persistentstorage/sql/SQLite/malloc.c
changeset 0 08ec8eefde2f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/persistentstorage/sql/SQLite/malloc.c	Fri Jan 22 11:06:30 2010 +0200
@@ -0,0 +1,742 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code.  In place of
+** a legal notice, here is a blessing:
+**
+**    May you do good and not evil.
+**    May you find forgiveness for yourself and forgive others.
+**    May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** Memory allocation functions used throughout sqlite.
+**
+** $Id: malloc.c,v 1.34 2008/08/05 17:53:23 drh Exp $
+*/
+#include "sqliteInt.h"
+#include <stdarg.h>
+#include <ctype.h>
+
+/*
+** This routine runs when the memory allocator sees that the
+** total memory allocation is about to exceed the soft heap
+** limit.
+*/
+static void softHeapLimitEnforcer(
+  void *NotUsed, 
+  sqlite3_int64 inUse,
+  int allocSize
+){
+  sqlite3_release_memory(allocSize);
+}
+
+/*
+** Set the soft heap-size limit for the library. Passing a zero or 
+** negative value indicates no limit.
+*/
+void sqlite3_soft_heap_limit(int n){
+  sqlite3_uint64 iLimit;
+  int overage;
+  if( n<0 ){
+    iLimit = 0;
+  }else{
+    iLimit = n;
+  }
+  sqlite3_initialize();
+  if( iLimit>0 ){
+    sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit);
+  }else{
+    sqlite3_memory_alarm(0, 0, 0);
+  }
+  overage = sqlite3_memory_used() - n;
+  if( overage>0 ){
+    sqlite3_release_memory(overage);
+  }
+}
+
+/*
+** Attempt to release up to n bytes of non-essential memory currently
+** held by SQLite. An example of non-essential memory is memory used to
+** cache database pages that are not currently in use.
+*/
+int sqlite3_release_memory(int n){
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+  int nRet = sqlite3VdbeReleaseMemory(n);
+  nRet += sqlite3PagerReleaseMemory(n-nRet);
+  return nRet;
+#else
+  return SQLITE_OK;
+#endif
+}
+
+/*
+** State information local to the memory allocation subsystem.
+*/
+static struct {
+  sqlite3_mutex *mutex;         /* Mutex to serialize access */
+
+  /*
+  ** The alarm callback and its arguments.  The mem0.mutex lock will
+  ** be held while the callback is running.  Recursive calls into
+  ** the memory subsystem are allowed, but no new callbacks will be
+  ** issued.  The alarmBusy variable is set to prevent recursive
+  ** callbacks.
+  */
+  sqlite3_int64 alarmThreshold;
+  void (*alarmCallback)(void*, sqlite3_int64,int);
+  void *alarmArg;
+  int alarmBusy;
+
+  /*
+  ** Pointers to the end of sqlite3Config.pScratch and
+  ** sqlite3Config.pPage to a block of memory that records
+  ** which pages are available.
+  */
+  u32 *aScratchFree;
+  u32 *aPageFree;
+
+  /* Number of free pages for scratch and page-cache memory */
+  u32 nScratchFree;
+  u32 nPageFree;
+} mem0;
+
+/*
+** Initialize the memory allocation subsystem.
