persistentstorage/sqlite3api/SQLite/select.c
changeset 0 08ec8eefde2f
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/persistentstorage/sqlite3api/SQLite/select.c	Fri Jan 22 11:06:30 2010 +0200
@@ -0,0 +1,4093 @@
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code.  In place of
+** a legal notice, here is a blessing:
+**
+**    May you do good and not evil.
+**    May you find forgiveness for yourself and forgive others.
+**    May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains C code routines that are called by the parser
+** to handle SELECT statements in SQLite.
+**
+** $Id: select.c,v 1.476 2008/09/23 09:36:10 drh Exp $
+*/
+#include "sqliteInt.h"
+
+
+/*
+** Delete all the content of a Select structure but do not deallocate
+** the select structure itself.
+*/
+static void clearSelect(sqlite3 *db, Select *p){
+  sqlite3ExprListDelete(db, p->pEList);
+  sqlite3SrcListDelete(db, p->pSrc);
+  sqlite3ExprDelete(db, p->pWhere);
+  sqlite3ExprListDelete(db, p->pGroupBy);
+  sqlite3ExprDelete(db, p->pHaving);
+  sqlite3ExprListDelete(db, p->pOrderBy);
+  sqlite3SelectDelete(db, p->pPrior);
+  sqlite3ExprDelete(db, p->pLimit);
+  sqlite3ExprDelete(db, p->pOffset);
+}
+
+/*
+** Initialize a SelectDest structure.
+*/
+void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
+  pDest->eDest = eDest;
+  pDest->iParm = iParm;
+  pDest->affinity = 0;
+  pDest->iMem = 0;
+  pDest->nMem = 0;
+}
+
+
+/*
+** Allocate a new Select structure and return a pointer to that
+** structure.
+*/
+Select *sqlite3SelectNew(
+  Parse *pParse,        /* Parsing context */
+  ExprList *pEList,     /* which columns to include in the result */
+  SrcList *pSrc,        /* the FROM clause -- which tables to scan */
+  Expr *pWhere,         /* the WHERE clause */
+  ExprList *pGroupBy,   /* the GROUP BY clause */
+  Expr *pHaving,        /* the HAVING clause */
+  ExprList *pOrderBy,   /* the ORDER BY clause */
+  int isDistinct,       /* true if the DISTINCT keyword is present */
+  Expr *pLimit,         /* LIMIT value.  NULL means not used */
+  Expr *pOffset         /* OFFSET value.  NULL means no offset */
+){
+  Select *pNew;
+  Select standin;
+  sqlite3 *db = pParse->db;
+  pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
+  assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
+  if( pNew==0 ){
+    pNew = &standin;
+    memset(pNew, 0, sizeof(*pNew));
+  }
+  if( pEList==0 ){
+    pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
+  }
+  pNew->pEList = pEList;
+  pNew->pSrc = pSrc;
+  pNew->pWhere = pWhere;
+  pNew->pGroupBy = pGroupBy;
+  pNew->pHaving = pHaving;
+  pNew->pOrderBy = pOrderBy;
+  pNew->selFlags = isDistinct ? SF_Distinct : 0;
+  pNew->op = TK_SELECT;
+  assert( pOffset==0 || pLimit!=0 );
+  pNew->pLimit = pLimit;
+  pNew->pOffset = pOffset;
+  pNew->addrOpenEphm[0] = -1;
+  pNew->addrOpenEphm[1] = -1;
+  pNew->addrOpenEphm[2] = -1;
+  if( db->mallocFailed ) {
+    clearSelect(db, pNew);
+    if( pNew!=&standin ) sqlite3DbFree(db, pNew);
+    pNew = 0;
+  }
+  return pNew;
+}
+
+/*
+** Delete the given Select structure and all of its substructures.
+*/
+void sqlite3SelectDelete(sqlite3 *db, Select *p){
+  if( p ){
+    clearSelect(db, p);
+    sqlite3DbFree(db, p);
+  }
+}
+
+/*
+** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
+** type of join.  Return an integer constant that expresses that type
+** in terms of the following bit values:
+**
+**     JT_INNER
+**     JT_CROSS
+**     JT_OUTER
+**     JT_NATURAL
+**     JT_LEFT
+**     JT_RIGHT
+**
+** A full outer join is the combination of JT_LEFT and JT_RIGHT.
