--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/persistentstorage/sql/SQLite364/vdbeaux.c Fri Jan 22 11:06:30 2010 +0200
@@ -0,0 +1,2502 @@
+/*
+** 2003 September 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains code used for creating, destroying, and populating
+** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
+** to version 2.8.7, all this code was combined into the vdbe.c source file.
+** But that file was getting too big so this subroutines were split out.
+**
+** $Id: vdbeaux.c,v 1.412 2008/10/11 17:51:39 danielk1977 Exp $
+*/
+#include "sqliteInt.h"
+#include <ctype.h>
+#include "vdbeInt.h"
+
+
+
+/*
+** When debugging the code generator in a symbolic debugger, one can
+** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
+** as they are added to the instruction stream.
+*/
+#ifdef SQLITE_DEBUG
+int sqlite3VdbeAddopTrace = 0;
+#endif
+
+
+/*
+** Create a new virtual database engine.
+*/
+Vdbe *sqlite3VdbeCreate(sqlite3 *db){
+ Vdbe *p;
+ p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
+ if( p==0 ) return 0;
+ p->db = db;
+ if( db->pVdbe ){
+ db->pVdbe->pPrev = p;
+ }
+ p->pNext = db->pVdbe;
+ p->pPrev = 0;
+ db->pVdbe = p;
+ p->magic = VDBE_MAGIC_INIT;
+ return p;
+}
+
+/*
+** Remember the SQL string for a prepared statement.
+*/
+void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n){
+ if( p==0 ) return;
+ assert( p->zSql==0 );
+ p->zSql = sqlite3DbStrNDup(p->db, z, n);
+}
+
+/*
+** Return the SQL associated with a prepared statement
+*/
+const char *sqlite3_sql(sqlite3_stmt *pStmt){
+ return ((Vdbe *)pStmt)->zSql;
+}
+
+/*
+** Swap all content between two VDBE structures.
+*/
+void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
+ Vdbe tmp, *pTmp;
+ char *zTmp;
+ int nTmp;
+ tmp = *pA;
+ *pA = *pB;
+ *pB = tmp;
+ pTmp = pA->pNext;
+ pA->pNext = pB->pNext;
+ pB->pNext = pTmp;
+ pTmp = pA->pPrev;
+ pA->pPrev = pB->pPrev;
+ pB->pPrev = pTmp;
+ zTmp = pA->zSql;
+ pA->zSql = pB->zSql;
+ pB->zSql = zTmp;
+ nTmp = pA->nSql;
+ pA->nSql = pB->nSql;
+ pB->nSql = nTmp;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Turn tracing on or off
+*/
+void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
+ p->trace = trace;
+}
+#endif
+
+/*
+** Resize the Vdbe.aOp array so that it contains at least N
+** elements.
+**
+** If an out-of-memory error occurs while resizing the array,
+** Vdbe.aOp and Vdbe.nOpAlloc remain unchanged (this is so that
+** any opcodes already allocated can be correctly deallocated
+** along with the rest of the Vdbe).
+*/
+static void resizeOpArray(Vdbe *p, int N){
+ VdbeOp *pNew;
+ pNew = sqlite3DbRealloc(p->db, p->aOp, N*sizeof(Op));
+ if( pNew ){
+ p->nOpAlloc = N;
+ p->aOp = pNew;
+ }
+}
+
+/*
+** Add a new instruction to the list of instructions current in the
+** VDBE. Return the address of the new instruction.
+**
+** Parameters:
+**
+** p Pointer to the VDBE
+**
+** op The opcode for this instruction
+**
+** p1, p2, p3 Operands
+**
+** Use the sqlite3VdbeResolveLabel() function to fix an address and
+** the sqlite3VdbeChangeP4() function to change the value of the P4
+** operand.
+*/
+int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
+ int i;
+ VdbeOp *pOp;
+
+ i = p->nOp;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->nOpAlloc<=i ){
+ resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
+ if( p->db->mallocFailed ){
+ return 0;
+ }
+ }
+ p->nOp++;
+ pOp = &p->aOp[i];
+ pOp->opcode = op;
+ pOp->p5 = 0;
+ pOp->p1 = p1;
+ pOp->p2 = p2;
+ pOp->p3 = p3;
+ pOp->p4.p = 0;
+ pOp->p4type = P4_NOTUSED;
+ p->expired = 0;
+#ifdef SQLITE_DEBUG
+ pOp->zComment = 0;
+ if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
+#endif
+#ifdef VDBE_PROFILE
+ pOp->cycles = 0;
+ pOp->cnt = 0;
+#endif
+ return i;
+}
+int sqlite3VdbeAddOp0(Vdbe *p, int op){
+ return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
+}
+int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
+ return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
+}
+int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
+ return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
+}
+
+
+/*
+** Add an opcode that includes the p4 value as a pointer.
+*/
+int sqlite3VdbeAddOp4(
+ Vdbe *p, /* Add the opcode to this VM */
+ int op, /* The new opcode */
+ int p1, /* The P1 operand */
+ int p2, /* The P2 operand */
+ int p3, /* The P3 operand */
+ const char *zP4, /* The P4 operand */
+ int p4type /* P4 operand type */
+){
+ int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
+ sqlite3VdbeChangeP4(p, addr, zP4, p4type);
+ return addr;
+}
+
+/*
+** Create a new symbolic label for an instruction that has yet to be
+** coded. The symbolic label is really just a negative number. The
+** label can be used as the P2 value of an operation. Later, when
+** the label is resolved to a specific address, the VDBE will scan
+** through its operation list and change all values of P2 which match
+** the label into the resolved address.
+**
+** The VDBE knows that a P2 value is a label because labels are
+** always negative and P2 values are suppose to be non-negative.
+** Hence, a negative P2 value is a label that has yet to be resolved.
+**
+** Zero is returned if a malloc() fails.
+*/
+int sqlite3VdbeMakeLabel(Vdbe *p){
+ int i;
+ i = p->nLabel++;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( i>=p->nLabelAlloc ){
+ p->nLabelAlloc = p->nLabelAlloc*2 + 10;
+ p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
+ p->nLabelAlloc*sizeof(p->aLabel[0]));
+ }
+ if( p->aLabel ){
+ p->aLabel[i] = -1;
+ }
+ return -1-i;
+}
+
+/*
+** Resolve label "x" to be the address of the next instruction to
+** be inserted. The parameter "x" must have been obtained from
+** a prior call to sqlite3VdbeMakeLabel().
+*/
+void sqlite3VdbeResolveLabel(Vdbe *p, int x){
+ int j = -1-x;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ assert( j>=0 && j<p->nLabel );
+ if( p->aLabel ){
+ p->aLabel[j] = p->nOp;
+ }
+}
+
+/*
+** Loop through the program looking for P2 values that are negative
+** on jump instructions. Each such value is a label. Resolve the
+** label by setting the P2 value to its correct non-zero value.
+**
+** This routine is called once after all opcodes have been inserted.
+**
+** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
+** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
+** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
+**
+** This routine also does the following optimization: It scans for
+** instructions that might cause a statement rollback. Such instructions
+** are:
+**
+** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
+** * OP_Destroy
+** * OP_VUpdate
+** * OP_VRename
+**
+** If no such instruction is found, then every Statement instruction
+** is changed to a Noop. In this way, we avoid creating the statement
+** journal file unnecessarily.
+*/
+static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
+ int i;
+ int nMaxArgs = 0;
+ Op *pOp;
+ int *aLabel = p->aLabel;
+ int doesStatementRollback = 0;
+ int hasStatementBegin = 0;
+ for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
+ u8 opcode = pOp->opcode;
+
+ if( opcode==OP_Function || opcode==OP_AggStep ){
+ if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ }else if( opcode==OP_VUpdate ){
+ if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
+#endif
+ }
+ if( opcode==OP_Halt ){
+ if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
+ doesStatementRollback = 1;
+ }
+ }else if( opcode==OP_Statement ){
+ hasStatementBegin = 1;
+ }else if( opcode==OP_Destroy ){
+ doesStatementRollback = 1;
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ }else if( opcode==OP_VUpdate || opcode==OP_VRename ){
+ doesStatementRollback = 1;
+ }else if( opcode==OP_VFilter ){
+ int n;
+ assert( p->nOp - i >= 3 );
+ assert( pOp[-1].opcode==OP_Integer );
+ n = pOp[-1].p1;
+ if( n>nMaxArgs ) nMaxArgs = n;
+#endif
+ }
+
+ if( sqlite3VdbeOpcodeHasProperty(opcode, OPFLG_JUMP) && pOp->p2<0 ){
+ assert( -1-pOp->p2<p->nLabel );
+ pOp->p2 = aLabel[-1-pOp->p2];
+ }
+ }
+ sqlite3DbFree(p->db, p->aLabel);
+ p->aLabel = 0;
+
+ *pMaxFuncArgs = nMaxArgs;
+
+ /* If we never rollback a statement transaction, then statement
+ ** transactions are not needed. So change every OP_Statement
+ ** opcode into an OP_Noop. This avoid a call to sqlite3OsOpenExclusive()
+ ** which can be expensive on some platforms.
+ */
+ if( hasStatementBegin && !doesStatementRollback ){
+ for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
+ if( pOp->opcode==OP_Statement ){
+ pOp->opcode = OP_Noop;
+ }
+ }
+ }
+}
+
+/*
+** Return the address of the next instruction to be inserted.
+*/
+int sqlite3VdbeCurrentAddr(Vdbe *p){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ return p->nOp;
+}
+
+/*
+** Add a whole list of operations to the operation stack. Return the
+** address of the first operation added.
