|
1 # 2005 November 30 |
|
2 # |
|
3 # The author disclaims copyright to this source code. In place of |
|
4 # a legal notice, here is a blessing: |
|
5 # |
|
6 # May you do good and not evil. |
|
7 # May you find forgiveness for yourself and forgive others. |
|
8 # May you share freely, never taking more than you give. |
|
9 # |
|
10 #*********************************************************************** |
|
11 # |
|
12 # This file contains tests to ensure that the library handles malloc() failures |
|
13 # correctly. The emphasis of these tests are the _prepare(), _step() and |
|
14 # _finalize() calls. |
|
15 # |
|
16 # $Id: malloc3.test,v 1.23 2008/05/13 19:41:54 shane Exp $ |
|
17 |
|
18 set testdir [file dirname $argv0] |
|
19 source $testdir/tester.tcl |
|
20 source $testdir/malloc_common.tcl |
|
21 |
|
22 # Only run these tests if memory debugging is turned on. |
|
23 # |
|
24 if {!$MEMDEBUG} { |
|
25 puts "Skipping malloc3 tests: not compiled with -DSQLITE_MEMDEBUG..." |
|
26 finish_test |
|
27 return |
|
28 } |
|
29 |
|
30 #-------------------------------------------------------------------------- |
|
31 # NOTES ON RECOVERING FROM A MALLOC FAILURE |
|
32 # |
|
33 # The tests in this file test the behaviours described in the following |
|
34 # paragraphs. These tests test the behaviour of the system when malloc() fails |
|
35 # inside of a call to _prepare(), _step(), _finalize() or _reset(). The |
|
36 # handling of malloc() failures within ancillary procedures is tested |
|
37 # elsewhere. |
|
38 # |
|
39 # Overview: |
|
40 # |
|
41 # Executing a statement is done in three stages (prepare, step and finalize). A |
|
42 # malloc() failure may occur within any stage. If a memory allocation fails |
|
43 # during statement preparation, no statement handle is returned. From the users |
|
44 # point of view the system state is as if _prepare() had never been called. |
|
45 # |
|
46 # If the memory allocation fails during the _step() or _finalize() calls, then |
|
47 # the database may be left in one of two states (after finalize() has been |
|
48 # called): |
|
49 # |
|
50 # * As if the neither _step() nor _finalize() had ever been called on |
|
51 # the statement handle (i.e. any changes made by the statement are |
|
52 # rolled back). |
|
53 # * The current transaction may be rolled back. In this case a hot-journal |
|
54 # may or may not actually be present in the filesystem. |
|
55 # |
|
56 # The caller can tell the difference between these two scenarios by invoking |
|
57 # _get_autocommit(). |
|
58 # |
|
59 # |
|
60 # Handling of sqlite3_reset(): |
|
61 # |
|
62 # If a malloc() fails while executing an sqlite3_reset() call, this is handled |
|
63 # in the same way as a failure within _finalize(). The statement handle |
|
64 # is not deleted and must be passed to _finalize() for resource deallocation. |
|
65 # Attempting to _step() or _reset() the statement after a failed _reset() will |
|
66 # always return SQLITE_NOMEM. |
|
67 # |
|
68 # |
|
69 # Other active SQL statements: |
|
70 # |
|
71 # The effect of a malloc failure on concurrently executing SQL statements, |
|
72 # particularly when the statement is executing with READ_UNCOMMITTED set and |
|
73 # the malloc() failure mandates statement rollback only. Currently, if |
|
74 # transaction rollback is required, all other vdbe's are aborted. |
|
75 # |
|
