; |
|
3527 if( pPager->stmtInUse ){ |
|
3528 assert( pPager->stmtSize >= pPager->origDbSize ); |
|
3529 sqlite3BitvecSet(pPager->pInStmt, pPg->pgno); |
|
3530 } |
|
3531 PAGERTRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, PAGERID(pPager)); |
|
3532 IOTRACE(("GARBAGE %p %d\n", pPager, pPg->pgno)) |
|
3533 } |
|
3534 |
|
3535 |
|
3536 /* |
|
3537 ** This routine is called to increment the database file change-counter, |
|
3538 ** stored at byte 24 of the pager file. |
|
3539 */ |
|
3540 static int pager_incr_changecounter(Pager *pPager, int isDirect){ |
|
3541 PgHdr *pPgHdr; |
|
3542 u32 change_counter; |
|
3543 int rc = SQLITE_OK; |
|
3544 |
|
3545 #ifndef SQLITE_ENABLE_ATOMIC_WRITE |
|
3546 assert( isDirect==0 ); /* isDirect is only true for atomic writes */ |
|
3547 #endif |
|
3548 if( !pPager->changeCountDone ){ |
|
3549 /* Open page 1 of the file for writing. */ |
|
3550 rc = sqlite3PagerGet(pPager, 1, &pPgHdr); |
|
3551 if( rc!=SQLITE_OK ) return rc; |
|
3552 |
|
3553 if( !isDirect ){ |
|
3554 rc = sqlite3PagerWrite(pPgHdr); |
|
3555 if( rc!=SQLITE_OK ){ |
|
3556 sqlite3PagerUnref(pPgHdr); |
|
3557 return rc; |
|
3558 } |
|
3559 } |
|
3560 |
|
3561 /* Increment the value just read and write it back to byte 24. */ |
|
3562 change_counter = sqlite3Get4byte((u8*)pPager->dbFileVers); |
|
3563 change_counter++; |
|
3564 put32bits(((char*)pPgHdr->pData)+24, change_counter); |
|
3565 |
|
3566 #ifdef SQLITE_ENABLE_ATOMIC_WRITE |
|
3567 if( isDirect && pPager->fd->pMethods ){ |
|
3568 const void *zBuf = pPgHdr->pData; |
|
3569 rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0); |
|
3570 } |
|
3571 #endif |
|
3572 |
|
3573 /* Release the page reference. */ |
|
3574 sqlite3PagerUnref(pPgHdr); |
|
3575 pPager->changeCountDone = 1; |
|
3576 } |
|
3577 return rc; |
|
3578 } |
|
3579 |
|
3580 /* |
|
3581 ** Sync the pager file to disk. |
|
3582 */ |
|
3583 int sqlite3PagerSync(Pager *pPager){ |
|
3584 int rc; |
|
3585 if( MEMDB ){ |
|
3586 rc = SQLITE_OK; |
|
3587 }else{ |
|
3588 rc = sqlite3OsSync(pPager->fd, pPager->sync_flags); |
|
3589 } |
|
3590 return rc; |
|
3591 } |
|
3592 |
|
3593 /* |
|
3594 ** Sync the database file for the pager pPager. zMaster points to the name |
|
3595 ** of a master journal file that should be written into the individual |
|
3596 ** journal file. zMaster may be NULL, which is interpreted as no master |
|
3597 ** journal (a single database transaction). |
|
3598 ** |
|
3599 ** This routine ensures that the journal is synced, all dirty pages written |
|
3600 ** to the database file and the database file synced. The only thing that |
|
3601 ** remains to commit the transaction is to delete the journal file (or |
|
3602 ** master journal file if specified). |
|
3603 ** |
|
3604 ** Note that if zMaster==NULL, this does not overwrite a previous value |
|
3605 ** passed to an sqlite3PagerCommitPhaseOne() call. |
|
3606 ** |
|
3607 ** If parameter nTrunc is non-zero, then the pager file is truncated to |
|
3608 ** nTrunc pages (this is used by auto-vacuum databases). |
|
3609 ** |
|
3610 ** If the final parameter - noSync - is true, then the database file itself |
|
3611 ** is not synced. The caller must call sqlite3PagerSync() directly to |
|
3612 ** sync the database file before calling CommitPhaseTwo() to delete the |
|
3613 ** journal file in this case. |
|
3614 */ |
|
3615 int sqlite3PagerCommitPhaseOne( |
