persistentstorage/sql/SQLite/mem3.c
changeset 0 08ec8eefde2f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/persistentstorage/sql/SQLite/mem3.c	Fri Jan 22 11:06:30 2010 +0200
@@ -0,0 +1,682 @@
+/*
+** 2007 October 14
+**
+** The author disclaims copyright to this source code.  In place of
+** a legal notice, here is a blessing:
+**
+**    May you do good and not evil.
+**    May you find forgiveness for yourself and forgive others.
+**    May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement a memory
+** allocation subsystem for use by SQLite. 
+**
+** This version of the memory allocation subsystem omits all
+** use of malloc(). The SQLite user supplies a block of memory
+** before calling sqlite3_initialize() from which allocations
+** are made and returned by the xMalloc() and xRealloc() 
+** implementations. Once sqlite3_initialize() has been called,
+** the amount of memory available to SQLite is fixed and cannot
+** be changed.
+**
+** This version of the memory allocation subsystem is included
+** in the build only if SQLITE_ENABLE_MEMSYS3 is defined.
+**
+** $Id: mem3.c,v 1.20 2008/07/18 18:56:17 drh Exp $
+*/
+#include "sqliteInt.h"
+
+/*
+** This version of the memory allocator is only built into the library
+** SQLITE_ENABLE_MEMSYS3 is defined. Defining this symbol does not
+** mean that the library will use a memory-pool by default, just that
+** it is available. The mempool allocator is activated by calling
+** sqlite3_config().
+*/
+#ifdef SQLITE_ENABLE_MEMSYS3
+
+/*
+** Maximum size (in Mem3Blocks) of a "small" chunk.
+*/
+#define MX_SMALL 10
+
+
+/*
+** Number of freelist hash slots
+*/
+#define N_HASH  61
+
+/*
+** A memory allocation (also called a "chunk") consists of two or 
+** more blocks where each block is 8 bytes.  The first 8 bytes are 
+** a header that is not returned to the user.
+**
+** A chunk is two or more blocks that is either checked out or
+** free.  The first block has format u.hdr.  u.hdr.size4x is 4 times the
+** size of the allocation in blocks if the allocation is free.
+** The u.hdr.size4x&1 bit is true if the chunk is checked out and
+** false if the chunk is on the freelist.  The u.hdr.size4x&2 bit
+** is true if the previous chunk is checked out and false if the
+** previous chunk is free.  The u.hdr.prevSize field is the size of
+** the previous chunk in blocks if the previous chunk is on the
+** freelist. If the previous chunk is checked out, then
+** u.hdr.prevSize can be part of the data for that chunk and should
+** not be read or written.
+**
+** We often identify a chunk by its index in mem3.aPool[].  When
+** this is done, the chunk index refers to the second block of
+** the chunk.  In this way, the first chunk has an index of 1.
+** A chunk index of 0 means "no such chunk" and is the equivalent
+** of a NULL pointer.
+**
+** The second block of free chunks is of the form u.list.  The
+** two fields form a double-linked list of chunks of related sizes.
+** Pointers to the head of the list are stored in mem3.aiSmall[] 
+** for smaller chunks and mem3.aiHash[] for larger chunks.
+**
+** The second block of a chunk is user data if the chunk is checked 
+** out.  If a chunk is checked out, the user data may extend into
+** the u.hdr.prevSize value of the following chunk.
+*/
+typedef struct Mem3Block Mem3Block;
+struct Mem3Block {
+  union {
+    struct {
+      u32 prevSize;   /* Size of previous chunk in Mem3Block elements */
+      u32 size4x;     /* 4x the size of current chunk in Mem3Block elements */
+    } hdr;
+    struct {
+      u32 next;       /* Index in mem3.aPool[] of next free chunk */
+      u32 prev;       /* Index in mem3.aPool[] of previous free chunk */
+    } list;
+  } u;
+};
+
+/*
+** All of the static variables used by this module are collected
+** into a single structure named "mem3".  This is to keep the
+** static variables organized and to reduce namespace pollution
+** when this module is combined with other in the amalgamation.
+*/
+static struct {
+  /*
+  ** True if we are evaluating an out-of-memory callback.
+  */
+  int alarmBusy;
+  
+  /*
+  ** Mutex to control access to the memory allocation subsystem.