76 # Non-transient mallocs in btree.c: |
|
77 # * The Btree structure itself |
|
78 # * Each BtCursor structure |
|
79 # |
|
80 # Mallocs in pager.c: |
|
81 # readMasterJournal() - Space to read the master journal name |
|
82 # pager_delmaster() - Space for the entire master journal file |
|
83 # |
|
84 # sqlite3pager_open() - The pager structure itself |
|
85 # sqlite3_pagerget() - Space for a new page |
|
86 # pager_open_journal() - Pager.aInJournal[] bitmap |
|
87 # sqlite3pager_write() - For in-memory databases only: history page and |
|
88 # statement history page. |
|
89 # pager_stmt_begin() - Pager.aInStmt[] bitmap |
|
90 # |
|
91 # None of the above are a huge problem. The most troublesome failures are the |
|
92 # transient malloc() calls in btree.c, which can occur during the tree-balance |
|
93 # operation. This means the tree being balanced will be internally inconsistent |
|
94 # after the malloc() fails. To avoid the corrupt tree being read by a |
|
95 # READ_UNCOMMITTED query, we have to make sure the transaction or statement |
|
96 # rollback occurs before sqlite3_step() returns, not during a subsequent |
|
97 # sqlite3_finalize(). |
|
98 #-------------------------------------------------------------------------- |
|
99 |
|
100 #-------------------------------------------------------------------------- |
|
101 # NOTES ON TEST IMPLEMENTATION |
|
102 # |
|
103 # The tests in this file are implemented differently from those in other |
|
104 # files. Instead, tests are specified using three primitives: SQL, PREP and |
|
105 # TEST. Each primitive has a single argument. Primitives are processed in |
|
106 # the order they are specified in the file. |
|
107 # |
|
108 # A TEST primitive specifies a TCL script as its argument. When a TEST |
|
109 # directive is encountered the Tcl script is evaluated. Usually, this Tcl |
|
110 # script contains one or more calls to [do_test]. |
|
111 # |
|
112 # A PREP primitive specifies an SQL script as its argument. When a PREP |
|
113 # directive is encountered the SQL is evaluated using database connection |
|
114 # [db]. |
|
115 # |
|
116 # The SQL primitives are where the action happens. An SQL primitive must |
|
117 # contain a single, valid SQL statement as its argument. When an SQL |
|
118 # primitive is encountered, it is evaluated one or more times to test the |
|
119 # behaviour of the system when malloc() fails during preparation or |
|
120 # execution of said statement. The Nth time the statement is executed, |
|
121 # the Nth malloc is said to fail. The statement is executed until it |
|
122 # succeeds, i.e. (M+1) times, where M is the number of mallocs() required |
|
123 # to prepare and execute the statement. |
|
124 # |
|
125 # Each time an SQL statement fails, the driver program (see proc [run_test] |
|
126 # below) figures out if a transaction has been automatically rolled back. |
|
127 # If not, it executes any TEST block immediately proceeding the SQL |
|
128 # statement, then reexecutes the SQL statement with the next value of N. |
|
129 # |
|
130 # If a transaction has been automatically rolled back, then the driver |
|
131 # program executes all the SQL specified as part of SQL or PREP primitives |
|
132 # between the current SQL statement and the most recent "BEGIN". Any |
|
133 # TEST block immediately proceeding the SQL statement is evaluated, and |
|