|
3616 Pager *pPager, |
|
3617 const char *zMaster, |
|
3618 Pgno nTrunc, |
|
3619 int noSync |
|
3620 ){ |
|
3621 int rc = SQLITE_OK; |
|
3622 |
|
3623 if( pPager->errCode ){ |
|
3624 return pPager->errCode; |
|
3625 } |
|
3626 |
|
3627 /* If no changes have been made, we can leave the transaction early. |
|
3628 */ |
|
3629 if( pPager->dbModified==0 && |
|
3630 (pPager->journalMode!=PAGER_JOURNALMODE_DELETE || |
|
3631 pPager->exclusiveMode!=0) ){ |
|
3632 assert( pPager->dirtyCache==0 || pPager->journalOpen==0 ); |
|
3633 return SQLITE_OK; |
|
3634 } |
|
3635 |
|
3636 PAGERTRACE4("DATABASE SYNC: File=%s zMaster=%s nTrunc=%d\n", |
|
3637 pPager->zFilename, zMaster, nTrunc); |
|
3638 |
|
3639 /* If this is an in-memory db, or no pages have been written to, or this |
|
3640 ** function has already been called, it is a no-op. |
|
3641 */ |
|
3642 if( pPager->state!=PAGER_SYNCED && !MEMDB && pPager->dirtyCache ){ |
|
3643 PgHdr *pPg; |
|
3644 |
|
3645 #ifdef SQLITE_ENABLE_ATOMIC_WRITE |
|
3646 /* The atomic-write optimization can be used if all of the |
|
3647 ** following are true: |
|
3648 ** |
|
3649 ** + The file-system supports the atomic-write property for |
|
3650 ** blocks of size page-size, and |
|
3651 ** + This commit is not part of a multi-file transaction, and |
|
3652 ** + Exactly one page has been modified and store in the journal file. |
|
3653 ** |
|
3654 ** If the optimization can be used, then the journal file will never |
|
3655 ** be created for this transaction. |
|
3656 */ |
|
3657 int useAtomicWrite; |
|
3658 pPg = sqlite3PcacheDirtyList(pPager->pPCache); |
|
3659 useAtomicWrite = ( |
|
3660 !zMaster && |
|
3661 pPager->journalOpen && |
|
3662 pPager->journalOff==jrnlBufferSize(pPager) && |
|
3663 nTrunc==0 && |
|
3664 (pPg==0 || pPg->pDirty==0) |
|
3665 ); |
|
3666 assert( pPager->journalOpen || pPager->journalMode==PAGER_JOURNALMODE_OFF ); |
|
3667 if( useAtomicWrite ){ |
|
3668 /* Update the nRec field in the journal file. */ |
|
3669 int offset = pPager->journalHdr + sizeof(aJournalMagic); |
|
3670 assert(pPager->nRec==1); |
|
3671 rc = write32bits(pPager->jfd, offset, pPager->nRec); |
|
3672 |
|
3673 /* Update the db file change counter. The following call will modify |
|
3674 ** the in-memory representation of page 1 to include the updated |
|
3675 ** change counter and then write page 1 directly to the database |
|
3676 ** file. Because of the atomic-write property of the host file-system, |
|
3677 ** this is safe. |
|
3678 */ |
|
3679 if( rc==SQLITE_OK ){ |
|
3680 rc = pager_incr_changecounter(pPager, 1); |
|
3681 } |
|
3682 }else{ |
|
3683 rc = sqlite3JournalCreate(pPager->jfd); |
|
3684 } |
|
3685 |
|
3686 if( !useAtomicWrite && rc==SQLITE_OK ) |
|
3687 #endif |
|
3688 |
|
3689 /* If a master journal file name has already been written to the |
|
3690 ** journal file, then no sync is required. This happens when it is |
|
3691 ** written, then the process fails to upgrade from a RESERVED to an |
|
3692 ** EXCLUSIVE lock. The next time the process tries to commit the |
|
3693 ** transaction the m-j name will have already been written. |
|
3694 */ |
|
3695 if( !pPager->setMaster ){ |
|
3696 rc = pager_incr_changecounter(pPager, 0); |
|
3697 if( rc!=SQLITE_OK ) goto sync_exit; |
|
3698 if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){ |
|
3699 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