+*/
+int sqlite3MallocInit(void){
+  if( sqlite3Config.m.xMalloc==0 ){
+    sqlite3MemSetDefault();
+  }
+  memset(&mem0, 0, sizeof(mem0));
+  if( sqlite3Config.bCoreMutex ){
+    mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+  }
+  if( sqlite3Config.pScratch && sqlite3Config.szScratch>=100
+      && sqlite3Config.nScratch>=0 ){
+    int i;
+    sqlite3Config.szScratch -= 4;
+    mem0.aScratchFree = (u32*)&((char*)sqlite3Config.pScratch)
+                  [sqlite3Config.szScratch*sqlite3Config.nScratch];
+    for(i=0; i<sqlite3Config.nScratch; i++){ mem0.aScratchFree[i] = i; }
+    mem0.nScratchFree = sqlite3Config.nScratch;
+  }else{
+    sqlite3Config.pScratch = 0;
+    sqlite3Config.szScratch = 0;
+  }
+  if( sqlite3Config.pPage && sqlite3Config.szPage>=512
+      && sqlite3Config.nPage>=1 ){
+    int i;
+    int overhead;
+    int sz = sqlite3Config.szPage;
+    int n = sqlite3Config.nPage;
+    overhead = (4*n + sz - 1)/sz;
+    sqlite3Config.nPage -= overhead;
+    mem0.aPageFree = (u32*)&((char*)sqlite3Config.pPage)
+                  [sqlite3Config.szPage*sqlite3Config.nPage];
+    for(i=0; i<sqlite3Config.nPage; i++){ mem0.aPageFree[i] = i; }
+    mem0.nPageFree = sqlite3Config.nPage;
+  }else{
+    sqlite3Config.pPage = 0;
+    sqlite3Config.szPage = 0;
+  }
+  return sqlite3Config.m.xInit(sqlite3Config.m.pAppData);
+}
+
+/*
+** Deinitialize the memory allocation subsystem.
+*/
+void sqlite3MallocEnd(void){
+  sqlite3Config.m.xShutdown(sqlite3Config.m.pAppData);
+  memset(&mem0, 0, sizeof(mem0));
+}
+
+/*
+** Return the amount of memory currently checked out.
+*/
+sqlite3_int64 sqlite3_memory_used(void){
+  int n, mx;
+  sqlite3_int64 res;
+  sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
+  res = (sqlite3_int64)n;  /* Work around bug in Borland C. Ticket #3216 */
+  return res;
+}
+
+/*
+** Return the maximum amount of memory that has ever been
+** checked out since either the beginning of this process
+** or since the most recent reset.
+*/
+sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
+  int n, mx;
+  sqlite3_int64 res;
+  sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
+  res = (sqlite3_int64)mx;  /* Work around bug in Borland C. Ticket #3216 */
+  return res;
+}
+
+/*
+** Change the alarm callback
+*/
+int sqlite3_memory_alarm(
+  void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
+  void *pArg,
+  sqlite3_int64 iThreshold
+){
+  sqlite3_mutex_enter(mem0.mutex);
+  mem0.alarmCallback = xCallback;
+  mem0.alarmArg = pArg;
+  mem0.alarmThreshold = iThreshold;
+  sqlite3_mutex_leave(mem0.mutex);
+  return SQLITE_OK;
+}
+
+/*
+** Trigger the alarm 
+*/
+static void sqlite3MallocAlarm(int nByte){
+  void (*xCallback)(void*,sqlite3_int64,int);
+  sqlite3_int64 nowUsed;
+  void *pArg;
+  if( mem0.alarmCallback==0 || mem0.alarmBusy  ) return;
+  mem0.alarmBusy = 1;
+  xCallback = mem0.alarmCallback;
+  nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
+  pArg = mem0.alarmArg;
+  sqlite3_mutex_leave(mem0.mutex);
+  xCallback(pArg, nowUsed, nByte);
+  sqlite3_mutex_enter(mem0.mutex);
+  mem0.alarmBusy = 0;
+}
+
+/*
+** Do a memory allocation with statistics and alarms.  Assume the
+** lock is already held.
+*/
+static int mallocWithAlarm(int n, void **pp){
+  int nFull;
+  void *p;
+  assert( sqlite3_mutex_held(mem0.mutex) );
+  nFull = sqlite3Config.m.xRoundup(n);
+  sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
+  if( mem0.alarmCallback!=0 ){
+    int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
+    if( nUsed+nFull >= mem0.alarmThreshold ){
+      sqlite3MallocAlarm(nFull);
+    }
+  }
+  p = sqlite3Config.m.xMalloc(nFull);
+  if( p==0 && mem0.alarmCallback ){
+    sqlite3MallocAlarm(nFull);
+    p = sqlite3Config.m.xMalloc(nFull);
+  }
+  if( p ){
+    nFull = sqlite3MallocSize(p);
+    sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
+  }
+  *pp = p;
+  return nFull;
+}
+
+/*
+** Allocate memory.  This routine is like sqlite3_malloc() except that it
+** assumes the memory subsystem has already been initialized.
