persistentstorage/sql/SQLite/mem4.c
changeset 0 08ec8eefde2f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/persistentstorage/sql/SQLite/mem4.c	Fri Jan 22 11:06:30 2010 +0200
@@ -0,0 +1,393 @@
+/*
+** 2007 August 14
+**
+** The author disclaims copyright to this source code.  In place of
+** a legal notice, here is a blessing:
+**
+**    May you do good and not evil.
+**    May you find forgiveness for yourself and forgive others.
+**    May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C functions that implement a memory
+** allocation subsystem for use by SQLite.  
+**
+** $Id: mem4.c,v 1.3 2008/06/18 17:09:10 danielk1977 Exp $
+*/
+#include "sqliteInt.h"
+
+/*
+** This version of the memory allocator attempts to obtain memory
+** from mmap() if the size of the allocation is close to the size
+** of a virtual memory page.  If the size of the allocation is different
+** from the virtual memory page size, then ordinary malloc() is used.
+** Ordinary malloc is also used if space allocated to mmap() is
+** exhausted.
+**
+** Enable this memory allocation by compiling with -DSQLITE_MMAP_HEAP_SIZE=nnn
+** where nnn is the maximum number of bytes of mmap-ed memory you want 
+** to support.   This module may choose to use less memory than requested.
+**
+*/
+#ifdef SQLITE_MMAP_HEAP_SIZE
+
+/*
+** This is a test version of the memory allocator that attempts to
+** use mmap() and madvise() for allocations and frees of approximately
+** the virtual memory page size.
+*/
+#include <sys/types.h>
+#include <sys/mman.h>
+#include <errno.h>
+#include <unistd.h>
+
+
+/*
+** All of the static variables used by this module are collected
+** into a single structure named "mem".  This is to keep the
+** static variables organized and to reduce namespace pollution
+** when this module is combined with other in the amalgamation.
+*/
+static struct {
+  /*
+  ** The alarm callback and its arguments.  The mem.mutex lock will
+  ** be held while the callback is running.  Recursive calls into
+  ** the memory subsystem are allowed, but no new callbacks will be
+  ** issued.  The alarmBusy variable is set to prevent recursive
+  ** callbacks.
+  */
+  sqlite3_int64 alarmThreshold;
+  void (*alarmCallback)(void*, sqlite3_int64,int);
+  void *alarmArg;
+  int alarmBusy;
+  
+  /*
+  ** Mutex to control access to the memory allocation subsystem.
+  */
+  sqlite3_mutex *mutex;
+  
+  /*
+  ** Current allocation and high-water mark.
+  */
+  sqlite3_int64 nowUsed;
+  sqlite3_int64 mxUsed;
+
+  /*
+  ** Current allocation and high-water marks for mmap allocated memory.
+  */
+  sqlite3_int64 nowUsedMMap;
+  sqlite3_int64 mxUsedMMap;
+
+  /*
+  ** Size of a single mmap page.  Obtained from sysconf().
+  */
+  int szPage;
+  int mnPage;
+
+  /*
+  ** The number of available mmap pages.
+  */
+  int nPage;
+
+  /*
+  ** Index of the first free page.  0 means no pages have been freed.
+  */
+  int firstFree;
+
+  /* First unused page on the top of the heap.
+  */
+  int firstUnused;
+
+  /*
+  ** Bulk memory obtained from from mmap().
+  */
+  char *mmapHeap;   /* first byte of the heap */ 
+
+} mem;
+
+
+/*
+** Enter the mutex mem.mutex. Allocate it if it is not already allocated.
+** The mmap() region is initialized the first time this routine is called.
+*/
+static void memsys4Enter(void){
+  if( mem.mutex==0 ){
+    mem.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
+  }
+  sqlite3_mutex_enter(mem.mutex);
+}
+
+/*
+** Attempt to free memory to the mmap heap.  This only works if
+** the pointer p is within the range of memory addresses that
+** comprise the mmap heap.  Return 1 if the memory was freed
+** successfully.  Return 0 if the pointer is out of range.