3700 if( nTrunc!=0 ){ |
|
3701 /* If this transaction has made the database smaller, then all pages |
|
3702 ** being discarded by the truncation must be written to the journal |
|
3703 ** file. |
|
3704 */ |
|
3705 Pgno i; |
|
3706 int iSkip = PAGER_MJ_PGNO(pPager); |
|
3707 for( i=nTrunc+1; i<=pPager->origDbSize; i++ ){ |
|
3708 if( !sqlite3BitvecTest(pPager->pInJournal, i) && i!=iSkip ){ |
|
3709 rc = sqlite3PagerGet(pPager, i, &pPg); |
|
3710 if( rc!=SQLITE_OK ) goto sync_exit; |
|
3711 rc = sqlite3PagerWrite(pPg); |
|
3712 sqlite3PagerUnref(pPg); |
|
3713 if( rc!=SQLITE_OK ) goto sync_exit; |
|
3714 } |
|
3715 } |
|
3716 } |
|
3717 #endif |
|
3718 rc = writeMasterJournal(pPager, zMaster); |
|
3719 if( rc!=SQLITE_OK ) goto sync_exit; |
|
3720 rc = syncJournal(pPager); |
|
3721 } |
|
3722 } |
|
3723 if( rc!=SQLITE_OK ) goto sync_exit; |
|
3724 |
|
3725 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
3726 if( nTrunc!=0 ){ |
|
3727 rc = sqlite3PagerTruncate(pPager, nTrunc); |
|
3728 if( rc!=SQLITE_OK ) goto sync_exit; |
|
3729 } |
|
3730 #endif |
|
3731 |
|
3732 /* Write all dirty pages to the database file */ |
|
3733 pPg = sqlite3PcacheDirtyList(pPager->pPCache); |
|
3734 rc = pager_write_pagelist(pPg); |
|
3735 if( rc!=SQLITE_OK ){ |
|
3736 assert( rc!=SQLITE_IOERR_BLOCKED ); |
|
3737 /* The error might have left the dirty list all fouled up here, |
|
3738 ** but that does not matter because if the if the dirty list did |
|
3739 ** get corrupted, then the transaction will roll back and |
|
3740 ** discard the dirty list. There is an assert in |
|
3741 ** pager_get_all_dirty_pages() that verifies that no attempt |
|
3742 ** is made to use an invalid dirty list. |
|
3743 */ |
|
3744 goto sync_exit; |
|
3745 } |
|
3746 sqlite3PcacheCleanAll(pPager->pPCache); |
|
3747 |
|
3748 /* Sync the database file. */ |
|
3749 if( !pPager->noSync && !noSync ){ |
|
3750 rc = sqlite3OsSync(pPager->fd, pPager->sync_flags); |
|
3751 } |
|
3752 IOTRACE(("DBSYNC %p\n", pPager)) |
|
3753 |
|
3754 pPager->state = PAGER_SYNCED; |
|
3755 }else if( MEMDB && nTrunc!=0 ){ |
|
3756 rc = sqlite3PagerTruncate(pPager, nTrunc); |
|
3757 } |
|
3758 |
|
3759 sync_exit: |
|
3760 if( rc==SQLITE_IOERR_BLOCKED ){ |
|
3761 /* pager_incr_changecounter() may attempt to obtain an exclusive |
|
3762 * lock to spill the cache and return IOERR_BLOCKED. But since |
|
3763 * there is no chance the cache is inconsistent, it is |
|
3764 * better to return SQLITE_BUSY. |
|
3765 */ |
|
3766 rc = SQLITE_BUSY; |
|
3767 } |
|
3768 return rc; |
|
3769 } |
|
3770 |
|
3771 |
|
3772 /* |
|
3773 ** Commit all changes to the database and release the write lock. |
|
3774 ** |
|
3775 ** If the commit fails for any reason, a rollback attempt is made |
|
3776 ** and an error code is returned. If the commit worked, SQLITE_OK |
|
3777 ** is returned. |
|
3778 */ |
|
3779 int sqlite3PagerCommitPhaseTwo(Pager *pPager){ |
|
3780 int rc = SQLITE_OK; |
|
3781 |
|
3782 if( pPager->errCode ){ |
|
3783 return pPager->errCode; |
|
3784 } |
|
3785 if( pPager->state<PAGER_RESERVED ){ |
|
3786 return SQLITE_ERROR; |
|
3787 } |
|
3788 if( pPager->dbModified==0 && |
|
3789 (pPager->journalMode!=PAGER_JOURNALMODE_DELETE || |
|
3790 pPager->exclusiveMode!=0) ){ |
|
3791 assert( pPager->dirtyCache==0 || pPager->journalOpen==0 ); |
|
3792 return SQLITE_OK; |
|
3793 } |
|