+  */
+  sqlite3_mutex *mutex;
+  
+  /*
+  ** The minimum amount of free space that we have seen.
+  */
+  u32 mnMaster;
+
+  /*
+  ** iMaster is the index of the master chunk.  Most new allocations
+  ** occur off of this chunk.  szMaster is the size (in Mem3Blocks)
+  ** of the current master.  iMaster is 0 if there is not master chunk.
+  ** The master chunk is not in either the aiHash[] or aiSmall[].
+  */
+  u32 iMaster;
+  u32 szMaster;
+
+  /*
+  ** Array of lists of free blocks according to the block size 
+  ** for smaller chunks, or a hash on the block size for larger
+  ** chunks.
+  */
+  u32 aiSmall[MX_SMALL-1];   /* For sizes 2 through MX_SMALL, inclusive */
+  u32 aiHash[N_HASH];        /* For sizes MX_SMALL+1 and larger */
+
+  /*
+  ** Memory available for allocation. nPool is the size of the array
+  ** (in Mem3Blocks) pointed to by aPool less 2.
+  */
+  u32 nPool;
+  Mem3Block *aPool;
+} mem3;
+
+/*
+** Unlink the chunk at mem3.aPool[i] from list it is currently
+** on.  *pRoot is the list that i is a member of.
+*/
+static void memsys3UnlinkFromList(u32 i, u32 *pRoot){
+  u32 next = mem3.aPool[i].u.list.next;
+  u32 prev = mem3.aPool[i].u.list.prev;
+  assert( sqlite3_mutex_held(mem3.mutex) );
+  if( prev==0 ){
+    *pRoot = next;
+  }else{
+    mem3.aPool[prev].u.list.next = next;
+  }
+  if( next ){
+    mem3.aPool[next].u.list.prev = prev;
+  }
+  mem3.aPool[i].u.list.next = 0;
+  mem3.aPool[i].u.list.prev = 0;
+}
+
+/*
+** Unlink the chunk at index i from 
+** whatever list is currently a member of.
+*/
+static void memsys3Unlink(u32 i){
+  u32 size, hash;
+  assert( sqlite3_mutex_held(mem3.mutex) );
+  assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
+  assert( i>=1 );
+  size = mem3.aPool[i-1].u.hdr.size4x/4;
+  assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
+  assert( size>=2 );
+  if( size <= MX_SMALL ){
+    memsys3UnlinkFromList(i, &mem3.aiSmall[size-2]);
+  }else{
+    hash = size % N_HASH;
+    memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
+  }
+}
+
+/*
+** Link the chunk at mem3.aPool[i] so that is on the list rooted
+** at *pRoot.
+*/
+static void memsys3LinkIntoList(u32 i, u32 *pRoot){
+  assert( sqlite3_mutex_held(mem3.mutex) );
+  mem3.aPool[i].u.list.next = *pRoot;
+  mem3.aPool[i].u.list.prev = 0;
+  if( *pRoot ){
+    mem3.aPool[*pRoot].u.list.prev = i;
+  }
+  *pRoot = i;
+}
+
+/*
+** Link the chunk at index i into either the appropriate
+** small chunk list, or into the large chunk hash table.
+*/
+static void memsys3Link(u32 i){
+  u32 size, hash;
+  assert( sqlite3_mutex_held(mem3.mutex) );
+  assert( i>=1 );
+  assert( (mem3.aPool[i-1].u.hdr.size4x & 1)==0 );
+  size = mem3.aPool[i-1].u.hdr.size4x/4;
+  assert( size==mem3.aPool[i+size-1].u.hdr.prevSize );
+  assert( size>=2 );
+  if( size <= MX_SMALL ){
+    memsys3LinkIntoList(i, &mem3.aiSmall[size-2]);
+  }else{
+    hash = size % N_HASH;
+    memsys3LinkIntoList(i, &mem3.aiHash[hash]);
+  }
+}
+
+/*
+** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
+** will already be held (obtained by code in malloc.c) if
+** sqlite3Config.bMemStat is true.
+*/
+static void memsys3Enter(void){
+  if( sqlite3Config.bMemstat==0 && mem3.mutex==0 ){
+    mem3.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+  }
+  sqlite3_mutex_enter(mem3.mutex);
+}
+static void memsys3Leave(void){
+  sqlite3_mutex_leave(mem3.mutex);
+}
+
+/*
+** Called when we are unable to satisfy an allocation of nBytes.