+**
+** If an illegal or unsupported join type is seen, then still return
+** a join type, but put an error in the pParse structure.
+*/
+int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
+  int jointype = 0;
+  Token *apAll[3];
+  Token *p;
+  static const struct {
+    const char zKeyword[8];
+    u8 nChar;
+    u8 code;
+  } keywords[] = {
+    { "natural", 7, JT_NATURAL },
+    { "left",    4, JT_LEFT|JT_OUTER },
+    { "right",   5, JT_RIGHT|JT_OUTER },
+    { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
+    { "outer",   5, JT_OUTER },
+    { "inner",   5, JT_INNER },
+    { "cross",   5, JT_INNER|JT_CROSS },
+  };
+  int i, j;
+  apAll[0] = pA;
+  apAll[1] = pB;
+  apAll[2] = pC;
+  for(i=0; i<3 && apAll[i]; i++){
+    p = apAll[i];
+    for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
+      if( p->n==keywords[j].nChar 
+          && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
+        jointype |= keywords[j].code;
+        break;
+      }
+    }
+    if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
+      jointype |= JT_ERROR;
+      break;
+    }
+  }
+  if(
+     (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
+     (jointype & JT_ERROR)!=0
+  ){
+    const char *zSp = " ";
+    assert( pB!=0 );
+    if( pC==0 ){ zSp++; }
+    sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
+       "%T %T%s%T", pA, pB, zSp, pC);
+    jointype = JT_INNER;
+  }else if( jointype & JT_RIGHT ){
+    sqlite3ErrorMsg(pParse, 
+      "RIGHT and FULL OUTER JOINs are not currently supported");
+    jointype = JT_INNER;
+  }
+  return jointype;
+}
+
+/*
+** Return the index of a column in a table.  Return -1 if the column
+** is not contained in the table.
+*/
+static int columnIndex(Table *pTab, const char *zCol){
+  int i;
+  for(i=0; i<pTab->nCol; i++){
+    if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
+  }
+  return -1;
+}
+
+/*
+** Set the value of a token to a '\000'-terminated string.
+*/
+static void setToken(Token *p, const char *z){
+  p->z = (u8*)z;
+  p->n = z ? strlen(z) : 0;
+  p->dyn = 0;
+}
+
+/*
+** Set the token to the double-quoted and escaped version of the string pointed
+** to by z. For example;
+**
+**    {a"bc}  ->  {"a""bc"}
+*/
+static void setQuotedToken(Parse *pParse, Token *p, const char *z){
+
+  /* Check if the string appears to be quoted using "..." or `...`
+  ** or [...] or '...' or if the string contains any " characters.  
+  ** If it does, then record a version of the string with the special
+  ** characters escaped.
+  */
+  const char *z2 = z;
+  if( *z2!='[' && *z2!='`' && *z2!='\'' ){
+    while( *z2 ){
+      if( *z2=='"' ) break;
+      z2++;
+    }
+  }
+
+  if( *z2 ){
+    /* String contains " characters - copy and quote the string. */
+    p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z);
+    if( p->z ){
+      p->n = strlen((char *)p->z);
+      p->dyn = 1;
+    }
+  }else{
+    /* String contains no " characters - copy the pointer. */
+    p->z = (u8*)z;
+    p->n = (z2 - z);
+    p->dyn = 0;
+  }
+}
+
+/*
+** Create an expression node for an identifier with the name of zName
+*/
+Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
+  Token dummy;
+  setToken(&dummy, zName);
+  return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
+}
+
+/*
+** Add a term to the WHERE expression in *ppExpr that requires the
+** zCol column to be equal in the two tables pTab1 and pTab2.