+*/
+int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
+ int addr;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->nOp + nOp > p->nOpAlloc ){
+ resizeOpArray(p, p->nOpAlloc ? p->nOpAlloc*2 : 1024/sizeof(Op));
+ assert( p->nOp+nOp<=p->nOpAlloc || p->db->mallocFailed );
+ }
+ if( p->db->mallocFailed ){
+ return 0;
+ }
+ addr = p->nOp;
+ if( nOp>0 ){
+ int i;
+ VdbeOpList const *pIn = aOp;
+ for(i=0; i<nOp; i++, pIn++){
+ int p2 = pIn->p2;
+ VdbeOp *pOut = &p->aOp[i+addr];
+ pOut->opcode = pIn->opcode;
+ pOut->p1 = pIn->p1;
+ if( p2<0 && sqlite3VdbeOpcodeHasProperty(pOut->opcode, OPFLG_JUMP) ){
+ pOut->p2 = addr + ADDR(p2);
+ }else{
+ pOut->p2 = p2;
+ }
+ pOut->p3 = pIn->p3;
+ pOut->p4type = P4_NOTUSED;
+ pOut->p4.p = 0;
+ pOut->p5 = 0;
+#ifdef SQLITE_DEBUG
+ pOut->zComment = 0;
+ if( sqlite3VdbeAddopTrace ){
+ sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
+ }
+#endif
+ }
+ p->nOp += nOp;
+ }
+ return addr;
+}
+
+/*
+** Change the value of the P1 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqlite3VdbeAddOpList but we want to make a
+** few minor changes to the program.
+*/
+void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
+ assert( p==0 || p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p1 = val;
+ }
+}
+
+/*
+** Change the value of the P2 operand for a specific instruction.
+** This routine is useful for setting a jump destination.
+*/
+void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
+ assert( p==0 || p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p2 = val;
+ }
+}
+
+/*
+** Change the value of the P3 operand for a specific instruction.
+*/
+void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
+ assert( p==0 || p->magic==VDBE_MAGIC_INIT );
+ if( p && addr>=0 && p->nOp>addr && p->aOp ){
+ p->aOp[addr].p3 = val;
+ }
+}
+
+/*
+** Change the value of the P5 operand for the most recently
+** added operation.
+*/
+void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
+ assert( p==0 || p->magic==VDBE_MAGIC_INIT );
+ if( p && p->aOp ){
+ assert( p->nOp>0 );
+ p->aOp[p->nOp-1].p5 = val;
+ }
+}
+
+/*
+** Change the P2 operand of instruction addr so that it points to
+** the address of the next instruction to be coded.
+*/
+void sqlite3VdbeJumpHere(Vdbe *p, int addr){
+ sqlite3VdbeChangeP2(p, addr, p->nOp);
+}
+
+
+/*
+** If the input FuncDef structure is ephemeral, then free it. If
+** the FuncDef is not ephermal, then do nothing.
+*/
+static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
+ if( pDef && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
+ sqlite3DbFree(db, pDef);
+ }
+}
+
+/*
+** Delete a P4 value if necessary.
+*/
+static void freeP4(sqlite3 *db, int p4type, void *p4){
+ if( p4 ){
+ switch( p4type ){
+ case P4_REAL:
+ case P4_INT64:
+ case P4_MPRINTF:
+ case P4_DYNAMIC:
+ case P4_KEYINFO:
+ case P4_INTARRAY:
+ case P4_KEYINFO_HANDOFF: {
+ sqlite3DbFree(db, p4);
+ break;
+ }
+ case P4_VDBEFUNC: {
+ VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
+ freeEphemeralFunction(db, pVdbeFunc->pFunc);
+ sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
+ sqlite3DbFree(db, pVdbeFunc);
+ break;
+ }
+ case P4_FUNCDEF: {
+ freeEphemeralFunction(db, (FuncDef*)p4);
+ break;
+ }
+ case P4_MEM: {
+ sqlite3ValueFree((sqlite3_value*)p4);
+ break;
+ }
+ }
+ }
+}
+
+
+/*
+** Change N opcodes starting at addr to No-ops.
+*/
+void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){
+ if( p && p->aOp ){
+ VdbeOp *pOp = &p->aOp[addr];
+ sqlite3 *db = p->db;
+ while( N-- ){
+ freeP4(db, pOp->p4type, pOp->p4.p);
+ memset(pOp, 0, sizeof(pOp[0]));
+ pOp->opcode = OP_Noop;
+ pOp++;
+ }
+ }
+}
+
+/*
+** Change the value of the P4 operand for a specific instruction.
+** This routine is useful when a large program is loaded from a
+** static array using sqlite3VdbeAddOpList but we want to make a
+** few minor changes to the program.
+**
+** If n>=0 then the P4 operand is dynamic, meaning that a copy of
+** the string is made into memory obtained from sqlite3_malloc().
+** A value of n==0 means copy bytes of zP4 up to and including the
+** first null byte. If n>0 then copy n+1 bytes of zP4.
+**
+** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
+** A copy is made of the KeyInfo structure into memory obtained from
+** sqlite3_malloc, to be freed when the Vdbe is finalized.
+** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
+** stored in memory that the caller has obtained from sqlite3_malloc. The
+** caller should not free the allocation, it will be freed when the Vdbe is
+** finalized.
+**
+** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
+** to a string or structure that is guaranteed to exist for the lifetime of
+** the Vdbe. In these cases we can just copy the pointer.
+**
+** If addr<0 then change P4 on the most recently inserted instruction.
+*/
+void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
+ Op *pOp;
+ sqlite3 *db;
+ assert( p!=0 );
+ db = p->db;
+ assert( p->magic==VDBE_MAGIC_INIT );
+ if( p->aOp==0 || db->mallocFailed ){
+ if (n != P4_KEYINFO) {
+ freeP4(db, n, (void*)*(char**)&zP4);
+ }
+ return;
+ }
+ assert( addr<p->nOp );
+ if( addr<0 ){
+ addr = p->nOp - 1;
+ if( addr<0 ) return;
+ }
+ pOp = &p->aOp[addr];
+ freeP4(db, pOp->p4type, pOp->p4.p);
+ pOp->p4.p = 0;
+ if( n==P4_INT32 ){
+ /* Note: this cast is safe, because the origin data point was an int
+ ** that was cast to a (const char *). */
+ pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
+ pOp->p4type = n;
+ }else if( zP4==0 ){
+ pOp->p4.p = 0;
+ pOp->p4type = P4_NOTUSED;
+ }else if( n==P4_KEYINFO ){
+ KeyInfo *pKeyInfo;
+ int nField, nByte;
+
+ nField = ((KeyInfo*)zP4)->nField;
+ nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
+ pKeyInfo = sqlite3Malloc( nByte );
+ pOp->p4.pKeyInfo = pKeyInfo;
+ if( pKeyInfo ){
+ u8 *aSortOrder;
+ memcpy(pKeyInfo, zP4, nByte);
+ aSortOrder = pKeyInfo->aSortOrder;
+ if( aSortOrder ){
+ pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
+ memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
+ }
+ pOp->p4type = P4_KEYINFO;
+ }else{
+ p->db->mallocFailed = 1;
+ pOp->p4type = P4_NOTUSED;
+ }
+ }else if( n==P4_KEYINFO_HANDOFF ){
+ pOp->p4.p = (void*)zP4;
+ pOp->p4type = P4_KEYINFO;
+ }else if( n<0 ){
+ pOp->p4.p = (void*)zP4;
+ pOp->p4type = n;
+ }else{
+ if( n==0 ) n = strlen(zP4);
+ pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
+ pOp->p4type = P4_DYNAMIC;
+ }
+}
+
+#ifndef NDEBUG
+/*
+** Change the comment on the the most recently coded instruction. Or
+** insert a No-op and add the comment to that new instruction. This
+** makes the code easier to read during debugging. None of this happens
+** in a production build.
+*/
+void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
+ va_list ap;
+ assert( p->nOp>0 || p->aOp==0 );
+ assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
+ if( p->nOp ){
+ char **pz = &p->aOp[p->nOp-1].zComment;
+ va_start(ap, zFormat);
+ sqlite3DbFree(p->db, *pz);
+ *pz = sqlite3VMPrintf(p->db, zFormat, ap);
+ va_end(ap);
+ }
+}
+void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
+ va_list ap;
+ sqlite3VdbeAddOp0(p, OP_Noop);
+ assert( p->nOp>0 || p->aOp==0 );
+ assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
+ if( p->nOp ){
+ char **pz = &p->aOp[p->nOp-1].zComment;
+ va_start(ap, zFormat);
+ sqlite3DbFree(p->db, *pz);
+ *pz = sqlite3VMPrintf(p->db, zFormat, ap);
+ va_end(ap);
+ }
+}
+#endif /* NDEBUG */
+
+/*
+** Return the opcode for a given address.
+*/
+VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
+ assert( p->magic==VDBE_MAGIC_INIT );
+ assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
+ return ((addr>=0 && addr<p->nOp)?(&p->aOp[addr]):0);
+}
+
+#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
+ || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
+/*
+** Compute a string that describes the P4 parameter for an opcode.
+** Use zTemp for any required temporary buffer space.