134 # then the SQL statement reexecuted with the incremented N value. |
|
135 # |
|
136 # That make any sense? If not, read the code in [run_test] and it might. |
|
137 # |
|
138 # Extra restriction imposed by the implementation: |
|
139 # |
|
140 # * If a PREP block starts a transaction, it must finish it. |
|
141 # * A PREP block may not close a transaction it did not start. |
|
142 # |
|
143 #-------------------------------------------------------------------------- |
|
144 |
|
145 # These procs are used to build up a "program" in global variable |
|
146 # ::run_test_script. At the end of this file, the proc [run_test] is used |
|
147 # to execute the program (and all test cases contained therein). |
|
148 # |
|
149 set ::run_test_script [list] |
|
150 proc TEST {id t} {lappend ::run_test_script -test [list $id $t]} |
|
151 proc PREP {p} {lappend ::run_test_script -prep [string trim $p]} |
|
152 proc DEBUG {s} {lappend ::run_test_script -debug $s} |
|
153 |
|
154 # SQL -- |
|
155 # |
|
156 # SQL ?-norollback? <sql-text> |
|
157 # |
|
158 # Add an 'SQL' primitive to the program (see notes above). If the -norollback |
|
159 # switch is present, then the statement is not allowed to automatically roll |
|
160 # back any active transaction if malloc() fails. It must rollback the statement |
|
161 # transaction only. |
|
162 # |
|
163 proc SQL {a1 {a2 ""}} { |
|
164 # An SQL primitive parameter is a list of two elements, a boolean value |
|
165 # indicating if the statement may cause transaction rollback when malloc() |
|
166 # fails, and the sql statement itself. |
|
167 if {$a2 == ""} { |
|
168 lappend ::run_test_script -sql [list true [string trim $a1]] |
|
169 } else { |
|
170 lappend ::run_test_script -sql [list false [string trim $a2]] |
|
171 } |
|
172 } |
|
173 |
|
174 # TEST_AUTOCOMMIT -- |
|
175 # |
|
176 # A shorthand test to see if a transaction is active or not. The first |
|
177 # argument - $id - is the integer number of the test case. The second |
|
178 # argument is either 1 or 0, the expected value of the auto-commit flag. |
|
179 # |
|
180 proc TEST_AUTOCOMMIT {id a} { |
|
181 TEST $id "do_test \$testid { sqlite3_get_autocommit \$::DB } {$a}" |
|
182 } |
|
183 |
|
184 #-------------------------------------------------------------------------- |
|
185 # Start of test program declaration |
|
186 # |
|
187 |
|
188 |
|
189 # Warm body test. A malloc() fails in the middle of a CREATE TABLE statement |
|
190 # in a single-statement transaction on an empty database. Not too much can go |
|
191 # wrong here. |
|
192 # |
|
193 TEST 1 { |
|
194 do_test $testid { |
|
195 execsql {SELECT tbl_name FROM sqlite_master;} |
|
196 } {} |
|
197 } |
|
198 SQL { |
|
199 CREATE TABLE abc(a, b, c); |
|
200 } |
|
201 TEST 2 { |
|
202 do_test $testid.1 { |
|
203 execsql {SELECT tbl_name FROM sqlite_master;} |
|
204 } {abc} |
|
205 } |
|
206 |
|
207 # Insert a couple of rows into the table. each insert is in its own |
|
208 # transaction. test that the table is unpopulated before running the inserts |
|
209 # (and hence after each failure of the first insert), and that it has been |
|
210 # populated correctly after the final insert succeeds. |
|
211 # |
|
212 TEST 3 { |
|
213 do_test $testid.2 { |
|
214 execsql {SELECT * FROM abc} |
|
215 } {} |
|
216 } |
|
217 SQL {INSERT INTO abc VALUES(1, 2, 3);} |
|
218 SQL {INSERT INTO abc VALUES(4, 5, 6);} |
|