+*/
+static void addWhereTerm(
+  Parse *pParse,           /* Parsing context */
+  const char *zCol,        /* Name of the column */
+  const Table *pTab1,      /* First table */
+  const char *zAlias1,     /* Alias for first table.  May be NULL */
+  const Table *pTab2,      /* Second table */
+  const char *zAlias2,     /* Alias for second table.  May be NULL */
+  int iRightJoinTable,     /* VDBE cursor for the right table */
+  Expr **ppExpr,           /* Add the equality term to this expression */
+  int isOuterJoin          /* True if dealing with an OUTER join */
+){
+  Expr *pE1a, *pE1b, *pE1c;
+  Expr *pE2a, *pE2b, *pE2c;
+  Expr *pE;
+
+  pE1a = sqlite3CreateIdExpr(pParse, zCol);
+  pE2a = sqlite3CreateIdExpr(pParse, zCol);
+  if( zAlias1==0 ){
+    zAlias1 = pTab1->zName;
+  }
+  pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
+  if( zAlias2==0 ){
+    zAlias2 = pTab2->zName;
+  }
+  pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
+  pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
+  pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
+  pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
+  if( pE && isOuterJoin ){
+    ExprSetProperty(pE, EP_FromJoin);
+    pE->iRightJoinTable = iRightJoinTable;
+  }
+  *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
+}
+
+/*
+** Set the EP_FromJoin property on all terms of the given expression.
+** And set the Expr.iRightJoinTable to iTable for every term in the
+** expression.
+**
+** The EP_FromJoin property is used on terms of an expression to tell
+** the LEFT OUTER JOIN processing logic that this term is part of the
+** join restriction specified in the ON or USING clause and not a part
+** of the more general WHERE clause.  These terms are moved over to the
+** WHERE clause during join processing but we need to remember that they
+** originated in the ON or USING clause.
+**
+** The Expr.iRightJoinTable tells the WHERE clause processing that the
+** expression depends on table iRightJoinTable even if that table is not
+** explicitly mentioned in the expression.  That information is needed
+** for cases like this:
+**
+**    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
+**
+** The where clause needs to defer the handling of the t1.x=5
+** term until after the t2 loop of the join.  In that way, a
+** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
+** defer the handling of t1.x=5, it will be processed immediately
+** after the t1 loop and rows with t1.x!=5 will never appear in
+** the output, which is incorrect.
+*/
+static void setJoinExpr(Expr *p, int iTable){
+  while( p ){
+    ExprSetProperty(p, EP_FromJoin);
+    p->iRightJoinTable = iTable;
+    setJoinExpr(p->pLeft, iTable);
+    p = p->pRight;
+  } 
+}
+
+/*
+** This routine processes the join information for a SELECT statement.
+** ON and USING clauses are converted into extra terms of the WHERE clause.
+** NATURAL joins also create extra WHERE clause terms.
+**
+** The terms of a FROM clause are contained in the Select.pSrc structure.
+** The left most table is the first entry in Select.pSrc.  The right-most
+** table is the last entry.  The join operator is held in the entry to
+** the left.  Thus entry 0 contains the join operator for the join between
+** entries 0 and 1.  Any ON or USING clauses associated with the join are
+** also attached to the left entry.
+**
+** This routine returns the number of errors encountered.
+*/
+static int sqliteProcessJoin(Parse *pParse, Select *p){
+  SrcList *pSrc;                  /* All tables in the FROM clause */
+  int i, j;                       /* Loop counters */
+  struct SrcList_item *pLeft;     /* Left table being joined */
+  struct SrcList_item *pRight;    /* Right table being joined */
+
+  pSrc = p->pSrc;
+  pLeft = &pSrc->a[0];
+  pRight = &pLeft[1];
+  for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
+    Table *pLeftTab = pLeft->pTab;
+    Table *pRightTab = pRight->pTab;
+    int isOuter;
+
+    if( pLeftTab==0 || pRightTab==0 ) continue;
+    isOuter = (pRight->jointype & JT_OUTER)!=0;
+
+    /* When the NATURAL keyword is present, add WHERE clause terms for
+    ** every column that the two tables have in common.