+*/
+static char *displayP4(Op *pOp, char *zTemp, int nTemp){
+ char *zP4 = zTemp;
+ assert( nTemp>=20 );
+ switch( pOp->p4type ){
+ case P4_KEYINFO_STATIC:
+ case P4_KEYINFO: {
+ int i, j;
+ KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
+ sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
+ i = strlen(zTemp);
+ for(j=0; j<pKeyInfo->nField; j++){
+ CollSeq *pColl = pKeyInfo->aColl[j];
+ if( pColl ){
+ int n = strlen(pColl->zName);
+ if( i+n>nTemp-6 ){
+ memcpy(&zTemp[i],",...",4);
+ break;
+ }
+ zTemp[i++] = ',';
+ if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
+ zTemp[i++] = '-';
+ }
+ memcpy(&zTemp[i], pColl->zName,n+1);
+ i += n;
+ }else if( i+4<nTemp-6 ){
+ memcpy(&zTemp[i],",nil",4);
+ i += 4;
+ }
+ }
+ zTemp[i++] = ')';
+ zTemp[i] = 0;
+ assert( i<nTemp );
+ break;
+ }
+ case P4_COLLSEQ: {
+ CollSeq *pColl = pOp->p4.pColl;
+ sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
+ break;
+ }
+ case P4_FUNCDEF: {
+ FuncDef *pDef = pOp->p4.pFunc;
+ sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
+ break;
+ }
+ case P4_INT64: {
+ sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
+ break;
+ }
+ case P4_INT32: {
+ sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
+ break;
+ }
+ case P4_REAL: {
+ sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
+ break;
+ }
+ case P4_MEM: {
+ Mem *pMem = pOp->p4.pMem;
+ assert( (pMem->flags & MEM_Null)==0 );
+ if( pMem->flags & MEM_Str ){
+ zP4 = pMem->z;
+ }else if( pMem->flags & MEM_Int ){
+ sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
+ }else if( pMem->flags & MEM_Real ){
+ sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
+ }
+ break;
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ case P4_VTAB: {
+ sqlite3_vtab *pVtab = pOp->p4.pVtab;
+ sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
+ break;
+ }
+#endif
+ case P4_INTARRAY: {
+ sqlite3_snprintf(nTemp, zTemp, "intarray");
+ break;
+ }
+ default: {
+ zP4 = pOp->p4.z;
+ if( zP4==0 ){
+ zP4 = zTemp;
+ zTemp[0] = 0;
+ }
+ }
+ }
+ assert( zP4!=0 );
+ return zP4;
+}
+#endif
+
+/*
+** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
+**
+*/
+void sqlite3VdbeUsesBtree(Vdbe *p, int i){
+ int mask;
+ assert( i>=0 && i<p->db->nDb );
+ assert( i<sizeof(p->btreeMask)*8 );
+ mask = 1<<i;
+ if( (p->btreeMask & mask)==0 ){
+ p->btreeMask |= mask;
+ sqlite3BtreeMutexArrayInsert(&p->aMutex, p->db->aDb[i].pBt);
+ }
+}
+
+
+#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
+/*
+** Print a single opcode. This routine is used for debugging only.
+*/
+void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
+ char *zP4;
+ char zPtr[50];
+ static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
+ if( pOut==0 ) pOut = stdout;
+ zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
+ fprintf(pOut, zFormat1, pc,
+ sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
+#ifdef SQLITE_DEBUG
+ pOp->zComment ? pOp->zComment : ""
+#else
+ ""
+#endif
+ );
+ fflush(pOut);
+}
+#endif
+
+/*
+** Release an array of N Mem elements
+*/
+static void releaseMemArray(Mem *p, int N){
+ if( p && N ){
+ Mem *pEnd;
+ sqlite3 *db = p->db;
+ int malloc_failed = db->mallocFailed;
+ for(pEnd=&p[N]; p<pEnd; p++){
+ assert( (&p[1])==pEnd || p[0].db==p[1].db );
+
+ /* This block is really an inlined version of sqlite3VdbeMemRelease()
+ ** that takes advantage of the fact that the memory cell value is
+ ** being set to NULL after releasing any dynamic resources.
+ **
+ ** The justification for duplicating code is that according to
+ ** callgrind, this causes a certain test case to hit the CPU 4.7
+ ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
+ ** sqlite3MemRelease() were called from here. With -O2, this jumps
+ ** to 6.6 percent. The test case is inserting 1000 rows into a table
+ ** with no indexes using a single prepared INSERT statement, bind()
+ ** and reset(). Inserts are grouped into a transaction.
+ */
+ if( p->flags&(MEM_Agg|MEM_Dyn) ){
+ sqlite3VdbeMemRelease(p);
+ }else if( p->zMalloc ){
+ sqlite3DbFree(db, p->zMalloc);
+ p->zMalloc = 0;
+ }
+
+ p->flags = MEM_Null;
+ }
+ db->mallocFailed = malloc_failed;
+ }
+}
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+int sqlite3VdbeReleaseBuffers(Vdbe *p){
+ int ii;
+ int nFree = 0;
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ for(ii=1; ii<=p->nMem; ii++){
+ Mem *pMem = &p->aMem[ii];
+ if( pMem->z && pMem->flags&MEM_Dyn ){
+ assert( !pMem->xDel );
+ nFree += sqlite3DbMallocSize(pMem->db, pMem->z);
+ sqlite3VdbeMemRelease(pMem);
+ }
+ }
+ return nFree;
+}
+#endif
+
+#ifndef SQLITE_OMIT_EXPLAIN
+/*
+** Give a listing of the program in the virtual machine.
+**
+** The interface is the same as sqlite3VdbeExec(). But instead of
+** running the code, it invokes the callback once for each instruction.
+** This feature is used to implement "EXPLAIN".
+**
+** When p->explain==1, each instruction is listed. When
+** p->explain==2, only OP_Explain instructions are listed and these
+** are shown in a different format. p->explain==2 is used to implement
+** EXPLAIN QUERY PLAN.
+*/
+int sqlite3VdbeList(
+ Vdbe *p /* The VDBE */
+){
+ sqlite3 *db = p->db;
+ int i;
+ int rc = SQLITE_OK;
+ Mem *pMem = p->pResultSet = &p->aMem[1];
+
+ assert( p->explain );
+ if( p->magic!=VDBE_MAGIC_RUN ) return SQLITE_MISUSE;
+ assert( db->magic==SQLITE_MAGIC_BUSY );
+ assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
+
+ /* Even though this opcode does not use dynamic strings for
+ ** the result, result columns may become dynamic if the user calls
+ ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
+ */
+ releaseMemArray(pMem, p->nMem);
+
+ do{
+ i = p->pc++;
+ }while( i<p->nOp && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
+ if( i>=p->nOp ){
+ p->rc = SQLITE_OK;
+ rc = SQLITE_DONE;
+ }else if( db->u1.isInterrupted ){
+ p->rc = SQLITE_INTERRUPT;
+ rc = SQLITE_ERROR;
+ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
+ }else{
+ char *z;
+ Op *pOp = &p->aOp[i];
+ if( p->explain==1 ){
+ pMem->flags = MEM_Int;
+ pMem->type = SQLITE_INTEGER;
+ pMem->u.i = i; /* Program counter */
+ pMem++;
+
+ pMem->flags = MEM_Static|MEM_Str|MEM_Term;
+ pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
+ assert( pMem->z!=0 );
+ pMem->n = strlen(pMem->z);
+ pMem->type = SQLITE_TEXT;
+ pMem->enc = SQLITE_UTF8;
+ pMem++;
+ }
+
+ pMem->flags = MEM_Int;
+ pMem->u.i = pOp->p1; /* P1 */
+ pMem->type = SQLITE_INTEGER;
+ pMem++;
+
+ pMem->flags = MEM_Int;
+ pMem->u.i = pOp->p2; /* P2 */
+ pMem->type = SQLITE_INTEGER;
+ pMem++;
+
+ if( p->explain==1 ){
+ pMem->flags = MEM_Int;
+ pMem->u.i = pOp->p3; /* P3 */
+ pMem->type = SQLITE_INTEGER;
+ pMem++;
+ }
+
+ if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
+ p->db->mallocFailed = 1;
+ return SQLITE_NOMEM;
+ }
+ pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
+ z = displayP4(pOp, pMem->z, 32);
+ if( z!=pMem->z ){
+ sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
+ }else{
+ assert( pMem->z!=0 );
+ pMem->n = strlen(pMem->z);
+ pMem->enc = SQLITE_UTF8;
+ }
+ pMem->type = SQLITE_TEXT;
+ pMem++;
+
+ if( p->explain==1 ){
+ if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
+ p->db->mallocFailed = 1;
+ return SQLITE_NOMEM;
+ }
+ pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
+ pMem->n = 2;
+ sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
+ pMem->type = SQLITE_TEXT;
+ pMem->enc = SQLITE_UTF8;
+ pMem++;
+
+#ifdef SQLITE_DEBUG
+ if( pOp->zComment ){
+ pMem->flags = MEM_Str|MEM_Term;
+ pMem->z = pOp->zComment;
+ pMem->n = strlen(pMem->z);
+ pMem->enc = SQLITE_UTF8;
+ pMem->type = SQLITE_TEXT;
+ }else
+#endif
+ {
+ pMem->flags = MEM_Null; /* Comment */
+ pMem->type = SQLITE_NULL;
+ }
+ }
+
+ p->nResColumn = 8 - 5*(p->explain-1);
+ p->rc = SQLITE_OK;
+ rc = SQLITE_ROW;
+ }
+ return rc;
+}
+#endif /* SQLITE_OMIT_EXPLAIN */
+
+#ifdef SQLITE_DEBUG
+/*
+** Print the SQL that was used to generate a VDBE program.
+*/
+void sqlite3VdbePrintSql(Vdbe *p){
+ int nOp = p->nOp;
+ VdbeOp *pOp;
+ if( nOp<1 ) return;
+ pOp = &p->aOp[0];
+ if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
+ const char *z = pOp->p4.z;
+ while( isspace(*(u8*)z) ) z++;
+ printf("SQL: [%s]\n", z);
+ }
+}
+#endif
+
+#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
+/*
+** Print an IOTRACE message showing SQL content.
+*/
+void sqlite3VdbeIOTraceSql(Vdbe *p){
+ int nOp = p->nOp;
+ VdbeOp *pOp;
+ if( sqlite3IoTrace==0 ) return;
+ if( nOp<1 ) return;
+ pOp = &p->aOp[0];
+ if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
+ int i, j;
+ char z[1000];
+ sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
+ for(i=0; isspace((unsigned char)z[i]); i++){}
+ for(j=0; z[i]; i++){
+ if( isspace((unsigned char)z[i]) ){
+ if( z[i-1]!=' ' ){
+ z[j++] = ' ';
+ }
+ }else{
+ z[j++] = z[i];
+ }
+ }
+ z[j] = 0;
+ sqlite3IoTrace("SQL %s\n", z);
+ }
+}
+#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
+
+
+/*
+** Prepare a virtual machine for execution. This involves things such
+** as allocating stack space and initializing the program counter.