3794 PAGERTRACE2("COMMIT %d\n", PAGERID(pPager)); |
|
3795 if( MEMDB ){ |
|
3796 sqlite3PcacheCommit(pPager->pPCache, 0); |
|
3797 sqlite3PcacheCleanAll(pPager->pPCache); |
|
3798 sqlite3PcacheAssertFlags(pPager->pPCache, 0, PGHDR_IN_JOURNAL); |
|
3799 pPager->state = PAGER_SHARED; |
|
3800 }else{ |
|
3801 assert( pPager->state==PAGER_SYNCED || !pPager->dirtyCache ); |
|
3802 rc = pager_end_transaction(pPager, pPager->setMaster); |
|
3803 rc = pager_error(pPager, rc); |
|
3804 } |
|
3805 return rc; |
|
3806 } |
|
3807 |
|
3808 /* |
|
3809 ** Rollback all changes. The database falls back to PAGER_SHARED mode. |
|
3810 ** All in-memory cache pages revert to their original data contents. |
|
3811 ** The journal is deleted. |
|
3812 ** |
|
3813 ** This routine cannot fail unless some other process is not following |
|
3814 ** the correct locking protocol or unless some other |
|
3815 ** process is writing trash into the journal file (SQLITE_CORRUPT) or |
|
3816 ** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error |
|
3817 ** codes are returned for all these occasions. Otherwise, |
|
3818 ** SQLITE_OK is returned. |
|
3819 */ |
|
3820 int sqlite3PagerRollback(Pager *pPager){ |
|
3821 int rc = SQLITE_OK; |
|
3822 PAGERTRACE2("ROLLBACK %d\n", PAGERID(pPager)); |
|
3823 if( MEMDB ){ |
|
3824 sqlite3PcacheRollback(pPager->pPCache, 1, pPager->xReiniter); |
|
3825 sqlite3PcacheRollback(pPager->pPCache, 0, pPager->xReiniter); |
|
3826 sqlite3PcacheCleanAll(pPager->pPCache); |
|
3827 sqlite3PcacheAssertFlags(pPager->pPCache, 0, PGHDR_IN_JOURNAL); |
|
3828 pPager->dbSize = pPager->origDbSize; |
|
3829 pager_truncate_cache(pPager); |
|
3830 pPager->stmtInUse = 0; |
|
3831 pPager->state = PAGER_SHARED; |
|
3832 }else if( !pPager->dirtyCache || !pPager->journalOpen ){ |
|
3833 rc = pager_end_transaction(pPager, pPager->setMaster); |
|
3834 }else if( pPager->errCode && pPager->errCode!=SQLITE_FULL ){ |
|
3835 if( pPager->state>=PAGER_EXCLUSIVE ){ |
|
3836 pager_playback(pPager, 0); |
|
3837 } |
|
3838 rc = pPager->errCode; |
|
3839 }else{ |
|
3840 if( pPager->state==PAGER_RESERVED ){ |
|
3841 int rc2; |
|
3842 rc = pager_playback(pPager, 0); |
|
3843 rc2 = pager_end_transaction(pPager, pPager->setMaster); |
|
3844 if( rc==SQLITE_OK ){ |
|
3845 rc = rc2; |
|
3846 } |
|
3847 }else{ |
|
3848 rc = pager_playback(pPager, 0); |
|
3849 } |
|
3850 |
|
3851 pPager->dbSize = -1; |
|
3852 |
|
3853 /* If an error occurs during a ROLLBACK, we can no longer trust the pager |
|
3854 ** cache. So call pager_error() on the way out to make any error |
|
3855 ** persistent. |
|
3856 */ |
|
3857 rc = pager_error(pPager, rc); |
|
3858 } |
|
3859 return rc; |
|
3860 } |
|
3861 |
|
3862 /* |
|
3863 ** Return TRUE if the database file is opened read-only. Return FALSE |
|
3864 ** if the database is (in theory) writable. |
|
3865 */ |
|
3866 int sqlite3PagerIsreadonly(Pager *pPager){ |
|
3867 return pPager->readOnly; |
|
3868 } |
|
3869 |
|
3870 /* |
|
3871 ** Return the number of references to the pager. |
|
3872 */ |
|
3873 int sqlite3PagerRefcount(Pager *pPager){ |
|
3874 return sqlite3PcacheRefCount(pPager->pPCache); |
|
3875 } |
|
3876 |
|
3877 /* |
|
3878 ** Return the number of references to the specified page. |
|
3879 */ |
|
3880 int sqlite3PagerPageRefcount(DbPage *pPage){ |
|
3881 return sqlite3PcachePageRefcount(pPage); |
|
3882 } |
|
3883 |
|
3884 #ifdef SQLITE_TEST |