+    */
+    if( pRight->jointype & JT_NATURAL ){
+      if( pRight->pOn || pRight->pUsing ){
+        sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
+           "an ON or USING clause", 0);
+        return 1;
+      }
+      for(j=0; j<pLeftTab->nCol; j++){
+        char *zName = pLeftTab->aCol[j].zName;
+        if( columnIndex(pRightTab, zName)>=0 ){
+          addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
+                              pRightTab, pRight->zAlias,
+                              pRight->iCursor, &p->pWhere, isOuter);
+          
+        }
+      }
+    }
+
+    /* Disallow both ON and USING clauses in the same join
+    */
+    if( pRight->pOn && pRight->pUsing ){
+      sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
+        "clauses in the same join");
+      return 1;
+    }
+
+    /* Add the ON clause to the end of the WHERE clause, connected by
+    ** an AND operator.
+    */
+    if( pRight->pOn ){
+      if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
+      p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
+      pRight->pOn = 0;
+    }
+
+    /* Create extra terms on the WHERE clause for each column named
+    ** in the USING clause.  Example: If the two tables to be joined are 
+    ** A and B and the USING clause names X, Y, and Z, then add this
+    ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
+    ** Report an error if any column mentioned in the USING clause is
+    ** not contained in both tables to be joined.
+    */
+    if( pRight->pUsing ){
+      IdList *pList = pRight->pUsing;
+      for(j=0; j<pList->nId; j++){
+        char *zName = pList->a[j].zName;
+        if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
+          sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
+            "not present in both tables", zName);
+          return 1;
+        }
+        addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
+                            pRightTab, pRight->zAlias,
+                            pRight->iCursor, &p->pWhere, isOuter);
+      }
+    }
+  }
+  return 0;
+}
+
+/*
+** Insert code into "v" that will push the record on the top of the
+** stack into the sorter.
+*/
+static void pushOntoSorter(
+  Parse *pParse,         /* Parser context */
+  ExprList *pOrderBy,    /* The ORDER BY clause */
+  Select *pSelect,       /* The whole SELECT statement */
+  int regData            /* Register holding data to be sorted */
+){
+  Vdbe *v = pParse->pVdbe;
+  int nExpr = pOrderBy->nExpr;
+  int regBase = sqlite3GetTempRange(pParse, nExpr+2);
+  int regRecord = sqlite3GetTempReg(pParse);
+  sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
+  sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
+  sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
+  sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
+  sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
+  sqlite3ReleaseTempReg(pParse, regRecord);
+  sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
+  if( pSelect->iLimit ){
+    int addr1, addr2;
+    int iLimit;
+    if( pSelect->iOffset ){
+      iLimit = pSelect->iOffset+1;
+    }else{
+      iLimit = pSelect->iLimit;
+    }
+    addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
+    sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
+    addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
+    sqlite3VdbeJumpHere(v, addr1);
+    sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
+    sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
+    sqlite3VdbeJumpHere(v, addr2);
+    pSelect->iLimit = 0;
+  }
+}
+
+/*
+** Add code to implement the OFFSET
+*/
+static void codeOffset(
+  Vdbe *v,          /* Generate code into this VM */
+  Select *p,        /* The SELECT statement being coded */
+  int iContinue     /* Jump here to skip the current record */
+){
+  if( p->iOffset && iContinue!=0 ){
+    int addr;
+    sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
+    addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
+    sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
+    VdbeComment((v, "skip OFFSET records"));
+    sqlite3VdbeJumpHere(v, addr);
+  }
+}
+
+/*
+** Add code that will check to make sure the N registers starting at iMem
+** form a distinct entry.  iTab is a sorting index that holds previously
+** seen combinations of the N values.  A new entry is made in iTab
+** if the current N values are new.
+**
+** A jump to addrRepeat is made and the N+1 values are popped from the
+** stack if the top N elements are not distinct.
+*/
+static void codeDistinct(
+  Parse *pParse,     /* Parsing and code generating context */
+  int iTab,          /* A sorting index used to test for distinctness */
+  int addrRepeat,    /* Jump to here if not distinct */
+  int N,             /* Number of elements */
+  int iMem           /* First element */
+){
+  Vdbe *v;
+  int r1;
+
+  v = pParse->pVdbe;
+  r1 = sqlite3GetTempReg(pParse);
+  sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
+  sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
+  sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
+  sqlite3ReleaseTempReg(pParse, r1);
+}
+
+/*
+** Generate an error message when a SELECT is used within a subexpression
+** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
+** column.  We do this in a subroutine because the error occurs in multiple
+** places.