+*/
+void *sqlite3Malloc(int n){
+  void *p;
+  if( n<=0 ){
+    p = 0;
+  }else if( sqlite3Config.bMemstat ){
+    sqlite3_mutex_enter(mem0.mutex);
+    mallocWithAlarm(n, &p);
+    sqlite3_mutex_leave(mem0.mutex);
+  }else{
+    p = sqlite3Config.m.xMalloc(n);
+  }
+  return p;
+}
+
+/*
+** This version of the memory allocation is for use by the application.
+** First make sure the memory subsystem is initialized, then do the
+** allocation.
+*/
+void *sqlite3_malloc(int n){
+#ifndef SQLITE_OMIT_AUTOINIT
+  if( sqlite3_initialize() ) return 0;
+#endif
+  return sqlite3Malloc(n);
+}
+
+/*
+** Each thread may only have a single outstanding allocation from
+** xScratchMalloc().  We verify this constraint in the single-threaded
+** case by setting scratchAllocOut to 1 when an allocation
+** is outstanding clearing it when the allocation is freed.
+*/
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+static int scratchAllocOut = 0;
+#endif
+
+
+/*
+** Allocate memory that is to be used and released right away.
+** This routine is similar to alloca() in that it is not intended
+** for situations where the memory might be held long-term.  This
+** routine is intended to get memory to old large transient data
+** structures that would not normally fit on the stack of an
+** embedded processor.
+*/
+void *sqlite3ScratchMalloc(int n){
+  void *p;
+  assert( n>0 );
+
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+  /* Verify that no more than one scratch allocation per thread
+  ** is outstanding at one time.  (This is only checked in the
+  ** single-threaded case since checking in the multi-threaded case
+  ** would be much more complicated.) */
+  assert( scratchAllocOut==0 );
+#endif
+
+  if( sqlite3Config.szScratch<n ){
+    goto scratch_overflow;
+  }else{  
+    sqlite3_mutex_enter(mem0.mutex);
+    if( mem0.nScratchFree==0 ){
+      sqlite3_mutex_leave(mem0.mutex);
+      goto scratch_overflow;
+    }else{
+      int i;
+      i = mem0.aScratchFree[--mem0.nScratchFree];
+      sqlite3_mutex_leave(mem0.mutex);
+      i *= sqlite3Config.szScratch;
+      sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
+      sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
+      p = (void*)&((char*)sqlite3Config.pScratch)[i];
+    }
+  }
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+  scratchAllocOut = p!=0;
+#endif
+
+  return p;
+
+scratch_overflow:
+  if( sqlite3Config.bMemstat ){
+    sqlite3_mutex_enter(mem0.mutex);
+    sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
+    n = mallocWithAlarm(n, &p);
+    if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
+    sqlite3_mutex_leave(mem0.mutex);
+  }else{
+    p = sqlite3Config.m.xMalloc(n);
+  }
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+  scratchAllocOut = p!=0;
+#endif
+  return p;    
+}
+void sqlite3ScratchFree(void *p){
+  if( p ){
+
+#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
+    /* Verify that no more than one scratch allocation per thread
+    ** is outstanding at one time.  (This is only checked in the
+    ** single-threaded case since checking in the multi-threaded case
+    ** would be much more complicated.) */
+    assert( scratchAllocOut==1 );
+    scratchAllocOut = 0;
+#endif
+
+    if( sqlite3Config.pScratch==0
+           || p<sqlite3Config.pScratch
+           || p>=(void*)mem0.aScratchFree ){
+      if( sqlite3Config.bMemstat ){
+        int iSize = sqlite3MallocSize(p);
+        sqlite3_mutex_enter(mem0.mutex);
+        sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
+        sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
+        sqlite3Config.m.xFree(p);
+        sqlite3_mutex_leave(mem0.mutex);
+      }else{
+        sqlite3Config.m.xFree(p);
+      }
+    }else{
+      int i;
+      i = (u8 *)p - (u8 *)sqlite3Config.pScratch;
+      i /= sqlite3Config.szScratch;
+      assert( i>=0 && i<sqlite3Config.nScratch );
+      sqlite3_mutex_enter(mem0.mutex);
+      assert( mem0.nScratchFree<sqlite3Config.nScratch );
+      mem0.aScratchFree[mem0.nScratchFree++] = i;
+      sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
+      sqlite3_mutex_leave(mem0.mutex);
+    }
+  }
+}
+
+/*
+** Allocate memory to be used by the page cache.  Make use of the
+** memory buffer provided by SQLITE_CONFIG_PAGECACHE if there is one
+** and that memory is of the right size and is not completely
+** consumed.  Otherwise, failover to sqlite3Malloc().