|
3885 /* |
|
3886 ** This routine is used for testing and analysis only. |
|
3887 */ |
|
3888 int *sqlite3PagerStats(Pager *pPager){ |
|
3889 static int a[11]; |
|
3890 a[0] = sqlite3PcacheRefCount(pPager->pPCache); |
|
3891 a[1] = sqlite3PcachePagecount(pPager->pPCache); |
|
3892 a[2] = sqlite3PcacheGetCachesize(pPager->pPCache); |
|
3893 a[3] = pPager->dbSize; |
|
3894 a[4] = pPager->state; |
|
3895 a[5] = pPager->errCode; |
|
3896 a[6] = pPager->nHit; |
|
3897 a[7] = pPager->nMiss; |
|
3898 a[8] = 0; /* Used to be pPager->nOvfl */ |
|
3899 a[9] = pPager->nRead; |
|
3900 a[10] = pPager->nWrite; |
|
3901 return a; |
|
3902 } |
|
3903 int sqlite3PagerIsMemdb(Pager *pPager){ |
|
3904 return MEMDB; |
|
3905 } |
|
3906 #endif |
|
3907 |
|
3908 /* |
|
3909 ** Set the statement rollback point. |
|
3910 ** |
|
3911 ** This routine should be called with the transaction journal already |
|
3912 ** open. A new statement journal is created that can be used to rollback |
|
3913 ** changes of a single SQL command within a larger transaction. |
|
3914 */ |
|
3915 static int pagerStmtBegin(Pager *pPager){ |
|
3916 int rc; |
|
3917 assert( !pPager->stmtInUse ); |
|
3918 assert( pPager->state>=PAGER_SHARED ); |
|
3919 assert( pPager->dbSize>=0 ); |
|
3920 PAGERTRACE2("STMT-BEGIN %d\n", PAGERID(pPager)); |
|
3921 if( MEMDB ){ |
|
3922 pPager->stmtInUse = 1; |
|
3923 pPager->stmtSize = pPager->dbSize; |
|
3924 return SQLITE_OK; |
|
3925 } |
|
3926 if( !pPager->journalOpen ){ |
|
3927 pPager->stmtAutoopen = 1; |
|
3928 return SQLITE_OK; |
|
3929 } |
|
3930 assert( pPager->journalOpen ); |
|
3931 assert( pPager->pInStmt==0 ); |
|
3932 pPager->pInStmt = sqlite3BitvecCreate(pPager->dbSize); |
|
3933 if( pPager->pInStmt==0 ){ |
|
3934 /* sqlite3OsLock(pPager->fd, SHARED_LOCK); */ |
|
3935 return SQLITE_NOMEM; |
|
3936 } |
|
3937 pPager->stmtJSize = pPager->journalOff; |
|
3938 pPager->stmtSize = pPager->dbSize; |
|
3939 pPager->stmtHdrOff = 0; |
|
3940 pPager->stmtCksum = pPager->cksumInit; |
|
3941 if( !pPager->stmtOpen ){ |
|
3942 rc = sqlite3PagerOpentemp(pPager, pPager->stfd, SQLITE_OPEN_SUBJOURNAL); |
|
3943 if( rc ){ |
|
3944 goto stmt_begin_failed; |
|
3945 } |
|
3946 pPager->stmtOpen = 1; |
|
3947 pPager->stmtNRec = 0; |
|
3948 } |
|
3949 pPager->stmtInUse = 1; |
|
3950 return SQLITE_OK; |
|
3951 |
|
3952 stmt_begin_failed: |
|
3953 if( pPager->pInStmt ){ |
|
3954 sqlite3BitvecDestroy(pPager->pInStmt); |
|
3955 pPager->pInStmt = 0; |
|
3956 } |
|
3957 return rc; |
|
3958 } |
|
3959 int sqlite3PagerStmtBegin(Pager *pPager){ |
|
3960 int rc; |
|
3961 rc = pagerStmtBegin(pPager); |
|
3962 return rc; |
|
3963 } |
|
3964 |
|
3965 /* |
|
3966 ** Commit a statement. |
|
3967 */ |
|
3968 int sqlite3PagerStmtCommit(Pager *pPager){ |
|
3969 if( pPager->stmtInUse ){ |
|
3970 PAGERTRACE2("STMT-COMMIT %d\n", PAGERID(pPager)); |
|
3971 if( !MEMDB ){ |
|
3972 sqlite3BitvecDestroy(pPager->pInStmt); |
|
3973 pPager->pInStmt = 0; |
|
3974 }else{ |
|
3975 sqlite3PcacheCommit(pPager->pPCache, 1); |
|
3976 } |
|
3977 pPager->stmtNRec = 0; |
|
3978 pPager->stmtInUse = 0; |
|
3979 } |
|
3980 pPager->stmtAutoopen = 0; |
|
3981 return SQLITE_OK; |
|
3982 } |
|
3983 |
|
3984 /* |
|
3985 ** Rollback a statement. |
|
3986 */ |
|
3987 int sqlite3PagerStmtRollback(Pager *pPager){ |
|
3988 int rc; |
|
3989 if( pPager->stmtInUse ){ |
|
3990 PAGERTRACE2("STMT-ROLLBACK %d\n", PAGERID(pPager)); |