+*/
+static void memsys3OutOfMemory(int nByte){
+  if( !mem3.alarmBusy ){
+    mem3.alarmBusy = 1;
+    assert( sqlite3_mutex_held(mem3.mutex) );
+    sqlite3_mutex_leave(mem3.mutex);
+    sqlite3_release_memory(nByte);
+    sqlite3_mutex_enter(mem3.mutex);
+    mem3.alarmBusy = 0;
+  }
+}
+
+
+/*
+** Chunk i is a free chunk that has been unlinked.  Adjust its 
+** size parameters for check-out and return a pointer to the 
+** user portion of the chunk.
+*/
+static void *memsys3Checkout(u32 i, int nBlock){
+  u32 x;
+  assert( sqlite3_mutex_held(mem3.mutex) );
+  assert( i>=1 );
+  assert( mem3.aPool[i-1].u.hdr.size4x/4==nBlock );
+  assert( mem3.aPool[i+nBlock-1].u.hdr.prevSize==nBlock );
+  x = mem3.aPool[i-1].u.hdr.size4x;
+  mem3.aPool[i-1].u.hdr.size4x = nBlock*4 | 1 | (x&2);
+  mem3.aPool[i+nBlock-1].u.hdr.prevSize = nBlock;
+  mem3.aPool[i+nBlock-1].u.hdr.size4x |= 2;
+  return &mem3.aPool[i];
+}
+
+/*
+** Carve a piece off of the end of the mem3.iMaster free chunk.
+** Return a pointer to the new allocation.  Or, if the master chunk
+** is not large enough, return 0.
+*/
+static void *memsys3FromMaster(int nBlock){
+  assert( sqlite3_mutex_held(mem3.mutex) );
+  assert( mem3.szMaster>=nBlock );
+  if( nBlock>=mem3.szMaster-1 ){
+    /* Use the entire master */
+    void *p = memsys3Checkout(mem3.iMaster, mem3.szMaster);
+    mem3.iMaster = 0;
+    mem3.szMaster = 0;
+    mem3.mnMaster = 0;
+    return p;
+  }else{
+    /* Split the master block.  Return the tail. */
+    u32 newi, x;
+    newi = mem3.iMaster + mem3.szMaster - nBlock;
+    assert( newi > mem3.iMaster+1 );
+    mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = nBlock;
+    mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x |= 2;
+    mem3.aPool[newi-1].u.hdr.size4x = nBlock*4 + 1;
+    mem3.szMaster -= nBlock;
+    mem3.aPool[newi-1].u.hdr.prevSize = mem3.szMaster;
+    x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
+    mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
+    if( mem3.szMaster < mem3.mnMaster ){
+      mem3.mnMaster = mem3.szMaster;
+    }
+    return (void*)&mem3.aPool[newi];
+  }
+}
+
+/*
+** *pRoot is the head of a list of free chunks of the same size
+** or same size hash.  In other words, *pRoot is an entry in either
+** mem3.aiSmall[] or mem3.aiHash[].  
+**
+** This routine examines all entries on the given list and tries
+** to coalesce each entries with adjacent free chunks.  
+**
+** If it sees a chunk that is larger than mem3.iMaster, it replaces 
+** the current mem3.iMaster with the new larger chunk.  In order for
+** this mem3.iMaster replacement to work, the master chunk must be
+** linked into the hash tables.  That is not the normal state of
+** affairs, of course.  The calling routine must link the master
+** chunk before invoking this routine, then must unlink the (possibly
+** changed) master chunk once this routine has finished.
