persistentstorage/sql/SQLite/bitvec.c
changeset 0 08ec8eefde2f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/persistentstorage/sql/SQLite/bitvec.c	Fri Jan 22 11:06:30 2010 +0200
@@ -0,0 +1,325 @@
+/*
+** 2008 February 16
+**
+** The author disclaims copyright to this source code.  In place of
+** a legal notice, here is a blessing:
+**
+**    May you do good and not evil.
+**    May you find forgiveness for yourself and forgive others.
+**    May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements an object that represents a fixed-length
+** bitmap.  Bits are numbered starting with 1.
+**
+** A bitmap is used to record what pages a database file have been
+** journalled during a transaction.  Usually only a few pages are
+** journalled.  So the bitmap is usually sparse and has low cardinality.
+** But sometimes (for example when during a DROP of a large table) most
+** or all of the pages get journalled.  In those cases, the bitmap becomes
+** dense.  The algorithm needs to handle both cases well.
+**
+** The size of the bitmap is fixed when the object is created.
+**
+** All bits are clear when the bitmap is created.  Individual bits
+** may be set or cleared one at a time.
+**
+** Test operations are about 100 times more common that set operations.
+** Clear operations are exceedingly rare.  There are usually between
+** 5 and 500 set operations per Bitvec object, though the number of sets can
+** sometimes grow into tens of thousands or larger.  The size of the
+** Bitvec object is the number of pages in the database file at the
+** start of a transaction, and is thus usually less than a few thousand,
+** but can be as large as 2 billion for a really big database.
+**
+** @(#) $Id: bitvec.c,v 1.6 2008/06/20 14:59:51 danielk1977 Exp $
+*/
+#include "sqliteInt.h"
+
+#define BITVEC_SZ        512
+/* Round the union size down to the nearest pointer boundary, since that's how 
+** it will be aligned within the Bitvec struct. */
+#define BITVEC_USIZE     (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*))
+#define BITVEC_NCHAR     BITVEC_USIZE
+#define BITVEC_NBIT      (BITVEC_NCHAR*8)
+#define BITVEC_NINT      (BITVEC_USIZE/4)
+#define BITVEC_MXHASH    (BITVEC_NINT/2)
+#define BITVEC_NPTR      (BITVEC_USIZE/sizeof(Bitvec *))
+
+#define BITVEC_HASH(X)   (((X)*37)%BITVEC_NINT)
+
+/*
+** A bitmap is an instance of the following structure.
+**
+** This bitmap records the existance of zero or more bits
+** with values between 1 and iSize, inclusive.
+**
+** There are three possible representations of the bitmap.
+** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
+** bitmap.  The least significant bit is bit 1.
+**
+** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
+** a hash table that will hold up to BITVEC_MXHASH distinct values.
+**
+** Otherwise, the value i is redirected into one of BITVEC_NPTR
+** sub-bitmaps pointed to by Bitvec.u.apSub[].  Each subbitmap
+** handles up to iDivisor separate values of i.  apSub[0] holds
+** values between 1 and iDivisor.  apSub[1] holds values between
+** iDivisor+1 and 2*iDivisor.  apSub[N] holds values between
+** N*iDivisor+1 and (N+1)*iDivisor.  Each subbitmap is normalized
+** to hold deal with values between 1 and iDivisor.
+*/
+struct Bitvec {
+  u32 iSize;      /* Maximum bit index */
+  u32 nSet;       /* Number of bits that are set */
+  u32 iDivisor;   /* Number of bits handled by each apSub[] entry */
+  union {
+    u8 aBitmap[BITVEC_NCHAR];    /* Bitmap representation */
+    u32 aHash[BITVEC_NINT];      /* Hash table representation */
+    Bitvec *apSub[BITVEC_NPTR];  /* Recursive representation */
+  } u;
+};
+
+/*
+** Create a new bitmap object able to handle bits between 0 and iSize,
+** inclusive.  Return a pointer to the new object.  Return NULL if 
+** malloc fails.
+*/
+Bitvec *sqlite3BitvecCreate(u32 iSize){
+  Bitvec *p;
+  assert( sizeof(*p)==BITVEC_SZ );
+  p = sqlite3MallocZero( sizeof(*p) );
+  if( p ){
+    p->iSize = iSize;
+  }
+  return p;
+}
+
+/*
+** Check to see if the i-th bit is set.  Return true or false.