|
3991 if( MEMDB ){ |
|
3992 sqlite3PcacheRollback(pPager->pPCache, 1, pPager->xReiniter); |
|
3993 pPager->dbSize = pPager->stmtSize; |
|
3994 pager_truncate_cache(pPager); |
|
3995 rc = SQLITE_OK; |
|
3996 }else{ |
|
3997 rc = pager_stmt_playback(pPager); |
|
3998 } |
|
3999 sqlite3PagerStmtCommit(pPager); |
|
4000 }else{ |
|
4001 rc = SQLITE_OK; |
|
4002 } |
|
4003 pPager->stmtAutoopen = 0; |
|
4004 return rc; |
|
4005 } |
|
4006 |
|
4007 /* |
|
4008 ** Return the full pathname of the database file. |
|
4009 */ |
|
4010 const char *sqlite3PagerFilename(Pager *pPager){ |
|
4011 return pPager->zFilename; |
|
4012 } |
|
4013 |
|
4014 /* |
|
4015 ** Return the VFS structure for the pager. |
|
4016 */ |
|
4017 const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){ |
|
4018 return pPager->pVfs; |
|
4019 } |
|
4020 |
|
4021 /* |
|
4022 ** Return the file handle for the database file associated |
|
4023 ** with the pager. This might return NULL if the file has |
|
4024 ** not yet been opened. |
|
4025 */ |
|
4026 sqlite3_file *sqlite3PagerFile(Pager *pPager){ |
|
4027 return pPager->fd; |
|
4028 } |
|
4029 |
|
4030 /* |
|
4031 ** Return the directory of the database file. |
|
4032 */ |
|
4033 const char *sqlite3PagerDirname(Pager *pPager){ |
|
4034 return pPager->zDirectory; |
|
4035 } |
|
4036 |
|
4037 /* |
|
4038 ** Return the full pathname of the journal file. |
|
4039 */ |
|
4040 const char *sqlite3PagerJournalname(Pager *pPager){ |
|
4041 return pPager->zJournal; |
|
4042 } |
|
4043 |
|
4044 /* |
|
4045 ** Return true if fsync() calls are disabled for this pager. Return FALSE |
|
4046 ** if fsync()s are executed normally. |
|
4047 */ |
|
4048 int sqlite3PagerNosync(Pager *pPager){ |
|
4049 return pPager->noSync; |
|
4050 } |
|
4051 |
|
4052 #ifdef SQLITE_HAS_CODEC |
|
4053 /* |
|
4054 ** Set the codec for this pager |
|
4055 */ |
|
4056 void sqlite3PagerSetCodec( |
|
4057 Pager *pPager, |
|
4058 void *(*xCodec)(void*,void*,Pgno,int), |
|
4059 void *pCodecArg |
|
4060 ){ |
|
4061 pPager->xCodec = xCodec; |
|
4062 pPager->pCodecArg = pCodecArg; |
|
4063 } |
|
4064 #endif |
|
4065 |
|
4066 #ifndef SQLITE_OMIT_AUTOVACUUM |
|
4067 /* |
|
4068 ** Move the page pPg to location pgno in the file. |
|
4069 ** |
|
4070 ** There must be no references to the page previously located at |
|
4071 ** pgno (which we call pPgOld) though that page is allowed to be |
|
4072 ** in cache. If the page previously located at pgno is not already |
|
4073 ** in the rollback journal, it is not put there by by this routine. |
|
4074 ** |
|
4075 ** References to the page pPg remain valid. Updating any |
|
4076 ** meta-data associated with pPg (i.e. data stored in the nExtra bytes |
|
4077 ** allocated along with the page) is the responsibility of the caller. |
|
4078 ** |
|
4079 ** A transaction must be active when this routine is called. It used to be |
|
4080 ** required that a statement transaction was not active, but this restriction |
|
4081 ** has been removed (CREATE INDEX needs to move a page when a statement |
|
4082 ** transaction is active). |
|
4083 ** |
|
4084 ** If the fourth argument, isCommit, is non-zero, then this page is being |
|
4085 ** moved as part of a database reorganization just before the transaction |
|
4086 ** is being committed. In this case, it is guaranteed that the database page |
|