+** After the VDBE has be prepped, it can be executed by one or more
+** calls to sqlite3VdbeExec().
+**
+** This is the only way to move a VDBE from VDBE_MAGIC_INIT to
+** VDBE_MAGIC_RUN.
+*/
+void sqlite3VdbeMakeReady(
+ Vdbe *p, /* The VDBE */
+ int nVar, /* Number of '?' see in the SQL statement */
+ int nMem, /* Number of memory cells to allocate */
+ int nCursor, /* Number of cursors to allocate */
+ int isExplain /* True if the EXPLAIN keywords is present */
+){
+ int n;
+ sqlite3 *db = p->db;
+
+ assert( p!=0 );
+ assert( p->magic==VDBE_MAGIC_INIT );
+
+ /* There should be at least one opcode.
+ */
+ assert( p->nOp>0 );
+
+ /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. This
+ * is because the call to resizeOpArray() below may shrink the
+ * p->aOp[] array to save memory if called when in VDBE_MAGIC_RUN
+ * state.
+ */
+ p->magic = VDBE_MAGIC_RUN;
+
+ /* For each cursor required, also allocate a memory cell. Memory
+ ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
+ ** the vdbe program. Instead they are used to allocate space for
+ ** Cursor/BtCursor structures. The blob of memory associated with
+ ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
+ ** stores the blob of memory associated with cursor 1, etc.
+ **
+ ** See also: allocateCursor().
+ */
+ nMem += nCursor;
+
+ /*
+ ** Allocation space for registers.
+ */
+ if( p->aMem==0 ){
+ int nArg; /* Maximum number of args passed to a user function. */
+ resolveP2Values(p, &nArg);
+ /*resizeOpArray(p, p->nOp);*/
+ assert( nVar>=0 );
+ if( isExplain && nMem<10 ){
+ p->nMem = nMem = 10;
+ }
+ p->aMem = sqlite3DbMallocZero(db,
+ nMem*sizeof(Mem) /* aMem */
+ + nVar*sizeof(Mem) /* aVar */
+ + nArg*sizeof(Mem*) /* apArg */
+ + nVar*sizeof(char*) /* azVar */
+ + nCursor*sizeof(Cursor*) + 1 /* apCsr */
+ );
+ if( !db->mallocFailed ){
+ p->aMem--; /* aMem[] goes from 1..nMem */
+ p->nMem = nMem; /* not from 0..nMem-1 */
+ p->aVar = &p->aMem[nMem+1];
+ p->nVar = nVar;
+ p->okVar = 0;
+ p->apArg = (Mem**)&p->aVar[nVar];
+ p->azVar = (char**)&p->apArg[nArg];
+ p->apCsr = (Cursor**)&p->azVar[nVar];
+ p->nCursor = nCursor;
+ for(n=0; n<nVar; n++){
+ p->aVar[n].flags = MEM_Null;
+ p->aVar[n].db = db;
+ }
+ for(n=1; n<=nMem; n++){
+ p->aMem[n].flags = MEM_Null;
+ p->aMem[n].db = db;
+ }
+ }
+ }
+#ifdef SQLITE_DEBUG
+ for(n=1; n<p->nMem; n++){
+ assert( p->aMem[n].db==db );
+ }
+#endif
+
+ p->pc = -1;
+ p->rc = SQLITE_OK;
+ p->uniqueCnt = 0;
+ p->errorAction = OE_Abort;
+ p->explain |= isExplain;
+ p->magic = VDBE_MAGIC_RUN;
+ p->nChange = 0;
+ p->cacheCtr = 1;
+ p->minWriteFileFormat = 255;
+ p->openedStatement = 0;
+#ifdef VDBE_PROFILE
+ {
+ int i;
+ for(i=0; i<p->nOp; i++){
+ p->aOp[i].cnt = 0;
+ p->aOp[i].cycles = 0;
+ }
+ }
+#endif
+}
+
+/*
+** Close a VDBE cursor and release all the resources that cursor
+** happens to hold.
+*/
+void sqlite3VdbeFreeCursor(Vdbe *p, Cursor *pCx){
+ if( pCx==0 ){
+ return;
+ }
+ if( pCx->pBt ){
+ sqlite3BtreeClose(pCx->pBt);
+ /* The pCx->pCursor will be close automatically, if it exists, by
+ ** the call above. */
+ }else if( pCx->pCursor ){
+ sqlite3BtreeCloseCursor(pCx->pCursor);
+ }
+#ifndef SQLITE_OMIT_VIRTUALTABLE
+ if( pCx->pVtabCursor ){
+ sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
+ const sqlite3_module *pModule = pCx->pModule;
+ p->inVtabMethod = 1;
+ (void)sqlite3SafetyOff(p->db);
+ pModule->xClose(pVtabCursor);
+ (void)sqlite3SafetyOn(p->db);
+ p->inVtabMethod = 0;
+ }
+#endif
+ if( !pCx->ephemPseudoTable ){
+ sqlite3DbFree(p->db, pCx->pData);
+ }
+}
+
+/*
+** Close all cursors except for VTab cursors that are currently
+** in use.
+*/
+static void closeAllCursorsExceptActiveVtabs(Vdbe *p){
+ int i;
+ if( p->apCsr==0 ) return;
+ for(i=0; i<p->nCursor; i++){
+ Cursor *pC = p->apCsr[i];
+ if( pC && (!p->inVtabMethod || !pC->pVtabCursor) ){
+ sqlite3VdbeFreeCursor(p, pC);
+ p->apCsr[i] = 0;
+ }
+ }
+}
+
+/*
+** Clean up the VM after execution.
+**
+** This routine will automatically close any cursors, lists, and/or
+** sorters that were left open. It also deletes the values of
+** variables in the aVar[] array.
+*/
+static void Cleanup(Vdbe *p){
+ int i;
+ sqlite3 *db = p->db;
+ closeAllCursorsExceptActiveVtabs(p);
+ for(i=1; i<=p->nMem; i++){
+ MemSetTypeFlag(&p->aMem[i], MEM_Null);
+ }
+ releaseMemArray(&p->aMem[1], p->nMem);
+ sqlite3VdbeFifoClear(&p->sFifo);
+ if( p->contextStack ){
+ for(i=0; i<p->contextStackTop; i++){
+ sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
+ }
+ sqlite3DbFree(db, p->contextStack);
+ }
+ p->contextStack = 0;
+ p->contextStackDepth = 0;
+ p->contextStackTop = 0;
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = 0;
+ p->pResultSet = 0;
+}
+
+/*
+** Set the number of result columns that will be returned by this SQL
+** statement. This is now set at compile time, rather than during
+** execution of the vdbe program so that sqlite3_column_count() can
+** be called on an SQL statement before sqlite3_step().
+*/
+void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
+ Mem *pColName;
+ int n;
+ sqlite3 *db = p->db;
+
+ releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
+ sqlite3DbFree(db, p->aColName);
+ n = nResColumn*COLNAME_N;
+ p->nResColumn = nResColumn;
+ p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
+ if( p->aColName==0 ) return;
+ while( n-- > 0 ){
+ pColName->flags = MEM_Null;
+ pColName->db = p->db;
+ pColName++;
+ }
+}
+
+/*
+** Set the name of the idx'th column to be returned by the SQL statement.
+** zName must be a pointer to a nul terminated string.
+**
+** This call must be made after a call to sqlite3VdbeSetNumCols().
+**
+** If N==P4_STATIC it means that zName is a pointer to a constant static
+** string and we can just copy the pointer. If it is P4_DYNAMIC, then
+** the string is freed using sqlite3DbFree(db, ) when the vdbe is finished with
+** it. Otherwise, N bytes of zName are copied.
+*/
+int sqlite3VdbeSetColName(Vdbe *p, int idx, int var, const char *zName, int N){
+ int rc;
+ Mem *pColName;
+ assert( idx<p->nResColumn );
+ assert( var<COLNAME_N );
+ if( p->db->mallocFailed ) return SQLITE_NOMEM;
+ assert( p->aColName!=0 );
+ pColName = &(p->aColName[idx+var*p->nResColumn]);
+ if( N==P4_DYNAMIC || N==P4_STATIC ){
+ rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, SQLITE_STATIC);
+ }else{
+ rc = sqlite3VdbeMemSetStr(pColName, zName, N, SQLITE_UTF8,SQLITE_TRANSIENT);
+ }
+ if( rc==SQLITE_OK && N==P4_DYNAMIC ){
+ pColName->flags &= (~MEM_Static);
+ pColName->zMalloc = pColName->z;
+ }
+ return rc;
+}
+
+/*
+** A read or write transaction may or may not be active on database handle
+** db. If a transaction is active, commit it. If there is a
+** write-transaction spanning more than one database file, this routine
+** takes care of the master journal trickery.
+*/
+static int vdbeCommit(sqlite3 *db, Vdbe *p){
+ int i;
+ int nTrans = 0; /* Number of databases with an active write-transaction */
+ int rc = SQLITE_OK;
+ int needXcommit = 0;
+
+ /* Before doing anything else, call the xSync() callback for any
+ ** virtual module tables written in this transaction. This has to
+ ** be done before determining whether a master journal file is
+ ** required, as an xSync() callback may add an attached database
+ ** to the transaction.
+ */
+ rc = sqlite3VtabSync(db, &p->zErrMsg);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* This loop determines (a) if the commit hook should be invoked and
+ ** (b) how many database files have open write transactions, not
+ ** including the temp database. (b) is important because if more than
+ ** one database file has an open write transaction, a master journal
+ ** file is required for an atomic commit.