+*/
+void *sqlite3PageMalloc(int n){
+  void *p;
+  assert( n>0 );
+  assert( (n & (n-1))==0 );
+  assert( n>=512 && n<=32768 );
+
+  if( sqlite3Config.szPage<n ){
+    goto page_overflow;
+  }else{  
+    sqlite3_mutex_enter(mem0.mutex);
+    if( mem0.nPageFree==0 ){
+      sqlite3_mutex_leave(mem0.mutex);
+      goto page_overflow;
+    }else{
+      int i;
+      i = mem0.aPageFree[--mem0.nPageFree];
+      sqlite3_mutex_leave(mem0.mutex);
+      i *= sqlite3Config.szPage;
+      sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
+      sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
+      p = (void*)&((char*)sqlite3Config.pPage)[i];
+    }
+  }
+  return p;
+
+page_overflow:
+  if( sqlite3Config.bMemstat ){
+    sqlite3_mutex_enter(mem0.mutex);
+    sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
+    n = mallocWithAlarm(n, &p);
+    if( p ) sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, n);
+    sqlite3_mutex_leave(mem0.mutex);
+  }else{
+    p = sqlite3Config.m.xMalloc(n);
+  }
+  return p;    
+}
+void sqlite3PageFree(void *p){
+  if( p ){
+    if( sqlite3Config.pPage==0
+           || p<sqlite3Config.pPage
+           || p>=(void*)mem0.aPageFree ){
+      /* In this case, the page allocation was obtained from a regular 
+      ** call to sqlite3_mem_methods.xMalloc() (a page-cache-memory 
+      ** "overflow"). Free the block with sqlite3_mem_methods.xFree().
+      */
+      if( sqlite3Config.bMemstat ){
+        int iSize = sqlite3MallocSize(p);
+        sqlite3_mutex_enter(mem0.mutex);
+        sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
+        sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
+        sqlite3Config.m.xFree(p);
+        sqlite3_mutex_leave(mem0.mutex);
+      }else{
+        sqlite3Config.m.xFree(p);
+      }
+    }else{
+      /* The page allocation was allocated from the sqlite3Config.pPage
+      ** buffer. In this case all that is add the index of the page in
+      ** the sqlite3Config.pPage array to the set of free indexes stored
+      ** in the mem0.aPageFree[] array.
+      */
+      int i;
+      i = (u8 *)p - (u8 *)sqlite3Config.pPage;
+      i /= sqlite3Config.szPage;
+      assert( i>=0 && i<sqlite3Config.nPage );
+      sqlite3_mutex_enter(mem0.mutex);
+      assert( mem0.nPageFree<sqlite3Config.nPage );
+      mem0.aPageFree[mem0.nPageFree++] = i;
+      sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
+      sqlite3_mutex_leave(mem0.mutex);
+#if !defined(NDEBUG) && 0
+      /* Assert that a duplicate was not just inserted into aPageFree[]. */
+      for(i=0; i<mem0.nPageFree-1; i++){
+        assert( mem0.aPageFree[i]!=mem0.aPageFree[mem0.nPageFree-1] );
+      }
+#endif
+    }
+  }
+}
+
+/*
+** TRUE if p is a lookaside memory allocation from db
+*/
+static int isLookaside(sqlite3 *db, void *p){
+  return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
+}
+
+/*
+** Return the size of a memory allocation previously obtained from
+** sqlite3Malloc() or sqlite3_malloc().