+*/
+static void memsys3Merge(u32 *pRoot){
+  u32 iNext, prev, size, i, x;
+
+  assert( sqlite3_mutex_held(mem3.mutex) );
+  for(i=*pRoot; i>0; i=iNext){
+    iNext = mem3.aPool[i].u.list.next;
+    size = mem3.aPool[i-1].u.hdr.size4x;
+    assert( (size&1)==0 );
+    if( (size&2)==0 ){
+      memsys3UnlinkFromList(i, pRoot);
+      assert( i > mem3.aPool[i-1].u.hdr.prevSize );
+      prev = i - mem3.aPool[i-1].u.hdr.prevSize;
+      if( prev==iNext ){
+        iNext = mem3.aPool[prev].u.list.next;
+      }
+      memsys3Unlink(prev);
+      size = i + size/4 - prev;
+      x = mem3.aPool[prev-1].u.hdr.size4x & 2;
+      mem3.aPool[prev-1].u.hdr.size4x = size*4 | x;
+      mem3.aPool[prev+size-1].u.hdr.prevSize = size;
+      memsys3Link(prev);
+      i = prev;
+    }else{
+      size /= 4;
+    }
+    if( size>mem3.szMaster ){
+      mem3.iMaster = i;
+      mem3.szMaster = size;
+    }
+  }
+}
+
+/*
+** Return a block of memory of at least nBytes in size.
+** Return NULL if unable.
+**
+** This function assumes that the necessary mutexes, if any, are
+** already held by the caller. Hence "Unsafe".
+*/
+static void *memsys3MallocUnsafe(int nByte){
+  u32 i;
+  int nBlock;
+  int toFree;
+
+  assert( sqlite3_mutex_held(mem3.mutex) );
+  assert( sizeof(Mem3Block)==8 );
+  if( nByte<=12 ){
+    nBlock = 2;
+  }else{
+    nBlock = (nByte + 11)/8;
+  }
+  assert( nBlock>=2 );
+
+  /* STEP 1:
+  ** Look for an entry of the correct size in either the small
+  ** chunk table or in the large chunk hash table.  This is
+  ** successful most of the time (about 9 times out of 10).
+  */
+  if( nBlock <= MX_SMALL ){
+    i = mem3.aiSmall[nBlock-2];
+    if( i>0 ){
+      memsys3UnlinkFromList(i, &mem3.aiSmall[nBlock-2]);
+      return memsys3Checkout(i, nBlock);
+    }
+  }else{
+    int hash = nBlock % N_HASH;
+    for(i=mem3.aiHash[hash]; i>0; i=mem3.aPool[i].u.list.next){
+      if( mem3.aPool[i-1].u.hdr.size4x/4==nBlock ){
+        memsys3UnlinkFromList(i, &mem3.aiHash[hash]);
+        return memsys3Checkout(i, nBlock);
+      }
+    }
+  }
+
+  /* STEP 2:
+  ** Try to satisfy the allocation by carving a piece off of the end
+  ** of the master chunk.  This step usually works if step 1 fails.
+  */
+  if( mem3.szMaster>=nBlock ){
+    return memsys3FromMaster(nBlock);
+  }
+
+
+  /* STEP 3:  
+  ** Loop through the entire memory pool.  Coalesce adjacent free
+  ** chunks.  Recompute the master chunk as the largest free chunk.
+  ** Then try again to satisfy the allocation by carving a piece off
+  ** of the end of the master chunk.  This step happens very
+  ** rarely (we hope!)
+  */
+  for(toFree=nBlock*16; toFree<(mem3.nPool*16); toFree *= 2){
+    memsys3OutOfMemory(toFree);
+    if( mem3.iMaster ){
+      memsys3Link(mem3.iMaster);
+      mem3.iMaster = 0;
+      mem3.szMaster = 0;
+    }
+    for(i=0; i<N_HASH; i++){
+      memsys3Merge(&mem3.aiHash[i]);
+    }
+    for(i=0; i<MX_SMALL-1; i++){
+      memsys3Merge(&mem3.aiSmall[i]);
+    }
+    if( mem3.szMaster ){
+      memsys3Unlink(mem3.iMaster);
+      if( mem3.szMaster>=nBlock ){
+        return memsys3FromMaster(nBlock);
+      }
+    }
+  }
+
+  /* If none of the above worked, then we fail. */
+  return 0;
+}
+
+/*
+** Free an outstanding memory allocation.
+**
+** This function assumes that the necessary mutexes, if any, are
+** already held by the caller. Hence "Unsafe".