+ */
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( sqlite3BtreeIsInTrans(pBt) ){
+ needXcommit = 1;
+ if( i!=1 ) nTrans++;
+ }
+ }
+
+ /* If there are any write-transactions at all, invoke the commit hook */
+ if( needXcommit && db->xCommitCallback ){
+ (void)sqlite3SafetyOff(db);
+ rc = db->xCommitCallback(db->pCommitArg);
+ (void)sqlite3SafetyOn(db);
+ if( rc ){
+ return SQLITE_CONSTRAINT;
+ }
+ }
+
+ /* The simple case - no more than one database file (not counting the
+ ** TEMP database) has a transaction active. There is no need for the
+ ** master-journal.
+ **
+ ** If the return value of sqlite3BtreeGetFilename() is a zero length
+ ** string, it means the main database is :memory: or a temp file. In
+ ** that case we do not support atomic multi-file commits, so use the
+ ** simple case then too.
+ */
+ if( 0==strlen(sqlite3BtreeGetFilename(db->aDb[0].pBt)) || nTrans<=1 ){
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
+ }
+ }
+
+ /* Do the commit only if all databases successfully complete phase 1.
+ ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
+ ** IO error while deleting or truncating a journal file. It is unlikely,
+ ** but could happen. In this case abandon processing and return the error.
+ */
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = sqlite3BtreeCommitPhaseTwo(pBt);
+ }
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3VtabCommit(db);
+ }
+ }
+
+ /* The complex case - There is a multi-file write-transaction active.
+ ** This requires a master journal file to ensure the transaction is
+ ** committed atomicly.
+ */
+#ifndef SQLITE_OMIT_DISKIO
+ else{
+ sqlite3_vfs *pVfs = db->pVfs;
+ int needSync = 0;
+ char *zMaster = 0; /* File-name for the master journal */
+ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
+ sqlite3_file *pMaster = 0;
+ i64 offset = 0;
+ int res;
+
+ /* Select a master journal file name */
+ do {
+ u32 random;
+ sqlite3DbFree(db, zMaster);
+ sqlite3_randomness(sizeof(random), &random);
+ zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, random&0x7fffffff);
+ if( !zMaster ){
+ return SQLITE_NOMEM;
+ }
+ rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
+ }while( rc==SQLITE_OK && res );
+ if( rc==SQLITE_OK ){
+ /* Open the master journal. */
+ rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
+ SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
+ SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
+ );
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3DbFree(db, zMaster);
+ return rc;
+ }
+
+ /* Write the name of each database file in the transaction into the new
+ ** master journal file. If an error occurs at this point close
+ ** and delete the master journal file. All the individual journal files
+ ** still have 'null' as the master journal pointer, so they will roll
+ ** back independently if a failure occurs.
+ */
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( i==1 ) continue; /* Ignore the TEMP database */
+ if( sqlite3BtreeIsInTrans(pBt) ){
+ char const *zFile = sqlite3BtreeGetJournalname(pBt);
+ if( zFile[0]==0 ) continue; /* Ignore :memory: databases */
+ if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
+ needSync = 1;
+ }
+ rc = sqlite3OsWrite(pMaster, zFile, strlen(zFile)+1, offset);
+ offset += strlen(zFile)+1;
+ if( rc!=SQLITE_OK ){
+ sqlite3OsCloseFree(pMaster);
+ sqlite3OsDelete(pVfs, zMaster, 0);
+ sqlite3DbFree(db, zMaster);
+ return rc;
+ }
+ }
+ }
+
+ /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
+ ** flag is set this is not required.
+ */
+ zMainFile = sqlite3BtreeGetDirname(db->aDb[0].pBt);
+ if( (needSync
+ && (0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL))
+ && (rc=sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))!=SQLITE_OK) ){
+ sqlite3OsCloseFree(pMaster);
+ sqlite3OsDelete(pVfs, zMaster, 0);
+ sqlite3DbFree(db, zMaster);
+ return rc;
+ }
+
+ /* Sync all the db files involved in the transaction. The same call
+ ** sets the master journal pointer in each individual journal. If
+ ** an error occurs here, do not delete the master journal file.
+ **
+ ** If the error occurs during the first call to
+ ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
+ ** master journal file will be orphaned. But we cannot delete it,
+ ** in case the master journal file name was written into the journal
+ ** file before the failure occured.
+ */
+ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
+ }
+ }
+ sqlite3OsCloseFree(pMaster);
+ if( rc!=SQLITE_OK ){
+ sqlite3DbFree(db, zMaster);
+ return rc;
+ }
+
+ /* Delete the master journal file. This commits the transaction. After
+ ** doing this the directory is synced again before any individual
+ ** transaction files are deleted.
+ */
+ rc = sqlite3OsDelete(pVfs, zMaster, 1);
+ sqlite3DbFree(db, zMaster);
+ zMaster = 0;
+ if( rc ){
+ return rc;
+ }
+
+ /* All files and directories have already been synced, so the following
+ ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
+ ** deleting or truncating journals. If something goes wrong while
+ ** this is happening we don't really care. The integrity of the
+ ** transaction is already guaranteed, but some stray 'cold' journals
+ ** may be lying around. Returning an error code won't help matters.
+ */
+ disable_simulated_io_errors();
+ sqlite3BeginBenignMalloc();
+ for(i=0; i<db->nDb; i++){
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ sqlite3BtreeCommitPhaseTwo(pBt);
+ }
+ }
+ sqlite3EndBenignMalloc();
+ enable_simulated_io_errors();
+
+ sqlite3VtabCommit(db);
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** This routine checks that the sqlite3.activeVdbeCnt count variable
+** matches the number of vdbe's in the list sqlite3.pVdbe that are
+** currently active. An assertion fails if the two counts do not match.
+** This is an internal self-check only - it is not an essential processing
+** step.
+**
+** This is a no-op if NDEBUG is defined.
+*/
+#ifndef NDEBUG
+static void checkActiveVdbeCnt(sqlite3 *db){
+ Vdbe *p;
+ int cnt = 0;
+ p = db->pVdbe;
+ while( p ){
+ if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
+ cnt++;
+ }
+ p = p->pNext;
+ }
+ assert( cnt==db->activeVdbeCnt );
+}
+#else
+#define checkActiveVdbeCnt(x)
+#endif
+
+/*
+** For every Btree that in database connection db which
+** has been modified, "trip" or invalidate each cursor in
+** that Btree might have been modified so that the cursor
+** can never be used again. This happens when a rollback
+*** occurs. We have to trip all the other cursors, even
+** cursor from other VMs in different database connections,
+** so that none of them try to use the data at which they
+** were pointing and which now may have been changed due
+** to the rollback.
+**
+** Remember that a rollback can delete tables complete and
+** reorder rootpages. So it is not sufficient just to save
+** the state of the cursor. We have to invalidate the cursor
+** so that it is never used again.
+*/
+static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){
+ int i;
+ for(i=0; i<db->nDb; i++){
+ Btree *p = db->aDb[i].pBt;
+ if( p && sqlite3BtreeIsInTrans(p) ){
+ sqlite3BtreeTripAllCursors(p, SQLITE_ABORT);
+ }
+ }
+}
+
+/*
+** This routine is called the when a VDBE tries to halt. If the VDBE
+** has made changes and is in autocommit mode, then commit those
+** changes. If a rollback is needed, then do the rollback.
+**
+** This routine is the only way to move the state of a VM from
+** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
+** call this on a VM that is in the SQLITE_MAGIC_HALT state.
+**
+** Return an error code. If the commit could not complete because of
+** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
+** means the close did not happen and needs to be repeated.
+*/
+int sqlite3VdbeHalt(Vdbe *p){
+ sqlite3 *db = p->db;
+ int i;
+ int (*xFunc)(Btree *pBt) = 0; /* Function to call on each btree backend */
+ int isSpecialError; /* Set to true if SQLITE_NOMEM or IOERR */
+
+ /* This function contains the logic that determines if a statement or
+ ** transaction will be committed or rolled back as a result of the
+ ** execution of this virtual machine.
+ **
+ ** If any of the following errors occur:
+ **
+ ** SQLITE_NOMEM
+ ** SQLITE_IOERR
+ ** SQLITE_FULL
+ ** SQLITE_INTERRUPT
+ **
+ ** Then the internal cache might have been left in an inconsistent
+ ** state. We need to rollback the statement transaction, if there is
+ ** one, or the complete transaction if there is no statement transaction.
+ */
+
+ if( p->db->mallocFailed ){
+ p->rc = SQLITE_NOMEM;
+ }
+ closeAllCursorsExceptActiveVtabs(p);
+ if( p->magic!=VDBE_MAGIC_RUN ){
+ return SQLITE_OK;
+ }
+ checkActiveVdbeCnt(db);
+
+ /* No commit or rollback needed if the program never started */
+ if( p->pc>=0 ){
+ int mrc; /* Primary error code from p->rc */
+
+ /* Lock all btrees used by the statement */
+ sqlite3BtreeMutexArrayEnter(&p->aMutex);
+
+ /* Check for one of the special errors */
+ mrc = p->rc & 0xff;
+ isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
+ || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
+ if( isSpecialError ){
+ /* This loop does static analysis of the query to see which of the
+ ** following three categories it falls into:
+ **
+ ** Read-only
+ ** Query with statement journal
+ ** Query without statement journal
+ **
+ ** We could do something more elegant than this static analysis (i.e.
+ ** store the type of query as part of the compliation phase), but
+ ** handling malloc() or IO failure is a fairly obscure edge case so
+ ** this is probably easier. Todo: Might be an opportunity to reduce
+ ** code size a very small amount though...
+ */
+ int notReadOnly = 0;
+ int isStatement = 0;
+ assert(p->aOp || p->nOp==0);
+ for(i=0; i<p->nOp; i++){
+ switch( p->aOp[i].opcode ){
+ case OP_Transaction:
+ notReadOnly |= p->aOp[i].p2;
+ break;
+ case OP_Statement:
+ isStatement = 1;
+ break;
+ }
+ }
+
+
+ /* If the query was read-only, we need do no rollback at all. Otherwise,
+ ** proceed with the special handling.