+*/
+static int mmapFree(void *p){
+  char *z;
+  int idx, *a;
+  if( mem.mmapHeap==MAP_FAILED || mem.nPage==0 ){
+    return 0;
+  }
+  z = (char*)p;
+  idx = (z - mem.mmapHeap)/mem.szPage;
+  if( idx<1 || idx>=mem.nPage ){
+    return 0;
+  }
+  a = (int*)mem.mmapHeap;
+  a[idx] = a[mem.firstFree];
+  mem.firstFree = idx;
+  mem.nowUsedMMap -= mem.szPage;
+  madvise(p, mem.szPage, MADV_DONTNEED);
+  return 1;
+}
+
+/*
+** Attempt to allocate nBytes from the mmap heap.  Return a pointer
+** to the allocated page.  Or, return NULL if the allocation fails.
+** 
+** The allocation will fail if nBytes is not the right size.
+** Or, the allocation will fail if the mmap heap has been exhausted.
+*/
+static void *mmapAlloc(int nBytes){
+  int idx = 0;
+  if( nBytes>mem.szPage || nBytes<mem.mnPage ){
+    return 0;
+  }
+  if( mem.nPage==0 ){
+    mem.szPage = sysconf(_SC_PAGE_SIZE);
+    mem.mnPage = mem.szPage - mem.szPage/10;
+    mem.nPage = SQLITE_MMAP_HEAP_SIZE/mem.szPage;
+    if( mem.nPage * sizeof(int) > mem.szPage ){
+      mem.nPage = mem.szPage/sizeof(int);
+    }
+    mem.mmapHeap =  mmap(0, mem.szPage*mem.nPage, PROT_WRITE|PROT_READ,
+                         MAP_ANONYMOUS|MAP_SHARED, -1, 0);
+    if( mem.mmapHeap==MAP_FAILED ){
+      mem.firstUnused = errno;
+    }else{
+      mem.firstUnused = 1;
+      mem.nowUsedMMap = mem.szPage;
+    }
+  }
+  if( mem.mmapHeap==MAP_FAILED ){
+    return 0;
+  }
+  if( mem.firstFree ){
+    int idx = mem.firstFree;
+    int *a = (int*)mem.mmapHeap;
+    mem.firstFree = a[idx];
+  }else if( mem.firstUnused<mem.nPage ){
+    idx = mem.firstUnused++;
+  }
+  if( idx ){
+    mem.nowUsedMMap += mem.szPage;
+    if( mem.nowUsedMMap>mem.mxUsedMMap ){
+      mem.mxUsedMMap = mem.nowUsedMMap;
+    }
+    return (void*)&mem.mmapHeap[idx*mem.szPage];
+  }else{
+    return 0;
+  }
+}
+
+/*
+** Release the mmap-ed memory region if it is currently allocated and
+** is not in use.
+*/
+static void mmapUnmap(void){
+  if( mem.mmapHeap==MAP_FAILED ) return;
+  if( mem.nPage==0 ) return;
+  if( mem.nowUsedMMap>mem.szPage ) return;
+  munmap(mem.mmapHeap, mem.nPage*mem.szPage);
+  mem.nowUsedMMap = 0;
+  mem.nPage = 0;
+}
+    
+
+/*
+** Return the amount of memory currently checked out.
+*/
+sqlite3_int64 sqlite3_memory_used(void){
+  sqlite3_int64 n;
+  memsys4Enter();
+  n = mem.nowUsed + mem.nowUsedMMap;
+  sqlite3_mutex_leave(mem.mutex);  
+  return n;
+}
+
+/*
+** Return the maximum amount of memory that has ever been
+** checked out since either the beginning of this process
+** or since the most recent reset.