+*/
+static int checkForMultiColumnSelectError(
+  Parse *pParse,       /* Parse context. */
+  SelectDest *pDest,   /* Destination of SELECT results */
+  int nExpr            /* Number of result columns returned by SELECT */
+){
+  int eDest = pDest->eDest;
+  if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
+    sqlite3ErrorMsg(pParse, "only a single result allowed for "
+       "a SELECT that is part of an expression");
+    return 1;
+  }else{
+    return 0;
+  }
+}
+
+/*
+** This routine generates the code for the inside of the inner loop
+** of a SELECT.
+**
+** If srcTab and nColumn are both zero, then the pEList expressions
+** are evaluated in order to get the data for this row.  If nColumn>0
+** then data is pulled from srcTab and pEList is used only to get the
+** datatypes for each column.
+*/
+static void selectInnerLoop(
+  Parse *pParse,          /* The parser context */
+  Select *p,              /* The complete select statement being coded */
+  ExprList *pEList,       /* List of values being extracted */
+  int srcTab,             /* Pull data from this table */
+  int nColumn,            /* Number of columns in the source table */
+  ExprList *pOrderBy,     /* If not NULL, sort results using this key */
+  int distinct,           /* If >=0, make sure results are distinct */
+  SelectDest *pDest,      /* How to dispose of the results */
+  int iContinue,          /* Jump here to continue with next row */
+  int iBreak              /* Jump here to break out of the inner loop */
+){
+  Vdbe *v = pParse->pVdbe;
+  int i;
+  int hasDistinct;        /* True if the DISTINCT keyword is present */
+  int regResult;              /* Start of memory holding result set */
+  int eDest = pDest->eDest;   /* How to dispose of results */
+  int iParm = pDest->iParm;   /* First argument to disposal method */
+  int nResultCol;             /* Number of result columns */
+
+  if( v==0 ) return;
+  assert( pEList!=0 );
+  hasDistinct = distinct>=0;
+  if( pOrderBy==0 && !hasDistinct ){
+    codeOffset(v, p, iContinue);
+  }
+
+  /* Pull the requested columns.
+  */
+  if( nColumn>0 ){
+    nResultCol = nColumn;
+  }else{
+    nResultCol = pEList->nExpr;
+  }
+  if( pDest->iMem==0 ){
+    pDest->iMem = pParse->nMem+1;
+    pDest->nMem = nResultCol;
+    pParse->nMem += nResultCol;
+  }else if( pDest->nMem!=nResultCol ){
+    /* This happens when two SELECTs of a compound SELECT have differing
+    ** numbers of result columns.  The error message will be generated by
+    ** a higher-level routine. */
+    return;
+  }
+  regResult = pDest->iMem;
+  if( nColumn>0 ){
+    for(i=0; i<nColumn; i++){
+      sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
+    }
+  }else if( eDest!=SRT_Exists ){
+    /* If the destination is an EXISTS(...) expression, the actual
+    ** values returned by the SELECT are not required.
+    */
+    sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Output);
+  }
+  nColumn = nResultCol;
+
+  /* If the DISTINCT keyword was present on the SELECT statement
+  ** and this row has been seen before, then do not make this row
+  ** part of the result.
+  */
+  if( hasDistinct ){
+    assert( pEList!=0 );
+    assert( pEList->nExpr==nColumn );
+    codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
+    if( pOrderBy==0 ){
+      codeOffset(v, p, iContinue);
+    }
+  }
+
+  if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
+    return;
+  }
+
+  switch( eDest ){
+    /* In this mode, write each query result to the key of the temporary
+    ** table iParm.
+    */
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+    case SRT_Union: {
+      int r1;
+      r1 = sqlite3GetTempReg(pParse);
+      sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
+      sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
+      sqlite3ReleaseTempReg(pParse, r1);
+      break;
+    }
+
+    /* Construct a record from the query result, but instead of
+    ** saving that record, use it as a key to delete elements from
+    ** the temporary table iParm.