+ */
+ if( notReadOnly || mrc!=SQLITE_INTERRUPT ){
+ if( p->rc==SQLITE_IOERR_BLOCKED && isStatement ){
+ xFunc = sqlite3BtreeRollbackStmt;
+ p->rc = SQLITE_BUSY;
+ } else if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && isStatement ){
+ xFunc = sqlite3BtreeRollbackStmt;
+ }else{
+ /* We are forced to roll back the active transaction. Before doing
+ ** so, abort any other statements this handle currently has active.
+ */
+ invalidateCursorsOnModifiedBtrees(db);
+ sqlite3RollbackAll(db);
+ db->autoCommit = 1;
+ }
+ }
+ }
+
+ /* If the auto-commit flag is set and this is the only active vdbe, then
+ ** we do either a commit or rollback of the current transaction.
+ **
+ ** Note: This block also runs if one of the special errors handled
+ ** above has occured.
+ */
+ if( db->autoCommit && db->activeVdbeCnt==1 ){
+ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
+ /* The auto-commit flag is true, and the vdbe program was
+ ** successful or hit an 'OR FAIL' constraint. This means a commit
+ ** is required.
+ */
+ int rc = vdbeCommit(db, p);
+ if( rc==SQLITE_BUSY ){
+ sqlite3BtreeMutexArrayLeave(&p->aMutex);
+ return SQLITE_BUSY;
+ }else if( rc!=SQLITE_OK ){
+ p->rc = rc;
+ sqlite3RollbackAll(db);
+ }else{
+ sqlite3CommitInternalChanges(db);
+ }
+ }else{
+ sqlite3RollbackAll(db);
+ }
+ }else if( !xFunc ){
+ if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
+ if( p->openedStatement ){
+ xFunc = sqlite3BtreeCommitStmt;
+ }
+ }else if( p->errorAction==OE_Abort ){
+ xFunc = sqlite3BtreeRollbackStmt;
+ }else{
+ invalidateCursorsOnModifiedBtrees(db);
+ sqlite3RollbackAll(db);
+ db->autoCommit = 1;
+ }
+ }
+
+ /* If xFunc is not NULL, then it is one of sqlite3BtreeRollbackStmt or
+ ** sqlite3BtreeCommitStmt. Call it once on each backend. If an error occurs
+ ** and the return code is still SQLITE_OK, set the return code to the new
+ ** error value.
+ */
+ assert(!xFunc ||
+ xFunc==sqlite3BtreeCommitStmt ||
+ xFunc==sqlite3BtreeRollbackStmt
+ );
+ for(i=0; xFunc && i<db->nDb; i++){
+ int rc;
+ Btree *pBt = db->aDb[i].pBt;
+ if( pBt ){
+ rc = xFunc(pBt);
+ if( rc && (p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT) ){
+ p->rc = rc;
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = 0;
+ }
+ }
+ }
+
+ /* If this was an INSERT, UPDATE or DELETE and the statement was committed,
+ ** set the change counter.
+ */
+ if( p->changeCntOn && p->pc>=0 ){
+ if( !xFunc || xFunc==sqlite3BtreeCommitStmt ){
+ sqlite3VdbeSetChanges(db, p->nChange);
+ }else{
+ sqlite3VdbeSetChanges(db, 0);
+ }
+ p->nChange = 0;
+ }
+
+ /* Rollback or commit any schema changes that occurred. */
+ if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){
+ sqlite3ResetInternalSchema(db, 0);
+ db->flags = (db->flags | SQLITE_InternChanges);
+ }
+
+ /* Release the locks */
+ sqlite3BtreeMutexArrayLeave(&p->aMutex);
+ }
+
+ /* We have successfully halted and closed the VM. Record this fact. */
+ if( p->pc>=0 ){
+ db->activeVdbeCnt--;
+ }
+ p->magic = VDBE_MAGIC_HALT;
+ checkActiveVdbeCnt(db);
+ if( p->db->mallocFailed ){
+ p->rc = SQLITE_NOMEM;
+ }
+
+ return SQLITE_OK;
+}
+
+
+/*
+** Each VDBE holds the result of the most recent sqlite3_step() call
+** in p->rc. This routine sets that result back to SQLITE_OK.
+*/
+void sqlite3VdbeResetStepResult(Vdbe *p){
+ p->rc = SQLITE_OK;
+}
+
+/*
+** Clean up a VDBE after execution but do not delete the VDBE just yet.
+** Write any error messages into *pzErrMsg. Return the result code.
+**
+** After this routine is run, the VDBE should be ready to be executed
+** again.
+**
+** To look at it another way, this routine resets the state of the
+** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
+** VDBE_MAGIC_INIT.
+*/
+int sqlite3VdbeReset(Vdbe *p){
+ sqlite3 *db;
+ db = p->db;
+
+ /* If the VM did not run to completion or if it encountered an
+ ** error, then it might not have been halted properly. So halt
+ ** it now.
+ */
+ (void)sqlite3SafetyOn(db);
+ sqlite3VdbeHalt(p);
+ (void)sqlite3SafetyOff(db);
+
+ /* If the VDBE has be run even partially, then transfer the error code
+ ** and error message from the VDBE into the main database structure. But
+ ** if the VDBE has just been set to run but has not actually executed any
+ ** instructions yet, leave the main database error information unchanged.
+ */
+ if( p->pc>=0 ){
+ if( p->zErrMsg ){
+ sqlite3BeginBenignMalloc();
+ sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT);
+ sqlite3EndBenignMalloc();
+ db->errCode = p->rc;
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = 0;
+ }else if( p->rc ){
+ sqlite3Error(db, p->rc, 0);
+ }else{
+ sqlite3Error(db, SQLITE_OK, 0);
+ }
+ }else if( p->rc && p->expired ){
+ /* The expired flag was set on the VDBE before the first call
+ ** to sqlite3_step(). For consistency (since sqlite3_step() was
+ ** called), set the database error in this case as well.
+ */
+ sqlite3Error(db, p->rc, 0);
+ sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
+ sqlite3DbFree(db, p->zErrMsg);
+ p->zErrMsg = 0;
+ }
+
+ /* Reclaim all memory used by the VDBE
+ */
+ Cleanup(p);
+
+ /* Save profiling information from this VDBE run.
+ */
+#ifdef VDBE_PROFILE
+ {
+ FILE *out = fopen("vdbe_profile.out", "a");
+ if( out ){
+ int i;
+ fprintf(out, "---- ");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%02x", p->aOp[i].opcode);
+ }
+ fprintf(out, "\n");
+ for(i=0; i<p->nOp; i++){
+ fprintf(out, "%6d %10lld %8lld ",
+ p->aOp[i].cnt,
+ p->aOp[i].cycles,
+ p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
+ );
+ sqlite3VdbePrintOp(out, i, &p->aOp[i]);
+ }
+ fclose(out);
+ }
+ }
+#endif
+ p->magic = VDBE_MAGIC_INIT;
+ return p->rc & db->errMask;
+}
+
+/*
+** Clean up and delete a VDBE after execution. Return an integer which is
+** the result code. Write any error message text into *pzErrMsg.
+*/
+int sqlite3VdbeFinalize(Vdbe *p){
+ int rc = SQLITE_OK;
+ if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
+ rc = sqlite3VdbeReset(p);
+ assert( (rc & p->db->errMask)==rc );
+ }else if( p->magic!=VDBE_MAGIC_INIT ){
+ return SQLITE_MISUSE;
+ }
+ sqlite3VdbeDelete(p);
+ return rc;
+}
+
+/*
+** Call the destructor for each auxdata entry in pVdbeFunc for which
+** the corresponding bit in mask is clear. Auxdata entries beyond 31
+** are always destroyed. To destroy all auxdata entries, call this
+** routine with mask==0.
+*/
+void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
+ int i;
+ for(i=0; i<pVdbeFunc->nAux; i++){
+ struct AuxData *pAux = &pVdbeFunc->apAux[i];
+ if( (i>31 || !(mask&(1<<i))) && pAux->pAux ){
+ if( pAux->xDelete ){
+ pAux->xDelete(pAux->pAux);
+ }
+ pAux->pAux = 0;
+ }
+ }
+}
+
+/*
+** Delete an entire VDBE.
+*/
+void sqlite3VdbeDelete(Vdbe *p){
+ int i;
+ sqlite3 *db;
+
+ if( p==0 ) return;
+ db = p->db;
+ if( p->pPrev ){
+ p->pPrev->pNext = p->pNext;
+ }else{
+ assert( db->pVdbe==p );
+ db->pVdbe = p->pNext;
+ }
+ if( p->pNext ){
+ p->pNext->pPrev = p->pPrev;
+ }
+ if( p->aOp ){
+ Op *pOp = p->aOp;
+ for(i=0; i<p->nOp; i++, pOp++){
+ freeP4(db, pOp->p4type, pOp->p4.p);
+#ifdef SQLITE_DEBUG
+ sqlite3DbFree(db, pOp->zComment);
+#endif
+ }
+ sqlite3DbFree(db, p->aOp);
+ }
+ releaseMemArray(p->aVar, p->nVar);
+ sqlite3DbFree(db, p->aLabel);
+ if( p->aMem ){
+ sqlite3DbFree(db, &p->aMem[1]);
+ }
+ releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
+ sqlite3DbFree(db, p->aColName);
+ sqlite3DbFree(db, p->zSql);
+ p->magic = VDBE_MAGIC_DEAD;
+ sqlite3DbFree(db, p);
+}
+
+/*
+** If a MoveTo operation is pending on the given cursor, then do that
+** MoveTo now. Return an error code. If no MoveTo is pending, this
+** routine does nothing and returns SQLITE_OK.