219 SQL {INSERT INTO abc VALUES(7, 8, 9);} |
|
220 TEST 4 { |
|
221 do_test $testid { |
|
222 execsql {SELECT * FROM abc} |
|
223 } {1 2 3 4 5 6 7 8 9} |
|
224 } |
|
225 |
|
226 # Test a CREATE INDEX statement. Because the table 'abc' is so small, the index |
|
227 # will all fit on a single page, so this doesn't test too much that the CREATE |
|
228 # TABLE statement didn't test. A few of the transient malloc()s in btree.c |
|
229 # perhaps. |
|
230 # |
|
231 SQL {CREATE INDEX abc_i ON abc(a, b, c);} |
|
232 TEST 4 { |
|
233 do_test $testid { |
|
234 execsql { |
|
235 SELECT * FROM abc ORDER BY a DESC; |
|
236 } |
|
237 } {7 8 9 4 5 6 1 2 3} |
|
238 } |
|
239 |
|
240 # Test a DELETE statement. Also create a trigger and a view, just to make sure |
|
241 # these statements don't have any obvious malloc() related bugs in them. Note |
|
242 # that the test above will be executed each time the DELETE fails, so we're |
|
243 # also testing rollback of a DELETE from a table with an index on it. |
|
244 # |
|
245 SQL {DELETE FROM abc WHERE a > 2;} |
|
246 SQL {CREATE TRIGGER abc_t AFTER INSERT ON abc BEGIN SELECT 'trigger!'; END;} |
|
247 SQL {CREATE VIEW abc_v AS SELECT * FROM abc;} |
|
248 TEST 5 { |
|
249 do_test $testid { |
|
250 execsql { |
|
251 SELECT name, tbl_name FROM sqlite_master ORDER BY name; |
|
252 SELECT * FROM abc; |
|
253 } |
|
254 } {abc abc abc_i abc abc_t abc abc_v abc_v 1 2 3} |
|
255 } |
|
256 |
|
257 set sql { |
|
258 BEGIN;DELETE FROM abc; |
|
259 } |
|
260 for {set i 1} {$i < 15} {incr i} { |
|
261 set a $i |
|
262 set b "String value $i" |
|
263 set c [string repeat X $i] |
|
264 append sql "INSERT INTO abc VALUES ($a, '$b', '$c');" |
|
265 } |
|
266 append sql {COMMIT;} |
|
267 PREP $sql |
|
268 |
|
269 SQL { |
|
270 DELETE FROM abc WHERE oid IN (SELECT oid FROM abc ORDER BY random() LIMIT 5); |
|
271 } |
|
272 TEST 6 { |
|
273 do_test $testid.1 { |
|
274 execsql {SELECT count(*) FROM abc} |
|
275 } {94} |
|
276 do_test $testid.2 { |
|
277 execsql { |
|
278 SELECT min( |
|
279 (oid == a) AND 'String value ' || a == b AND a == length(c) |
|
280 ) FROM abc; |
|
281 } |
|
282 } {1} |
|
283 } |
|
284 SQL { |
|
285 DELETE FROM abc WHERE oid IN (SELECT oid FROM abc ORDER BY random() LIMIT 5); |
|
286 } |
|
287 TEST 7 { |
|
288 do_test $testid { |
|
289 execsql {SELECT count(*) FROM abc} |
|
290 } {89} |
|
291 do_test $testid { |
|
292 execsql { |
|
293 SELECT min( |
|
294 (oid == a) AND 'String value ' || a == b AND a == length(c) |
|
295 ) FROM abc; |
|
296 } |
|
297 } {1} |
|
298 } |
|
299 SQL { |
|
300 DELETE FROM abc WHERE oid IN (SELECT oid FROM abc ORDER BY random() LIMIT 5); |
|
301 } |
|
302 TEST 9 { |
|
303 do_test $testid { |
|
304 execsql {SELECT count(*) FROM abc} |
|
305 } {84} |
|
306 do_test $testid { |
|
307 execsql { |
|
308 SELECT min( |
|
309 (oid == a) AND 'String value ' || a == b AND a == length(c) |
|
310 ) FROM abc; |
|
311 } |
|
312 } {1} |
|
313 } |
|
314 |
|
315 set padding [string repeat X 500] |
|
316 PREP [subst { |
|
317 DROP TABLE abc; |
|
318 CREATE TABLE abc(a PRIMARY KEY, padding, b, c); |
|
319 INSERT INTO abc VALUES(0, '$padding', 2, 2); |
|
320 INSERT INTO abc VALUES(3, '$padding', 5, 5); |
|
321 INSERT INTO abc VALUES(6, '$padding', 8, 8); |
|
322 }] |
|
323 |
|
324 TEST 10 { |
|
325 do_test $testid { |
|
326 execsql {SELECT a, b, c FROM abc} |
|
327 } {0 2 2 3 5 5 6 8 8} |
|
328 } |
|