4087 ** pPg refers to will not be written to again within this transaction. |
|
4088 */ |
|
4089 int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){ |
|
4090 PgHdr *pPgOld; /* The page being overwritten. */ |
|
4091 Pgno needSyncPgno = 0; |
|
4092 |
|
4093 assert( pPg->nRef>0 ); |
|
4094 |
|
4095 PAGERTRACE5("MOVE %d page %d (needSync=%d) moves to %d\n", |
|
4096 PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno); |
|
4097 IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno)) |
|
4098 |
|
4099 pager_get_content(pPg); |
|
4100 |
|
4101 /* If the journal needs to be sync()ed before page pPg->pgno can |
|
4102 ** be written to, store pPg->pgno in local variable needSyncPgno. |
|
4103 ** |
|
4104 ** If the isCommit flag is set, there is no need to remember that |
|
4105 ** the journal needs to be sync()ed before database page pPg->pgno |
|
4106 ** can be written to. The caller has already promised not to write to it. |
|
4107 */ |
|
4108 if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){ |
|
4109 needSyncPgno = pPg->pgno; |
|
4110 assert( (pPg->flags&PGHDR_IN_JOURNAL) || (int)pgno>pPager->origDbSize ); |
|
4111 assert( pPg->flags&PGHDR_DIRTY ); |
|
4112 assert( pPager->needSync ); |
|
4113 } |
|
4114 |
|
4115 /* If the cache contains a page with page-number pgno, remove it |
|
4116 ** from its hash chain. Also, if the PgHdr.needSync was set for |
|
4117 ** page pgno before the 'move' operation, it needs to be retained |
|
4118 ** for the page moved there. |
|
4119 */ |
|
4120 pPg->flags &= ~(PGHDR_NEED_SYNC|PGHDR_IN_JOURNAL); |
|
4121 pPgOld = pager_lookup(pPager, pgno); |
|
4122 assert( !pPgOld || pPgOld->nRef==1 ); |
|
4123 if( pPgOld ){ |
|
4124 pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC); |
|
4125 } |
|
4126 if( sqlite3BitvecTest(pPager->pInJournal, pgno) ){ |
|
4127 assert( !MEMDB ); |
|
4128 pPg->flags |= PGHDR_IN_JOURNAL; |
|
4129 } |
|
4130 |
|
4131 sqlite3PcacheMove(pPg, pgno); |
|
4132 if( pPgOld ){ |
|
4133 sqlite3PcacheMove(pPgOld, 0); |
|
4134 sqlite3PcacheRelease(pPgOld); |
|
4135 } |
|
4136 |
|
4137 makeDirty(pPg); |
|
4138 pPager->dirtyCache = 1; |
|
4139 pPager->dbModified = 1; |
|
4140 |
|
4141 if( needSyncPgno ){ |
|
4142 /* If needSyncPgno is non-zero, then the journal file needs to be |
|
4143 ** sync()ed before any data is written to database file page needSyncPgno. |
|
4144 ** Currently, no such page exists in the page-cache and the |
|
4145 ** "is journaled" bitvec flag has been set. This needs to be remedied by |
|
4146 ** loading the page into the pager-cache and setting the PgHdr.needSync |
|
4147 ** flag. |
|
4148 ** |
|
4149 ** If the attempt to load the page into the page-cache fails, (due |
|
4150 ** to a malloc() or IO failure), clear the bit in the pInJournal[] |
|
4151 ** array. Otherwise, if the page is loaded and written again in |
|
4152 ** this transaction, it may be written to the database file before |
|
4153 ** it is synced into the journal file. This way, it may end up in |
|
4154 ** the journal file twice, but that is not a problem. |
|
4155 ** |
|
4156 ** The sqlite3PagerGet() call may cause the journal to sync. So make |
|
4157 ** sure the Pager.needSync flag is set too. |
|
4158 */ |
|
4159 int rc; |
|
4160 PgHdr *pPgHdr; |
|
4161 assert( pPager->needSync ); |
|
4162 rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr); |
|
4163 if( rc!=SQLITE_OK ){ |
|