+*/
+int sqlite3VdbeCursorMoveto(Cursor *p){
+ if( p->deferredMoveto ){
+ int res, rc;
+#ifdef SQLITE_TEST
+ extern int sqlite3_search_count;
+#endif
+ assert( p->isTable );
+ rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
+ if( rc ) return rc;
+ p->lastRowid = keyToInt(p->movetoTarget);
+ p->rowidIsValid = res==0;
+ if( res<0 ){
+ rc = sqlite3BtreeNext(p->pCursor, &res);
+ if( rc ) return rc;
+ }
+#ifdef SQLITE_TEST
+ sqlite3_search_count++;
+#endif
+ p->deferredMoveto = 0;
+ p->cacheStatus = CACHE_STALE;
+ }else if( p->pCursor ){
+ int hasMoved;
+ int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
+ if( rc ) return rc;
+ if( hasMoved ){
+ p->cacheStatus = CACHE_STALE;
+ p->nullRow = 1;
+ }
+ }
+ return SQLITE_OK;
+}
+
+/*
+** The following functions:
+**
+** sqlite3VdbeSerialType()
+** sqlite3VdbeSerialTypeLen()
+** sqlite3VdbeSerialLen()
+** sqlite3VdbeSerialPut()
+** sqlite3VdbeSerialGet()
+**
+** encapsulate the code that serializes values for storage in SQLite
+** data and index records. Each serialized value consists of a
+** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
+** integer, stored as a varint.
+**
+** In an SQLite index record, the serial type is stored directly before
+** the blob of data that it corresponds to. In a table record, all serial
+** types are stored at the start of the record, and the blobs of data at
+** the end. Hence these functions allow the caller to handle the
+** serial-type and data blob seperately.
+**
+** The following table describes the various storage classes for data:
+**
+** serial type bytes of data type
+** -------------- --------------- ---------------
+** 0 0 NULL
+** 1 1 signed integer
+** 2 2 signed integer
+** 3 3 signed integer
+** 4 4 signed integer
+** 5 6 signed integer
+** 6 8 signed integer
+** 7 8 IEEE float
+** 8 0 Integer constant 0
+** 9 0 Integer constant 1
+** 10,11 reserved for expansion
+** N>=12 and even (N-12)/2 BLOB
+** N>=13 and odd (N-13)/2 text
+**
+** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
+** of SQLite will not understand those serial types.
+*/
+
+/*
+** Return the serial-type for the value stored in pMem.
+*/
+u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
+ int flags = pMem->flags;
+ int n;
+
+ if( flags&MEM_Null ){
+ return 0;
+ }
+ if( flags&MEM_Int ){
+ /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
+# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
+ i64 i = pMem->u.i;
+ u64 u;
+ if( file_format>=4 && (i&1)==i ){
+ return 8+i;
+ }
+ u = i<0 ? -i : i;
+ if( u<=127 ) return 1;
+ if( u<=32767 ) return 2;
+ if( u<=8388607 ) return 3;
+ if( u<=2147483647 ) return 4;
+ if( u<=MAX_6BYTE ) return 5;
+ return 6;
+ }
+ if( flags&MEM_Real ){
+ return 7;
+ }
+ assert( flags&(MEM_Str|MEM_Blob) );
+ n = pMem->n;
+ if( flags & MEM_Zero ){
+ n += pMem->u.i;
+ }
+ assert( n>=0 );
+ return ((n*2) + 12 + ((flags&MEM_Str)!=0));
+}
+
+/*
+** Return the length of the data corresponding to the supplied serial-type.
+*/
+int sqlite3VdbeSerialTypeLen(u32 serial_type){
+ if( serial_type>=12 ){
+ return (serial_type-12)/2;
+ }else{
+ static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
+ return aSize[serial_type];
+ }
+}
+
+/*
+** If we are on an architecture with mixed-endian floating
+** points (ex: ARM7) then swap the lower 4 bytes with the
+** upper 4 bytes. Return the result.
+**
+** For most architectures, this is a no-op.
+**
+** (later): It is reported to me that the mixed-endian problem
+** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
+** that early versions of GCC stored the two words of a 64-bit
+** float in the wrong order. And that error has been propagated
+** ever since. The blame is not necessarily with GCC, though.
+** GCC might have just copying the problem from a prior compiler.
+** I am also told that newer versions of GCC that follow a different
+** ABI get the byte order right.
+**
+** Developers using SQLite on an ARM7 should compile and run their
+** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
+** enabled, some asserts below will ensure that the byte order of
+** floating point values is correct.
+**
+** (2007-08-30) Frank van Vugt has studied this problem closely
+** and has send his findings to the SQLite developers. Frank
+** writes that some Linux kernels offer floating point hardware
+** emulation that uses only 32-bit mantissas instead of a full
+** 48-bits as required by the IEEE standard. (This is the
+** CONFIG_FPE_FASTFPE option.) On such systems, floating point
+** byte swapping becomes very complicated. To avoid problems,
+** the necessary byte swapping is carried out using a 64-bit integer
+** rather than a 64-bit float. Frank assures us that the code here
+** works for him. We, the developers, have no way to independently
+** verify this, but Frank seems to know what he is talking about
+** so we trust him.
+*/
+#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
+static u64 floatSwap(u64 in){
+ union {
+ u64 r;
+ u32 i[2];
+ } u;
+ u32 t;
+
+ u.r = in;
+ t = u.i[0];
+ u.i[0] = u.i[1];
+ u.i[1] = t;
+ return u.r;
+}
+# define swapMixedEndianFloat(X) X = floatSwap(X)
+#else
+# define swapMixedEndianFloat(X)
+#endif
+
+/*
+** Write the serialized data blob for the value stored in pMem into
+** buf. It is assumed that the caller has allocated sufficient space.
+** Return the number of bytes written.
+**
+** nBuf is the amount of space left in buf[]. nBuf must always be
+** large enough to hold the entire field. Except, if the field is
+** a blob with a zero-filled tail, then buf[] might be just the right
+** size to hold everything except for the zero-filled tail. If buf[]
+** is only big enough to hold the non-zero prefix, then only write that
+** prefix into buf[]. But if buf[] is large enough to hold both the
+** prefix and the tail then write the prefix and set the tail to all
+** zeros.
+**
+** Return the number of bytes actually written into buf[]. The number
+** of bytes in the zero-filled tail is included in the return value only
+** if those bytes were zeroed in buf[].
+*/
+int sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
+ u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
+ int len;
+
+ /* Integer and Real */
+ if( serial_type<=7 && serial_type>0 ){
+ u64 v;
+ int i;
+ if( serial_type==7 ){
+ assert( sizeof(v)==sizeof(pMem->r) );
+ memcpy(&v, &pMem->r, sizeof(v));
+ swapMixedEndianFloat(v);
+ }else{
+ v = pMem->u.i;
+ }
+ len = i = sqlite3VdbeSerialTypeLen(serial_type);
+ assert( len<=nBuf );
+ while( i-- ){
+ buf[i] = (v&0xFF);
+ v >>= 8;
+ }
+ return len;
+ }
+
+ /* String or blob */
+ if( serial_type>=12 ){
+ assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.i:0)
+ == sqlite3VdbeSerialTypeLen(serial_type) );
+ assert( pMem->n<=nBuf );
+ len = pMem->n;
+ memcpy(buf, pMem->z, len);
+ if( pMem->flags & MEM_Zero ){
+ len += pMem->u.i;
+ if( len>nBuf ){
+ len = nBuf;
+ }
+ memset(&buf[pMem->n], 0, len-pMem->n);
+ }
+ return len;
+ }
+
+ /* NULL or constants 0 or 1 */
+ return 0;
+}
+
+/*
+** Deserialize the data blob pointed to by buf as serial type serial_type
+** and store the result in pMem. Return the number of bytes read.
+*/
+int sqlite3VdbeSerialGet(
+ const unsigned char *buf, /* Buffer to deserialize from */
+ u32 serial_type, /* Serial type to deserialize */
+ Mem *pMem /* Memory cell to write value into */
+){
+ switch( serial_type ){
+ case 10: /* Reserved for future use */
+ case 11: /* Reserved for future use */
+ case 0: { /* NULL */
+ pMem->flags = MEM_Null;
+ break;
+ }
+ case 1: { /* 1-byte signed integer */
+ pMem->u.i = (signed char)buf[0];
+ pMem->flags = MEM_Int;
+ return 1;
+ }
+ case 2: { /* 2-byte signed integer */
+ pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
+ pMem->flags = MEM_Int;
+ return 2;
+ }
+ case 3: { /* 3-byte signed integer */
+ pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
+ pMem->flags = MEM_Int;
+ return 3;
+ }
+ case 4: { /* 4-byte signed integer */
+ pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
+ pMem->flags = MEM_Int;
+ return 4;
+ }
+ case 5: { /* 6-byte signed integer */
+ u64 x = (((signed char)buf[0])<<8) | buf[1];
+ u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
+ x = (x<<32) | y;
+ pMem->u.i = *(i64*)&x;
+ pMem->flags = MEM_Int;
+ return 6;
+ }
+ case 6: /* 8-byte signed integer */
+ case 7: { /* IEEE floating point */
+ u64 x;
+ u32 y;
+#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
+ /* Verify that integers and floating point values use the same
+ ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
+ ** defined that 64-bit floating point values really are mixed
+ ** endian.
+ */
+ static const u64 t1 = ((u64)0x3ff00000)<<32;
+ static const double r1 = 1.0;
+ u64 t2 = t1;
+ swapMixedEndianFloat(t2);
+ assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
+#endif
+
+ x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
+ y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
+ x = (x<<32) | y;
+ if( serial_type==6 ){
+ pMem->u.i = *(i64*)&x;
+ pMem->flags = MEM_Int;
+ }else{
+ assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
+ swapMixedEndianFloat(x);
+ memcpy(&pMem->r, &x, sizeof(x));
+ pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
+ }
+ return 8;
+ }
+ case 8: /* Integer 0 */
+ case 9: { /* Integer 1 */
+ pMem->u.i = serial_type-8;
+ pMem->flags = MEM_Int;
+ return 0;
+ }
+ default: {
+ int len = (serial_type-12)/2;
+ pMem->z = (char *)buf;
+ pMem->n = len;
+ pMem->xDel = 0;
+ if( serial_type&0x01 ){
+ pMem->flags = MEM_Str | MEM_Ephem;
+ }else{
+ pMem->flags = MEM_Blob | MEM_Ephem;
+ }
+ return len;
+ }
+ }
+ return 0;
+}
+
+
+/*
+** Given the nKey-byte encoding of a record in pKey[], parse the
+** record into a UnpackedRecord structure. Return a pointer to
+** that structure.