329 |
|
330 SQL {BEGIN;} |
|
331 SQL {INSERT INTO abc VALUES(9, 'XXXXX', 11, 12);} |
|
332 TEST_AUTOCOMMIT 11 0 |
|
333 SQL -norollback {UPDATE abc SET a = a + 1, c = c + 1;} |
|
334 TEST_AUTOCOMMIT 12 0 |
|
335 SQL {DELETE FROM abc WHERE a = 10;} |
|
336 TEST_AUTOCOMMIT 13 0 |
|
337 SQL {COMMIT;} |
|
338 |
|
339 TEST 14 { |
|
340 do_test $testid.1 { |
|
341 sqlite3_get_autocommit $::DB |
|
342 } {1} |
|
343 do_test $testid.2 { |
|
344 execsql {SELECT a, b, c FROM abc} |
|
345 } {1 2 3 4 5 6 7 8 9} |
|
346 } |
|
347 |
|
348 PREP [subst { |
|
349 DROP TABLE abc; |
|
350 CREATE TABLE abc(a, padding, b, c); |
|
351 INSERT INTO abc VALUES(1, '$padding', 2, 3); |
|
352 INSERT INTO abc VALUES(4, '$padding', 5, 6); |
|
353 INSERT INTO abc VALUES(7, '$padding', 8, 9); |
|
354 CREATE INDEX abc_i ON abc(a, padding, b, c); |
|
355 }] |
|
356 |
|
357 TEST 15 { |
|
358 db eval {PRAGMA cache_size = 10} |
|
359 } |
|
360 |
|
361 SQL {BEGIN;} |
|
362 SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc} |
|
363 TEST 16 { |
|
364 do_test $testid { |
|
365 execsql {SELECT a, count(*) FROM abc GROUP BY a;} |
|
366 } {1 2 4 2 7 2} |
|
367 } |
|
368 SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc} |
|
369 TEST 17 { |
|
370 do_test $testid { |
|
371 execsql {SELECT a, count(*) FROM abc GROUP BY a;} |
|
372 } {1 4 4 4 7 4} |
|
373 } |
|
374 SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc} |
|
375 TEST 18 { |
|
376 do_test $testid { |
|
377 execsql {SELECT a, count(*) FROM abc GROUP BY a;} |
|
378 } {1 8 4 8 7 8} |
|
379 } |
|
380 SQL -norllbck {INSERT INTO abc (oid, a, padding, b, c) SELECT NULL, * FROM abc} |
|
381 TEST 19 { |
|
382 do_test $testid { |
|
383 execsql {SELECT a, count(*) FROM abc GROUP BY a;} |
|
384 } {1 16 4 16 7 16} |
|
385 } |
|
386 SQL {COMMIT;} |
|
387 TEST 21 { |
|
388 do_test $testid { |
|
389 execsql {SELECT a, count(*) FROM abc GROUP BY a;} |
|
390 } {1 16 4 16 7 16} |
|
391 } |
|
392 |
|
393 SQL {BEGIN;} |
|
394 SQL {DELETE FROM abc WHERE oid %2} |
|
395 TEST 22 { |
|
396 do_test $testid { |
|
397 execsql {SELECT a, count(*) FROM abc GROUP BY a;} |
|
398 } {1 8 4 8 7 8} |
|
399 } |
|
400 SQL {DELETE FROM abc} |
|
401 TEST 23 { |
|
402 do_test $testid { |
|
403 execsql {SELECT * FROM abc} |
|
404 } {} |
|
405 } |
|
406 SQL {ROLLBACK;} |
|
407 TEST 24 { |
|
408 do_test $testid { |
|
409 execsql {SELECT a, count(*) FROM abc GROUP BY a;} |
|
410 } {1 16 4 16 7 16} |
|
411 } |
|
412 |
|
413 # Test some schema modifications inside of a transaction. These should all |
|
414 # cause transaction rollback if they fail. Also query a view, to cover a bit |
|
415 # more code. |
|
416 # |
|
417 PREP {DROP VIEW abc_v;} |
|
418 TEST 25 { |
|
419 do_test $testid { |
|
420 execsql { |
|
421 SELECT name, tbl_name FROM sqlite_master; |
|
422 } |
|
423 } {abc abc abc_i abc} |
|
424 } |
|
425 SQL {BEGIN;} |
|
426 SQL {CREATE TABLE def(d, e, f);} |
|
427 SQL {CREATE TABLE ghi(g, h, i);} |
|
428 TEST 26 { |
|
429 do_test $testid { |
|
430 execsql { |
|
431 SELECT name, tbl_name FROM sqlite_master; |
|
432 } |
|
433 } {abc abc abc_i abc def def ghi ghi} |
|
434 } |
|
435 SQL {CREATE VIEW v1 AS SELECT * FROM def, ghi} |
|
436 SQL {CREATE UNIQUE INDEX ghi_i1 ON ghi(g);} |
|
437 TEST 27 { |
|
438 do_test $testid { |
|
439 execsql { |
|
440 SELECT name, tbl_name FROM sqlite_master; |
|
441 } |
|
442 } {abc abc abc_i abc def def ghi ghi v1 v1 ghi_i1 ghi} |