+*/
+int sqlite3MallocSize(void *p){
+  return sqlite3Config.m.xSize(p);
+}
+int sqlite3DbMallocSize(sqlite3 *db, void *p){
+  if( isLookaside(db, p) ){
+    return db->lookaside.sz;
+  }else{
+    return sqlite3Config.m.xSize(p);
+  }
+}
+
+/*
+** Free memory previously obtained from sqlite3Malloc().
+*/
+void sqlite3_free(void *p){
+  if( p==0 ) return;
+  if( sqlite3Config.bMemstat ){
+    sqlite3_mutex_enter(mem0.mutex);
+    sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
+    sqlite3Config.m.xFree(p);
+    sqlite3_mutex_leave(mem0.mutex);
+  }else{
+    sqlite3Config.m.xFree(p);
+  }
+}
+
+/*
+** Free memory that might be associated with a particular database
+** connection.
+*/
+void sqlite3DbFree(sqlite3 *db, void *p){
+  if( isLookaside(db, p) ){
+    LookasideSlot *pBuf = (LookasideSlot*)p;
+    pBuf->pNext = db->lookaside.pFree;
+    db->lookaside.pFree = pBuf;
+    db->lookaside.nOut--;
+  }else{
+    sqlite3_free(p);
+  }
+}
+
+/*
+** Change the size of an existing memory allocation
+*/
+void *sqlite3Realloc(void *pOld, int nBytes){
+  int nOld, nNew;
+  void *pNew;
+  if( pOld==0 ){
+    return sqlite3Malloc(nBytes);
+  }
+  if( nBytes<=0 ){
+    sqlite3_free(pOld);
+    return 0;
+  }
+  nOld = sqlite3MallocSize(pOld);
+  if( sqlite3Config.bMemstat ){
+    sqlite3_mutex_enter(mem0.mutex);
+    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
+    nNew = sqlite3Config.m.xRoundup(nBytes);
+    if( nOld==nNew ){
+      pNew = pOld;
+    }else{
+      if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= 
+            mem0.alarmThreshold ){
+        sqlite3MallocAlarm(nNew-nOld);
+      }
+      pNew = sqlite3Config.m.xRealloc(pOld, nNew);
+      if( pNew==0 && mem0.alarmCallback ){
+        sqlite3MallocAlarm(nBytes);
+        pNew = sqlite3Config.m.xRealloc(pOld, nNew);
+      }
+      if( pNew ){
+        nNew = sqlite3MallocSize(pNew);
+        sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
+      }
+    }
+    sqlite3_mutex_leave(mem0.mutex);
+  }else{
+    pNew = sqlite3Config.m.xRealloc(pOld, nBytes);
+  }
+  return pNew;
+}
+
+/*
+** The public interface to sqlite3Realloc.  Make sure that the memory
+** subsystem is initialized prior to invoking sqliteRealloc.
+*/
+void *sqlite3_realloc(void *pOld, int n){
+#ifndef SQLITE_OMIT_AUTOINIT
+  if( sqlite3_initialize() ) return 0;
+#endif
+  return sqlite3Realloc(pOld, n);
+}
+
+
+/*
+** Allocate and zero memory.
+*/ 
+void *sqlite3MallocZero(int n){
+  void *p = sqlite3Malloc(n);
+  if( p ){
+    memset(p, 0, n);
+  }
+  return p;
+}
+
+/*
+** Allocate and zero memory.  If the allocation fails, make
+** the mallocFailed flag in the connection pointer.
+*/
+void *sqlite3DbMallocZero(sqlite3 *db, int n){
+  void *p = sqlite3DbMallocRaw(db, n);
+  if( p ){
+    memset(p, 0, n);
+  }
+  return p;
+}
+
+/*
+** Allocate and zero memory.  If the allocation fails, make
+** the mallocFailed flag in the connection pointer.