+**
+** The calling function might provide szSpace bytes of memory
+** space at pSpace. This space can be used to hold the returned
+** VDbeParsedRecord structure if it is large enough. If it is
+** not big enough, space is obtained from sqlite3_malloc().
+**
+** The returned structure should be closed by a call to
+** sqlite3VdbeDeleteUnpackedRecord().
+*/
+UnpackedRecord *sqlite3VdbeRecordUnpack(
+ KeyInfo *pKeyInfo, /* Information about the record format */
+ int nKey, /* Size of the binary record */
+ const void *pKey, /* The binary record */
+ UnpackedRecord *pSpace,/* Space available to hold resulting object */
+ int szSpace /* Size of pSpace[] in bytes */
+){
+ const unsigned char *aKey = (const unsigned char *)pKey;
+ UnpackedRecord *p;
+ int nByte;
+ int idx, d;
+ u16 u; /* Unsigned loop counter */
+ u32 szHdr;
+ Mem *pMem;
+
+ assert( sizeof(Mem)>sizeof(*p) );
+ nByte = sizeof(Mem)*(pKeyInfo->nField+2);
+ if( nByte>szSpace ){
+ p = sqlite3DbMallocRaw(pKeyInfo->db, nByte);
+ if( p==0 ) return 0;
+ p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY;
+ }else{
+ p = pSpace;
+ p->flags = UNPACKED_NEED_DESTROY;
+ }
+ p->pKeyInfo = pKeyInfo;
+ p->nField = pKeyInfo->nField + 1;
+ p->aMem = pMem = &((Mem*)p)[1];
+ idx = getVarint32(aKey, szHdr);
+ d = szHdr;
+ u = 0;
+ while( idx<szHdr && u<p->nField ){
+ u32 serial_type;
+
+ idx += getVarint32( aKey+idx, serial_type);
+ if( d>=nKey && sqlite3VdbeSerialTypeLen(serial_type)>0 ) break;
+ pMem->enc = pKeyInfo->enc;
+ pMem->db = pKeyInfo->db;
+ pMem->flags = 0;
+ pMem->zMalloc = 0;
+ d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
+ pMem++;
+ u++;
+ }
+ assert( u<=pKeyInfo->nField + 1 );
+ p->nField = u;
+ return (void*)p;
+}
+
+/*
+** This routine destroys a UnpackedRecord object
+*/
+void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){
+ if( p ){
+ if( p->flags & UNPACKED_NEED_DESTROY ){
+ int i;
+ Mem *pMem;
+ for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){
+ if( pMem->zMalloc ){
+ sqlite3VdbeMemRelease(pMem);
+ }
+ }
+ }
+ if( p->flags & UNPACKED_NEED_FREE ){
+ sqlite3DbFree(p->pKeyInfo->db, p);
+ }
+ }
+}
+
+/*
+** This function compares the two table rows or index records
+** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
+** or positive integer if key1 is less than, equal to or
+** greater than key2. The {nKey1, pKey1} key must be a blob
+** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
+** key must be a parsed key such as obtained from
+** sqlite3VdbeParseRecord.
+**
+** Key1 and Key2 do not have to contain the same number of fields.
+** The key with fewer fields is usually compares less than the
+** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set
+** and the common prefixes are equal, then key1 is less than key2.
+** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
+** equal, then the keys are considered to be equal and
+** the parts beyond the common prefix are ignored.
+**
+** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of
+** the header of pKey1 is ignored. It is assumed that pKey1 is
+** an index key, and thus ends with a rowid value. The last byte
+** of the header will therefore be the serial type of the rowid:
+** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types.
+** The serial type of the final rowid will always be a single byte.
+** By ignoring this last byte of the header, we force the comparison
+** to ignore the rowid at the end of key1.
+*/
+int sqlite3VdbeRecordCompare(
+ int nKey1, const void *pKey1, /* Left key */
+ UnpackedRecord *pPKey2 /* Right key */
+){
+ u32 d1; /* Offset into aKey[] of next data element */
+ u32 idx1; /* Offset into aKey[] of next header element */
+ u32 szHdr1; /* Number of bytes in header */
+ int i = 0;
+ int nField;
+ int rc = 0;
+ const unsigned char *aKey1 = (const unsigned char *)pKey1;
+ KeyInfo *pKeyInfo;
+ Mem mem1;
+
+ pKeyInfo = pPKey2->pKeyInfo;
+ mem1.enc = pKeyInfo->enc;
+ mem1.db = pKeyInfo->db;
+ mem1.flags = 0;
+ mem1.zMalloc = 0;
+
+ idx1 = getVarint32(aKey1, szHdr1);
+ d1 = szHdr1;
+ if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){
+ szHdr1--;
+ }
+ nField = pKeyInfo->nField;
+ while( idx1<szHdr1 && i<pPKey2->nField ){
+ u32 serial_type1;
+
+ /* Read the serial types for the next element in each key. */
+ idx1 += getVarint32( aKey1+idx1, serial_type1 );
+ if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
+
+ /* Extract the values to be compared.
+ */
+ d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
+
+ /* Do the comparison
+ */
+ rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
+ i<nField ? pKeyInfo->aColl[i] : 0);
+ if( rc!=0 ){
+ break;
+ }
+ i++;
+ }
+ if( mem1.zMalloc ) sqlite3VdbeMemRelease(&mem1);
+
+ if( rc==0 ){
+ /* rc==0 here means that one of the keys ran out of fields and
+ ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
+ ** flag is set, then break the tie by treating key2 as larger.
+ ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
+ ** are considered to be equal. Otherwise, the longer key is the
+ ** larger. As it happens, the pPKey2 will always be the longer
+ ** if there is a difference.
+ */
+ if( pPKey2->flags & UNPACKED_INCRKEY ){
+ rc = -1;
+ }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
+ /* Leave rc==0 */
+ }else if( idx1<szHdr1 ){
+ rc = 1;
+ }
+ }else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
+ && pKeyInfo->aSortOrder[i] ){
+ rc = -rc;
+ }
+
+ return rc;
+}
+
+
+/*
+** pCur points at an index entry created using the OP_MakeRecord opcode.
+** Read the rowid (the last field in the record) and store it in *rowid.
+** Return SQLITE_OK if everything works, or an error code otherwise.
+*/
+int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
+ i64 nCellKey = 0;
+ int rc;
+ u32 szHdr; /* Size of the header */
+ u32 typeRowid; /* Serial type of the rowid */
+ u32 lenRowid; /* Size of the rowid */
+ Mem m, v;
+
+ sqlite3BtreeKeySize(pCur, &nCellKey);
+ if( nCellKey<=0 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ m.flags = 0;
+ m.db = 0;
+ m.zMalloc = 0;
+ rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
+ if( rc ){
+ return rc;
+ }
+ (void)getVarint32((u8*)m.z, szHdr);
+ (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
+ lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
+ sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
+ *rowid = v.u.i;
+ sqlite3VdbeMemRelease(&m);
+ return SQLITE_OK;
+}
+
+/*
+** Compare the key of the index entry that cursor pC is point to against
+** the key string in pKey (of length nKey). Write into *pRes a number
+** that is negative, zero, or positive if pC is less than, equal to,
+** or greater than pKey. Return SQLITE_OK on success.
+**
+** pKey is either created without a rowid or is truncated so that it
+** omits the rowid at the end. The rowid at the end of the index entry
+** is ignored as well. Hence, this routine only compares the prefixes
+** of the keys prior to the final rowid, not the entire key.
+**
+** pUnpacked may be an unpacked version of pKey,nKey. If pUnpacked is
+** supplied it is used in place of pKey,nKey.
+*/
+int sqlite3VdbeIdxKeyCompare(
+ Cursor *pC, /* The cursor to compare against */
+ UnpackedRecord *pUnpacked, /* Unpacked version of pKey and nKey */
+ int *res /* Write the comparison result here */
+){
+ i64 nCellKey = 0;
+ int rc;
+ BtCursor *pCur = pC->pCursor;
+ Mem m;
+
+ sqlite3BtreeKeySize(pCur, &nCellKey);
+ if( nCellKey<=0 ){
+ *res = 0;
+ return SQLITE_OK;
+ }
+ m.db = 0;
+ m.flags = 0;
+ m.zMalloc = 0;
+ rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
+ if( rc ){
+ return rc;
+ }
+ assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID );
+ *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
+ sqlite3VdbeMemRelease(&m);
+ return SQLITE_OK;
+}
+
+/*
+** This routine sets the value to be returned by subsequent calls to
+** sqlite3_changes() on the database handle 'db'.
+*/
+void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
+ assert( sqlite3_mutex_held(db->mutex) );
+ db->nChange = nChange;
+ db->nTotalChange += nChange;
+}
+
+/*
+** Set a flag in the vdbe to update the change counter when it is finalised
+** or reset.
+*/
+void sqlite3VdbeCountChanges(Vdbe *v){
+ v->changeCntOn = 1;
+}
+
+/*
+** Mark every prepared statement associated with a database connection
+** as expired.
+**
+** An expired statement means that recompilation of the statement is
+** recommend. Statements expire when things happen that make their
+** programs obsolete. Removing user-defined functions or collating
+** sequences, or changing an authorization function are the types of
+** things that make prepared statements obsolete.
+*/
+void sqlite3ExpirePreparedStatements(sqlite3 *db){
+ Vdbe *p;
+ for(p = db->pVdbe; p; p=p->pNext){
+ p->expired = 1;
+ }
+}
+
+/*
+** Return the database associated with the Vdbe.
+*/
+sqlite3 *sqlite3VdbeDb(Vdbe *v){
+ return v->db;
+}