|
443 } |
|
444 SQL {INSERT INTO def VALUES('a', 'b', 'c')} |
|
445 SQL {INSERT INTO def VALUES(1, 2, 3)} |
|
446 SQL -norollback {INSERT INTO ghi SELECT * FROM def} |
|
447 TEST 28 { |
|
448 do_test $testid { |
|
449 execsql { |
|
450 SELECT * FROM def, ghi WHERE d = g; |
|
451 } |
|
452 } {a b c a b c 1 2 3 1 2 3} |
|
453 } |
|
454 SQL {COMMIT} |
|
455 TEST 29 { |
|
456 do_test $testid { |
|
457 execsql { |
|
458 SELECT * FROM v1 WHERE d = g; |
|
459 } |
|
460 } {a b c a b c 1 2 3 1 2 3} |
|
461 } |
|
462 |
|
463 # Test a simple multi-file transaction |
|
464 # |
|
465 file delete -force test2.db |
|
466 ifcapable attach { |
|
467 SQL {ATTACH 'test2.db' AS aux;} |
|
468 SQL {BEGIN} |
|
469 SQL {CREATE TABLE aux.tbl2(x, y, z)} |
|
470 SQL {INSERT INTO tbl2 VALUES(1, 2, 3)} |
|
471 SQL {INSERT INTO def VALUES(4, 5, 6)} |
|
472 TEST 30 { |
|
473 do_test $testid { |
|
474 execsql { |
|
475 SELECT * FROM tbl2, def WHERE d = x; |
|
476 } |
|
477 } {1 2 3 1 2 3} |
|
478 } |
|
479 SQL {COMMIT} |
|
480 TEST 31 { |
|
481 do_test $testid { |
|
482 execsql { |
|
483 SELECT * FROM tbl2, def WHERE d = x; |
|
484 } |
|
485 } {1 2 3 1 2 3} |
|
486 } |
|
487 } |
|
488 |
|
489 # Test what happens when a malloc() fails while there are other active |
|
490 # statements. This changes the way sqlite3VdbeHalt() works. |
|
491 TEST 32 { |
|
492 if {![info exists ::STMT32]} { |
|
493 set sql "SELECT name FROM sqlite_master" |
|
494 set ::STMT32 [sqlite3_prepare $::DB $sql -1 DUMMY] |
|
495 do_test $testid { |
|
496 sqlite3_step $::STMT32 |
|
497 } {SQLITE_ROW} |
|
498 } |
|
499 } |
|
500 SQL BEGIN |
|
501 TEST 33 { |
|
502 do_test $testid { |
|
503 execsql {SELECT * FROM ghi} |
|
504 } {a b c 1 2 3} |
|
505 } |
|
506 SQL -norollback { |
|
507 -- There is a unique index on ghi(g), so this statement may not cause |
|
508 -- an automatic ROLLBACK. Hence the "-norollback" switch. |
|
509 INSERT INTO ghi SELECT '2'||g, h, i FROM ghi; |
|
510 } |
|
511 TEST 34 { |
|
512 if {[info exists ::STMT32]} { |
|
513 do_test $testid { |
|
514 sqlite3_finalize $::STMT32 |
|
515 } {SQLITE_OK} |
|
516 unset ::STMT32 |
|
517 } |
|
518 } |
|
519 SQL COMMIT |
|
520 |
|
521 # |
|
522 # End of test program declaration |
|
523 #-------------------------------------------------------------------------- |
|
524 |
|
525 proc run_test {arglist iRepeat {pcstart 0} {iFailStart 1}} { |
|
526 if {[llength $arglist] %2} { |
|
527 error "Uneven number of arguments to TEST" |
|
528 } |
|
529 |
|
530 for {set i 0} {$i < $pcstart} {incr i} { |
|
531 set k2 [lindex $arglist [expr 2 * $i]] |
|
532 set v2 [lindex $arglist [expr 2 * $i + 1]] |
|
533 set ac [sqlite3_get_autocommit $::DB] ;# Auto-Commit |
|
534 switch -- $k2 { |
|
535 -sql {db eval [lindex $v2 1]} |
|
536 -prep {db eval $v2} |
|
537 } |
|
538 set nac [sqlite3_get_autocommit $::DB] ;# New Auto-Commit |
|
539 if {$ac && !$nac} {set begin_pc $i} |
|
540 } |
|
541 |
|
542 db rollback_hook [list incr ::rollback_hook_count] |
|
543 |
|
544 set iFail $iFailStart |
|
545 set pc $pcstart |
|
546 while {$pc*2 < [llength $arglist]} { |
|
547 |
|
548 # Id of this iteration: |
|
549 set k [lindex $arglist [expr 2 * $pc]] |
|
550 set iterid "pc=$pc.iFail=$iFail$k" |
|
551 set v [lindex $arglist [expr 2 * $pc + 1]] |
|
552 |
|
553 puts $iterid |
|
554 flush stdout |
|
555 |
|
556 switch -- $k { |
|
557 |
|
558 -test { |
|