+** If p is NULL (if the bitmap has not been created) or if
+** i is out of range, then return false.
+*/
+int sqlite3BitvecTest(Bitvec *p, u32 i){
+  if( p==0 ) return 0;
+  if( i>p->iSize || i==0 ) return 0;
+  if( p->iSize<=BITVEC_NBIT ){
+    i--;
+    return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0;
+  }
+  if( p->iDivisor>0 ){
+    u32 bin = (i-1)/p->iDivisor;
+    i = (i-1)%p->iDivisor + 1;
+    return sqlite3BitvecTest(p->u.apSub[bin], i);
+  }else{
+    u32 h = BITVEC_HASH(i);
+    while( p->u.aHash[h] ){
+      if( p->u.aHash[h]==i ) return 1;
+      h++;
+      if( h>=BITVEC_NINT ) h = 0;
+    }
+    return 0;
+  }
+}
+
+/*
+** Set the i-th bit.  Return 0 on success and an error code if
+** anything goes wrong.
+*/
+int sqlite3BitvecSet(Bitvec *p, u32 i){
+  u32 h;
+  assert( p!=0 );
+  assert( i>0 );
+  assert( i<=p->iSize );
+  if( p->iSize<=BITVEC_NBIT ){
+    i--;
+    p->u.aBitmap[i/8] |= 1 << (i&7);
+    return SQLITE_OK;
+  }
+  if( p->iDivisor ){
+    u32 bin = (i-1)/p->iDivisor;
+    i = (i-1)%p->iDivisor + 1;
+    if( p->u.apSub[bin]==0 ){
+      sqlite3BeginBenignMalloc();
+      p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
+      sqlite3EndBenignMalloc();
+      if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;
+    }
+    return sqlite3BitvecSet(p->u.apSub[bin], i);
+  }
+  h = BITVEC_HASH(i);
+  while( p->u.aHash[h] ){
+    if( p->u.aHash[h]==i ) return SQLITE_OK;
+    h++;
+    if( h==BITVEC_NINT ) h = 0;
+  }
+  p->nSet++;
+  if( p->nSet>=BITVEC_MXHASH ){
+    int j, rc;
+    u32 aiValues[BITVEC_NINT];
+    memcpy(aiValues, p->u.aHash, sizeof(aiValues));
+    memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR);
+    p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
+    rc = sqlite3BitvecSet(p, i);
+    for(j=0; j<BITVEC_NINT; j++){
+      if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
+    }
+    return rc;
+  }
+  p->u.aHash[h] = i;
+  return SQLITE_OK;
+}
+
+/*
+** Clear the i-th bit.  Return 0 on success and an error code if
+** anything goes wrong.
+*/
+void sqlite3BitvecClear(Bitvec *p, u32 i){
+  assert( p!=0 );
+  assert( i>0 );
+  if( p->iSize<=BITVEC_NBIT ){
+    i--;
+    p->u.aBitmap[i/8] &= ~(1 << (i&7));
+  }else if( p->iDivisor ){
+    u32 bin = (i-1)/p->iDivisor;
+    i = (i-1)%p->iDivisor + 1;
+    if( p->u.apSub[bin] ){
+      sqlite3BitvecClear(p->u.apSub[bin], i);
+    }
+  }else{
+    int j;
+    u32 aiValues[BITVEC_NINT];
+    memcpy(aiValues, p->u.aHash, sizeof(aiValues));
+    memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT);
+    p->nSet = 0;
+    for(j=0; j<BITVEC_NINT; j++){
+      if( aiValues[j] && aiValues[j]!=i ){
+        sqlite3BitvecSet(p, aiValues[j]);
+      }
+    }
+  }
+}
+
+/*
+** Destroy a bitmap object.  Reclaim all memory used.