4164 if( pPager->pInJournal && (int)needSyncPgno<=pPager->origDbSize ){ |
|
4165 sqlite3BitvecClear(pPager->pInJournal, needSyncPgno); |
|
4166 } |
|
4167 return rc; |
|
4168 } |
|
4169 pPager->needSync = 1; |
|
4170 assert( pPager->noSync==0 && !MEMDB ); |
|
4171 pPgHdr->flags |= PGHDR_NEED_SYNC; |
|
4172 pPgHdr->flags |= PGHDR_IN_JOURNAL; |
|
4173 makeDirty(pPgHdr); |
|
4174 sqlite3PagerUnref(pPgHdr); |
|
4175 } |
|
4176 |
|
4177 return SQLITE_OK; |
|
4178 } |
|
4179 #endif |
|
4180 |
|
4181 /* |
|
4182 ** Return a pointer to the data for the specified page. |
|
4183 */ |
|
4184 void *sqlite3PagerGetData(DbPage *pPg){ |
|
4185 assert( pPg->nRef>0 || pPg->pPager->memDb ); |
|
4186 return pPg->pData; |
|
4187 } |
|
4188 |
|
4189 /* |
|
4190 ** Return a pointer to the Pager.nExtra bytes of "extra" space |
|
4191 ** allocated along with the specified page. |
|
4192 */ |
|
4193 void *sqlite3PagerGetExtra(DbPage *pPg){ |
|
4194 Pager *pPager = pPg->pPager; |
|
4195 return (pPager?pPg->pExtra:0); |
|
4196 } |
|
4197 |
|
4198 /* |
|
4199 ** Get/set the locking-mode for this pager. Parameter eMode must be one |
|
4200 ** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or |
|
4201 ** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then |
|
4202 ** the locking-mode is set to the value specified. |
|
4203 ** |
|
4204 ** The returned value is either PAGER_LOCKINGMODE_NORMAL or |
|
4205 ** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated) |
|
4206 ** locking-mode. |
|
4207 */ |
|
4208 int sqlite3PagerLockingMode(Pager *pPager, int eMode){ |
|
4209 assert( eMode==PAGER_LOCKINGMODE_QUERY |
|
4210 || eMode==PAGER_LOCKINGMODE_NORMAL |
|
4211 || eMode==PAGER_LOCKINGMODE_EXCLUSIVE ); |
|
4212 assert( PAGER_LOCKINGMODE_QUERY<0 ); |
|
4213 assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 ); |
|
4214 if( eMode>=0 && !pPager->tempFile ){ |
|
4215 pPager->exclusiveMode = eMode; |
|
4216 } |
|
4217 return (int)pPager->exclusiveMode; |
|
4218 } |
|
4219 |
|
4220 /* |
|
4221 ** Get/set the journal-mode for this pager. Parameter eMode must be one of: |
|
4222 ** |
|
4223 ** PAGER_JOURNALMODE_QUERY |
|
4224 ** PAGER_JOURNALMODE_DELETE |
|
4225 ** PAGER_JOURNALMODE_TRUNCATE |
|
4226 ** PAGER_JOURNALMODE_PERSIST |
|
4227 ** PAGER_JOURNALMODE_OFF |
|
4228 ** |
|
4229 ** If the parameter is not _QUERY, then the journal-mode is set to the |
|
4230 ** value specified. |
|
4231 ** |
|
4232 ** The returned indicate the current (possibly updated) |
|
4233 ** journal-mode. |
|
4234 */ |
|
4235 int sqlite3PagerJournalMode(Pager *pPager, int eMode){ |
|
4236 assert( eMode==PAGER_JOURNALMODE_QUERY |
|
4237 || eMode==PAGER_JOURNALMODE_DELETE |
|
4238 || eMode==PAGER_JOURNALMODE_TRUNCATE |
|
4239 || eMode==PAGER_JOURNALMODE_PERSIST |
|
4240 || eMode==PAGER_JOURNALMODE_OFF ); |
|
4241 assert( PAGER_JOURNALMODE_QUERY<0 ); |
|
4242 if( eMode>=0 ){ |
|
4243 pPager->journalMode = eMode; |
|
4244 }else{ |
|
4245 assert( eMode==PAGER_JOURNALMODE_QUERY ); |
|
4246 } |
|
4247 return (int)pPager->journalMode; |
|
4248 } |
|
4249 |
|
4250 /* |
|
4251 ** Get/set the size-limit used for persistent journal files. |
|
4252 */ |
|
4253 i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){ |
|
4254 if( iLimit>=-1 ){ |
|
4255 pPager->journalSizeLimit = iLimit; |
|
4256 } |
|
4257 return pPager->journalSizeLimit; |
|
4258 } |
|
4259 |
|
4260 #endif /* SQLITE_OMIT_DISKIO */ |