+*/
+void memsys3FreeUnsafe(void *pOld){
+  Mem3Block *p = (Mem3Block*)pOld;
+  int i;
+  u32 size, x;
+  assert( sqlite3_mutex_held(mem3.mutex) );
+  assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
+  i = p - mem3.aPool;
+  assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
+  size = mem3.aPool[i-1].u.hdr.size4x/4;
+  assert( i+size<=mem3.nPool+1 );
+  mem3.aPool[i-1].u.hdr.size4x &= ~1;
+  mem3.aPool[i+size-1].u.hdr.prevSize = size;
+  mem3.aPool[i+size-1].u.hdr.size4x &= ~2;
+  memsys3Link(i);
+
+  /* Try to expand the master using the newly freed chunk */
+  if( mem3.iMaster ){
+    while( (mem3.aPool[mem3.iMaster-1].u.hdr.size4x&2)==0 ){
+      size = mem3.aPool[mem3.iMaster-1].u.hdr.prevSize;
+      mem3.iMaster -= size;
+      mem3.szMaster += size;
+      memsys3Unlink(mem3.iMaster);
+      x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
+      mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
+      mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
+    }
+    x = mem3.aPool[mem3.iMaster-1].u.hdr.size4x & 2;
+    while( (mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x&1)==0 ){
+      memsys3Unlink(mem3.iMaster+mem3.szMaster);
+      mem3.szMaster += mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.size4x/4;
+      mem3.aPool[mem3.iMaster-1].u.hdr.size4x = mem3.szMaster*4 | x;
+      mem3.aPool[mem3.iMaster+mem3.szMaster-1].u.hdr.prevSize = mem3.szMaster;
+    }
+  }
+}
+
+/*
+** Return the size of an outstanding allocation, in bytes.  The
+** size returned omits the 8-byte header overhead.  This only
+** works for chunks that are currently checked out.
+*/
+static int memsys3Size(void *p){
+  Mem3Block *pBlock;
+  if( p==0 ) return 0;
+  pBlock = (Mem3Block*)p;
+  assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
+  return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
+}
+
+/*
+** Round up a request size to the next valid allocation size.
+*/
+static int memsys3Roundup(int n){
+  if( n<=12 ){
+    return 12;
+  }else{
+    return ((n+11)&~7) - 4;
+  }
+}
+
+/*
+** Allocate nBytes of memory.
+*/
+static void *memsys3Malloc(int nBytes){
+  sqlite3_int64 *p;
+  assert( nBytes>0 );          /* malloc.c filters out 0 byte requests */
+  memsys3Enter();
+  p = memsys3MallocUnsafe(nBytes);
+  memsys3Leave();
+  return (void*)p; 
+}
+
+/*
+** Free memory.
+*/
+void memsys3Free(void *pPrior){
+  assert( pPrior );
+  memsys3Enter();
+  memsys3FreeUnsafe(pPrior);
+  memsys3Leave();
+}
+
+/*
+** Change the size of an existing memory allocation
+*/
+void *memsys3Realloc(void *pPrior, int nBytes){
+  int nOld;
+  void *p;
+  if( pPrior==0 ){
+    return sqlite3_malloc(nBytes);
+  }
+  if( nBytes<=0 ){
+    sqlite3_free(pPrior);
+    return 0;
+  }
+  nOld = memsys3Size(pPrior);
+  if( nBytes<=nOld && nBytes>=nOld-128 ){
+    return pPrior;
+  }
+  memsys3Enter();
+  p = memsys3MallocUnsafe(nBytes);
+  if( p ){
+    if( nOld<nBytes ){
+      memcpy(p, pPrior, nOld);
+    }else{
+      memcpy(p, pPrior, nBytes);
+    }
+    memsys3FreeUnsafe(pPrior);
+  }
+  memsys3Leave();
+  return p;
+}
+
+/*
+** Initialize this module.
+*/
+static int memsys3Init(void *NotUsed){
+  if( !sqlite3Config.pHeap ){
+    return SQLITE_ERROR;
+  }
+
+  /* Store a pointer to the memory block in global structure mem3. */
+  assert( sizeof(Mem3Block)==8 );
+  mem3.aPool = (Mem3Block *)sqlite3Config.pHeap;
+  mem3.nPool = (sqlite3Config.nHeap / sizeof(Mem3Block)) - 2;
+
+  /* Initialize the master block. */
+  mem3.szMaster = mem3.nPool;
+  mem3.mnMaster = mem3.szMaster;
+  mem3.iMaster = 1;
+  mem3.aPool[0].u.hdr.size4x = (mem3.szMaster<<2) + 2;
+  mem3.aPool[mem3.nPool].u.hdr.prevSize = mem3.nPool;
+  mem3.aPool[mem3.nPool].u.hdr.size4x = 1;
+
+  return SQLITE_OK;
+}
+
+/*
+** Deinitialize this module.