+*/
+void sqlite3BitvecDestroy(Bitvec *p){
+  if( p==0 ) return;
+  if( p->iDivisor ){
+    int i;
+    for(i=0; i<BITVEC_NPTR; i++){
+      sqlite3BitvecDestroy(p->u.apSub[i]);
+    }
+  }
+  sqlite3_free(p);
+}
+
+#ifndef SQLITE_OMIT_BUILTIN_TEST
+/*
+** Let V[] be an array of unsigned characters sufficient to hold
+** up to N bits.  Let I be an integer between 0 and N.  0<=I<N.
+** Then the following macros can be used to set, clear, or test
+** individual bits within V.
+*/
+#define SETBIT(V,I)      V[I>>3] |= (1<<(I&7))
+#define CLEARBIT(V,I)    V[I>>3] &= ~(1<<(I&7))
+#define TESTBIT(V,I)     (V[I>>3]&(1<<(I&7)))!=0
+
+/*
+** This routine runs an extensive test of the Bitvec code.
+**
+** The input is an array of integers that acts as a program
+** to test the Bitvec.  The integers are opcodes followed
+** by 0, 1, or 3 operands, depending on the opcode.  Another
+** opcode follows immediately after the last operand.
+**
+** There are 6 opcodes numbered from 0 through 5.  0 is the
+** "halt" opcode and causes the test to end.
+**
+**    0          Halt and return the number of errors
+**    1 N S X    Set N bits beginning with S and incrementing by X
+**    2 N S X    Clear N bits beginning with S and incrementing by X
+**    3 N        Set N randomly chosen bits
+**    4 N        Clear N randomly chosen bits
+**    5 N S X    Set N bits from S increment X in array only, not in bitvec
+**
+** The opcodes 1 through 4 perform set and clear operations are performed
+** on both a Bitvec object and on a linear array of bits obtained from malloc.
+** Opcode 5 works on the linear array only, not on the Bitvec.
+** Opcode 5 is used to deliberately induce a fault in order to
+** confirm that error detection works.
+**
+** At the conclusion of the test the linear array is compared
+** against the Bitvec object.  If there are any differences,
+** an error is returned.  If they are the same, zero is returned.
+**
+** If a memory allocation error occurs, return -1.
+*/
+int sqlite3BitvecBuiltinTest(int sz, int *aOp){
+  Bitvec *pBitvec = 0;
+  unsigned char *pV = 0;
+  int rc = -1;
+  int i, nx, pc, op;
+
+  /* Allocate the Bitvec to be tested and a linear array of
+  ** bits to act as the reference */
+  pBitvec = sqlite3BitvecCreate( sz );
+  pV = sqlite3_malloc( (sz+7)/8 + 1 );
+  if( pBitvec==0 || pV==0 ) goto bitvec_end;
+  memset(pV, 0, (sz+7)/8 + 1);
+
+  /* Run the program */
+  pc = 0;
+  while( (op = aOp[pc])!=0 ){
+    switch( op ){
+      case 1:
+      case 2:
+      case 5: {
+        nx = 4;
+        i = aOp[pc+2] - 1;
+        aOp[pc+2] += aOp[pc+3];
+        break;
+      }
+      case 3:
+      case 4: 
+      default: {
+        nx = 2;
+        sqlite3_randomness(sizeof(i), &i);
+        break;
+      }
+    }
+    if( (--aOp[pc+1]) > 0 ) nx = 0;
+    pc += nx;
+    i = (i & 0x7fffffff)%sz;
+    if( (op & 1)!=0 ){
+      SETBIT(pV, (i+1));
+      if( op!=5 ){
+        if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
+      }
+    }else{
+      CLEARBIT(pV, (i+1));
+      sqlite3BitvecClear(pBitvec, i+1);
+    }
+  }
+
+  /* Test to make sure the linear array exactly matches the
+  ** Bitvec object.  Start with the assumption that they do
+  ** match (rc==0).  Change rc to non-zero if a discrepancy
+  ** is found.
+  */
+  rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
+          + sqlite3BitvecTest(pBitvec, 0);
+  for(i=1; i<=sz; i++){
+    if(  (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
+      rc = i;
+      break;
+    }
+  }
+
+  /* Free allocated structure */
+bitvec_end:
+  sqlite3_free(pV);
+  sqlite3BitvecDestroy(pBitvec);
+  return rc;
+}
+#endif /* SQLITE_OMIT_BUILTIN_TEST */