559 foreach {id script} $v {} |
|
560 incr pc |
|
561 } |
|
562 |
|
563 -sql { |
|
564 set ::rollback_hook_count 0 |
|
565 |
|
566 set ac [sqlite3_get_autocommit $::DB] ;# Auto-Commit |
|
567 sqlite3_memdebug_fail $iFail -repeat 0 |
|
568 set rc [catch {db eval [lindex $v 1]} msg] ;# True error occurs |
|
569 set nac [sqlite3_get_autocommit $::DB] ;# New Auto-Commit |
|
570 |
|
571 if {$rc != 0 && $nac && !$ac} { |
|
572 # Before [db eval] the auto-commit flag was clear. Now it |
|
573 # is set. Since an error occured we assume this was not a |
|
574 # commit - therefore a rollback occured. Check that the |
|
575 # rollback-hook was invoked. |
|
576 do_test malloc3-rollback_hook.$iterid { |
|
577 set ::rollback_hook_count |
|
578 } {1} |
|
579 } |
|
580 |
|
581 set nFail [sqlite3_memdebug_fail -1 -benigncnt nBenign] |
|
582 if {$rc == 0} { |
|
583 # Successful execution of sql. The number of failed malloc() |
|
584 # calls should be equal to the number of benign failures. |
|
585 # Otherwise a malloc() failed and the error was not reported. |
|
586 # |
|
587 if {$nFail!=$nBenign} { |
|
588 error "Unreported malloc() failure" |
|
589 } |
|
590 |
|
591 if {$ac && !$nac} { |
|
592 # Before the [db eval] the auto-commit flag was set, now it |
|
593 # is clear. We can deduce that a "BEGIN" statement has just |
|
594 # been successfully executed. |
|
595 set begin_pc $pc |
|
596 } |
|
597 |
|
598 incr pc |
|
599 set iFail 1 |
|
600 integrity_check "malloc3-(integrity).$iterid" |
|
601 } elseif {[regexp {.*out of memory} $msg] || [db errorcode] == 3082} { |
|
602 # Out of memory error, as expected. |
|
603 # |
|
604 integrity_check "malloc3-(integrity).$iterid" |
|
605 incr iFail |
|
606 if {$nac && !$ac} { |
|
607 |
|
608 if {![lindex $v 0] && [db errorcode] != 3082} { |
|
609 # error "Statement \"[lindex $v 1]\" caused a rollback" |
|
610 } |
|
611 |
|
612 for {set i $begin_pc} {$i < $pc} {incr i} { |
|
613 set k2 [lindex $arglist [expr 2 * $i]] |
|
614 set v2 [lindex $arglist [expr 2 * $i + 1]] |
|
615 set catchupsql "" |
|
616 switch -- $k2 { |
|
617 -sql {set catchupsql [lindex $v2 1]} |
|
618 -prep {set catchupsql $v2} |
|
619 } |
|
620 db eval $catchupsql |
|
621 } |
|
622 } |
|
623 } else { |
|
624 error $msg |
|
625 } |
|
626 |
|
627 while {[lindex $arglist [expr 2 * ($pc -1)]] == "-test"} { |
|
628 incr pc -1 |
|
629 } |
|
630 } |
|
631 |
|
632 -prep { |
|
633 db eval $v |
|
634 incr pc |
|
635 } |
|
636 |
|
637 -debug { |
|
638 eval $v |
|
639 incr pc |
|
640 } |
|
641 |
|
642 default { error "Unknown switch: $k" } |
|
643 } |
|
644 } |
|
645 } |
|
646 |
|
647 # Turn of the Tcl interface's prepared statement caching facility. Then |
|
648 # run the tests with "persistent" malloc failures. |
|
649 sqlite3_extended_result_codes db 1 |
|
650 db cache size 0 |
|
651 run_test $::run_test_script 1 |
|
652 |
|
653 # Close and reopen the db. |
|
654 db close |
|
655 file delete -force test.db test.db-journal test2.db test2.db-journal |
|
656 sqlite3 db test.db |
|
657 sqlite3_extended_result_codes db 1 |
|
658 set ::DB [sqlite3_connection_pointer db] |
|
659 |
|
660 # Turn of the Tcl interface's prepared statement caching facility in |
|
661 # the new connnection. Then run the tests with "transient" malloc failures. |
|
662 db cache size 0 |
|
663 run_test $::run_test_script 0 |
|
664 |
|
665 sqlite3_memdebug_fail -1 |
|
666 finish_test |