+*/
+static void memsys3Shutdown(void *NotUsed){
+  return;
+}
+
+
+
+/*
+** Open the file indicated and write a log of all unfreed memory 
+** allocations into that log.
+*/
+#ifdef SQLITE_DEBUG
+void sqlite3Memsys3Dump(const char *zFilename){
+  FILE *out;
+  int i, j;
+  u32 size;
+  if( zFilename==0 || zFilename[0]==0 ){
+    out = stdout;
+  }else{
+    out = fopen(zFilename, "w");
+    if( out==0 ){
+      fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
+                      zFilename);
+      return;
+    }
+  }
+  memsys3Enter();
+  fprintf(out, "CHUNKS:\n");
+  for(i=1; i<=mem3.nPool; i+=size/4){
+    size = mem3.aPool[i-1].u.hdr.size4x;
+    if( size/4<=1 ){
+      fprintf(out, "%p size error\n", &mem3.aPool[i]);
+      assert( 0 );
+      break;
+    }
+    if( (size&1)==0 && mem3.aPool[i+size/4-1].u.hdr.prevSize!=size/4 ){
+      fprintf(out, "%p tail size does not match\n", &mem3.aPool[i]);
+      assert( 0 );
+      break;
+    }
+    if( ((mem3.aPool[i+size/4-1].u.hdr.size4x&2)>>1)!=(size&1) ){
+      fprintf(out, "%p tail checkout bit is incorrect\n", &mem3.aPool[i]);
+      assert( 0 );
+      break;
+    }
+    if( size&1 ){
+      fprintf(out, "%p %6d bytes checked out\n", &mem3.aPool[i], (size/4)*8-8);
+    }else{
+      fprintf(out, "%p %6d bytes free%s\n", &mem3.aPool[i], (size/4)*8-8,
+                  i==mem3.iMaster ? " **master**" : "");
+    }
+  }
+  for(i=0; i<MX_SMALL-1; i++){
+    if( mem3.aiSmall[i]==0 ) continue;
+    fprintf(out, "small(%2d):", i);
+    for(j = mem3.aiSmall[i]; j>0; j=mem3.aPool[j].u.list.next){
+      fprintf(out, " %p(%d)", &mem3.aPool[j],
+              (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
+    }
+    fprintf(out, "\n"); 
+  }
+  for(i=0; i<N_HASH; i++){
+    if( mem3.aiHash[i]==0 ) continue;
+    fprintf(out, "hash(%2d):", i);
+    for(j = mem3.aiHash[i]; j>0; j=mem3.aPool[j].u.list.next){
+      fprintf(out, " %p(%d)", &mem3.aPool[j],
+              (mem3.aPool[j-1].u.hdr.size4x/4)*8-8);
+    }
+    fprintf(out, "\n"); 
+  }
+  fprintf(out, "master=%d\n", mem3.iMaster);
+  fprintf(out, "nowUsed=%d\n", mem3.nPool*8 - mem3.szMaster*8);
+  fprintf(out, "mxUsed=%d\n", mem3.nPool*8 - mem3.mnMaster*8);
+  sqlite3_mutex_leave(mem3.mutex);
+  if( out==stdout ){
+    fflush(stdout);
+  }else{
+    fclose(out);
+  }
+}
+#endif
+
+/*
+** This routine is the only routine in this file with external 
+** linkage.
+**
+** Populate the low-level memory allocation function pointers in
+** sqlite3Config.m with pointers to the routines in this file. The
+** arguments specify the block of memory to manage.
+**
+** This routine is only called by sqlite3_config(), and therefore
+** is not required to be threadsafe (it is not).
+*/
+const sqlite3_mem_methods *sqlite3MemGetMemsys3(void){
+  static const sqlite3_mem_methods mempoolMethods = {
+     memsys3Malloc,
+     memsys3Free,
+     memsys3Realloc,
+     memsys3Size,
+     memsys3Roundup,
+     memsys3Init,
+     memsys3Shutdown,
+     0
+  };
+  return &mempoolMethods;
+}
+
+#endif /* SQLITE_ENABLE_MEMSYS3 */