+*/
+void *sqlite3DbMallocRaw(sqlite3 *db, int n){
+  void *p;
+  if( db ){
+    LookasideSlot *pBuf;
+    if( db->mallocFailed ){
+      return 0;
+    }
+    if( db->lookaside.bEnabled && n<=db->lookaside.sz
+         && (pBuf = db->lookaside.pFree)!=0 ){
+      db->lookaside.pFree = pBuf->pNext;
+      db->lookaside.nOut++;
+      if( db->lookaside.nOut>db->lookaside.mxOut ){
+        db->lookaside.mxOut = db->lookaside.nOut;
+      }
+      return (void*)pBuf;
+    }
+  }
+  p = sqlite3Malloc(n);
+  if( !p && db ){
+    db->mallocFailed = 1;
+  }
+  return p;
+}
+
+/*
+** Resize the block of memory pointed to by p to n bytes. If the
+** resize fails, set the mallocFailed flag in the connection object.
+*/
+void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
+  void *pNew = 0;
+  if( db->mallocFailed==0 ){
+    if( p==0 ){
+      return sqlite3DbMallocRaw(db, n);
+    }
+    if( isLookaside(db, p) ){
+      if( n<=db->lookaside.sz ){
+        return p;
+      }
+      pNew = sqlite3DbMallocRaw(db, n);
+      if( pNew ){
+        memcpy(pNew, p, db->lookaside.sz);
+        sqlite3DbFree(db, p);
+      }
+    }else{
+      pNew = sqlite3_realloc(p, n);
+      if( !pNew ){
+        db->mallocFailed = 1;
+      }
+    }
+  }
+  return pNew;
+}
+
+/*
+** Attempt to reallocate p.  If the reallocation fails, then free p
+** and set the mallocFailed flag in the database connection.
+*/
+void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
+  void *pNew;
+  pNew = sqlite3DbRealloc(db, p, n);
+  if( !pNew ){
+    sqlite3DbFree(db, p);
+  }
+  return pNew;
+}
+
+/*
+** Make a copy of a string in memory obtained from sqliteMalloc(). These 
+** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
+** is because when memory debugging is turned on, these two functions are 
+** called via macros that record the current file and line number in the
+** ThreadData structure.
+*/
+char *sqlite3DbStrDup(sqlite3 *db, const char *z){
+  char *zNew;
+  size_t n;
+  if( z==0 ){
+    return 0;
+  }
+  n = strlen(z)+1;
+  assert( (n&0x7fffffff)==n );
+  zNew = sqlite3DbMallocRaw(db, (int)n);
+  if( zNew ){
+    memcpy(zNew, z, n);
+  }
+  return zNew;
+}
+char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
+  char *zNew;
+  if( z==0 ){
+    return 0;
+  }
+  assert( (n&0x7fffffff)==n );
+  zNew = sqlite3DbMallocRaw(db, n+1);
+  if( zNew ){
+    memcpy(zNew, z, n);
+    zNew[n] = 0;
+  }
+  return zNew;
+}
+
+/*
+** Create a string from the zFromat argument and the va_list that follows.
+** Store the string in memory obtained from sqliteMalloc() and make *pz
+** point to that string.
+*/
+void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
+  va_list ap;
+  char *z;
+
+  va_start(ap, zFormat);
+  z = sqlite3VMPrintf(db, zFormat, ap);
+  va_end(ap);
+  sqlite3DbFree(db, *pz);
+  *pz = z;
+}
+
+
+/*
+** This function must be called before exiting any API function (i.e. 
+** returning control to the user) that has called sqlite3_malloc or
+** sqlite3_realloc.
+**
+** The returned value is normally a copy of the second argument to this
+** function. However, if a malloc() failure has occured since the previous
+** invocation SQLITE_NOMEM is returned instead. 
+**
+** If the first argument, db, is not NULL and a malloc() error has occured,
+** then the connection error-code (the value returned by sqlite3_errcode())
+** is set to SQLITE_NOMEM.
+*/
+int sqlite3ApiExit(sqlite3* db, int rc){
+  /* If the db handle is not NULL, then we must hold the connection handle
+  ** mutex here. Otherwise the read (and possible write) of db->mallocFailed 
+  ** is unsafe, as is the call to sqlite3Error().
+  */
+  assert( !db || sqlite3_mutex_held(db->mutex) );
+  if( db && db->mallocFailed ){
+    sqlite3Error(db, SQLITE_NOMEM, 0);
+    db->mallocFailed = 0;
+    rc = SQLITE_NOMEM;
+  }
+  return rc & (db ? db->errMask : 0xff);
+}