+*/
+sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
+  sqlite3_int64 n;
+  memsys4Enter();
+  n = mem.mxUsed + mem.mxUsedMMap;
+  if( resetFlag ){
+    mem.mxUsed = mem.nowUsed;
+    mem.mxUsedMMap = mem.nowUsedMMap;
+  }
+  sqlite3_mutex_leave(mem.mutex);  
+  return n;
+}
+
+/*
+** Change the alarm callback
+*/
+int sqlite3_memory_alarm(
+  void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
+  void *pArg,
+  sqlite3_int64 iThreshold
+){
+  memsys4Enter();
+  mem.alarmCallback = xCallback;
+  mem.alarmArg = pArg;
+  mem.alarmThreshold = iThreshold;
+  sqlite3_mutex_leave(mem.mutex);
+  return SQLITE_OK;
+}
+
+/*
+** Trigger the alarm 
+*/
+static void sqlite3MemsysAlarm(int nByte){
+  void (*xCallback)(void*,sqlite3_int64,int);
+  sqlite3_int64 nowUsed;
+  void *pArg;
+  if( mem.alarmCallback==0 || mem.alarmBusy  ) return;
+  mem.alarmBusy = 1;
+  xCallback = mem.alarmCallback;
+  nowUsed = mem.nowUsed;
+  pArg = mem.alarmArg;
+  sqlite3_mutex_leave(mem.mutex);
+  xCallback(pArg, nowUsed, nByte);
+  sqlite3_mutex_enter(mem.mutex);
+  mem.alarmBusy = 0;
+}
+
+/*
+** Allocate nBytes of memory
+*/
+static void *memsys4Malloc(int nBytes){
+  sqlite3_int64 *p = 0;
+  if( mem.alarmCallback!=0
+         && mem.nowUsed+mem.nowUsedMMap+nBytes>=mem.alarmThreshold ){
+    sqlite3MemsysAlarm(nBytes);
+  }
+  if( (p = mmapAlloc(nBytes))==0 ){
+    p = malloc(nBytes+8);
+    if( p==0 ){
+      sqlite3MemsysAlarm(nBytes);
+      p = malloc(nBytes+8);
+    }
+    if( p ){
+      p[0] = nBytes;
+      p++;
+      mem.nowUsed += nBytes;
+      if( mem.nowUsed>mem.mxUsed ){
+        mem.mxUsed = mem.nowUsed;
+      }
+    }
+  }
+  return (void*)p; 
+}
+
+/*
+** Return the size of a memory allocation
+*/
+static int memsys4Size(void *pPrior){
+  char *z = (char*)pPrior;
+  int idx = mem.nPage ? (z - mem.mmapHeap)/mem.szPage : 0;
+  int nByte;
+  if( idx>=1 && idx<mem.nPage ){
+    nByte = mem.szPage;
+  }else{
+    sqlite3_int64 *p = pPrior;
+    p--;
+    nByte = (int)*p;
+  }
+  return nByte;
+}
+
+/*
+** Free memory.
+*/
+static void memsys4Free(void *pPrior){
+  sqlite3_int64 *p;
+  int nByte;
+  if( mmapFree(pPrior)==0 ){
+    p = pPrior;
+    p--;
+    nByte = (int)*p;
+    mem.nowUsed -= nByte;
+    free(p);
+    if( mem.nowUsed==0 ){
+      mmapUnmap();
+    }      
+  }
+}
+
+/*
+** Allocate nBytes of memory
+*/
+void *sqlite3_malloc(int nBytes){
+  sqlite3_int64 *p = 0;
+  if( nBytes>0 ){
+    memsys4Enter();
+    p = memsys4Malloc(nBytes);
+    sqlite3_mutex_leave(mem.mutex);
+  }
+  return (void*)p; 
+}
+
+/*
+** Free memory.
+*/
+void sqlite3_free(void *pPrior){
+  if( pPrior==0 ){
+    return;
+  }
+  assert( mem.mutex!=0 );
+  sqlite3_mutex_enter(mem.mutex);
+  memsys4Free(pPrior);
+  sqlite3_mutex_leave(mem.mutex);  
+}
+
+
+
+/*
+** Change the size of an existing memory allocation
+*/
+void *sqlite3_realloc(void *pPrior, int nBytes){
+  int nOld;
+  sqlite3_int64 *p;
+  if( pPrior==0 ){
+    return sqlite3_malloc(nBytes);
+  }
+  if( nBytes<=0 ){
+    sqlite3_free(pPrior);
+    return 0;
+  }
+  nOld = memsys4Size(pPrior);
+  if( nBytes<=nOld && nBytes>=nOld-128 ){
+    return pPrior;
+  }
+  assert( mem.mutex!=0 );
+  sqlite3_mutex_enter(mem.mutex);
+  p = memsys4Malloc(nBytes);
+  if( p ){
+    if( nOld<nBytes ){
+      memcpy(p, pPrior, nOld);
+    }else{
+      memcpy(p, pPrior, nBytes);
+    }
+    memsys4Free(pPrior);
+  }
+  assert( mem.mutex!=0 );
+  sqlite3_mutex_leave(mem.mutex);
+  return (void*)p;
+}
+
+#endif /* SQLITE_MMAP_HEAP_SIZE */