+    */
+    case SRT_Except: {
+      sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
+      break;
+    }
+#endif
+
+    /* Store the result as data using a unique key.
+    */
+    case SRT_Table:
+    case SRT_EphemTab: {
+      int r1 = sqlite3GetTempReg(pParse);
+      sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
+      if( pOrderBy ){
+        pushOntoSorter(pParse, pOrderBy, p, r1);
+      }else{
+        int r2 = sqlite3GetTempReg(pParse);
+        sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
+        sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
+        sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+        sqlite3ReleaseTempReg(pParse, r2);
+      }
+      sqlite3ReleaseTempReg(pParse, r1);
+      break;
+    }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
+    ** then there should be a single item on the stack.  Write this
+    ** item into the set table with bogus data.
+    */
+    case SRT_Set: {
+      assert( nColumn==1 );
+      p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
+      if( pOrderBy ){
+        /* At first glance you would think we could optimize out the
+        ** ORDER BY in this case since the order of entries in the set
+        ** does not matter.  But there might be a LIMIT clause, in which
+        ** case the order does matter */
+        pushOntoSorter(pParse, pOrderBy, p, regResult);
+      }else{
+        int r1 = sqlite3GetTempReg(pParse);
+        sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
+        sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
+        sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
+        sqlite3ReleaseTempReg(pParse, r1);
+      }
+      break;
+    }
+
+    /* If any row exist in the result set, record that fact and abort.
+    */
+    case SRT_Exists: {
+      sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
+      /* The LIMIT clause will terminate the loop for us */
+      break;
+    }
+
+    /* If this is a scalar select that is part of an expression, then
+    ** store the results in the appropriate memory cell and break out
+    ** of the scan loop.
+    */
+    case SRT_Mem: {
+      assert( nColumn==1 );
+      if( pOrderBy ){
+        pushOntoSorter(pParse, pOrderBy, p, regResult);
+      }else{
+        sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
+        /* The LIMIT clause will jump out of the loop for us */
+      }
+      break;
+    }
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
+
+    /* Send the data to the callback function or to a subroutine.  In the
+    ** case of a subroutine, the subroutine itself is responsible for
+    ** popping the data from the stack.
+    */
+    case SRT_Coroutine:
+    case SRT_Output: {
+      if( pOrderBy ){
+        int r1 = sqlite3GetTempReg(pParse);
+        sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
+        pushOntoSorter(pParse, pOrderBy, p, r1);
+        sqlite3ReleaseTempReg(pParse, r1);
+      }else if( eDest==SRT_Coroutine ){
+        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
+      }else{
+        sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
+        sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
+      }
+      break;
+    }
+
+#if !defined(SQLITE_OMIT_TRIGGER)
+    /* Discard the results.  This is used for SELECT statements inside
+    ** the body of a TRIGGER.  The purpose of such selects is to call
+    ** user-defined functions that have side effects.  We do not care
+    ** about the actual results of the select.
+    */
+    default: {
+      assert( eDest==SRT_Discard );
+      break;
+    }
+#endif
+  }
+
+  /* Jump to the end of the loop if the LIMIT is reached.
+  */
+  if( p->iLimit ){
+    assert( pOrderBy==0 );  /* If there is an ORDER BY, the call to
+                            ** pushOntoSorter() would have cleared p->iLimit */
+    sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
+    sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
+  }
+}
+
+/*
+** Given an expression list, generate a KeyInfo structure that records
+** the collating sequence for each expression in that expression list.
+**
+** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
+** KeyInfo structure is appropriate for initializing a virtual index to
+** implement that clause.  If the ExprList is the result set of a SELECT
+** then the KeyInfo structure is appropriate for initializing a virtual
+** index to implement a DISTINCT test.
+**
+** Space to hold the KeyInfo structure is obtain from malloc.  The calling
+** function is responsible for seeing that this structure is eventually
+** freed.  Add the KeyInfo structure to the P4 field of an opcode using
+** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
+*/
+static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
+  sqlite3 *db = pParse->db;
+  int nExpr;
+  KeyInfo *pInfo;
+  struct ExprList_item *pItem;
+  int i;
+
+  nExpr = pList->nExpr;
+  pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
+  if( pInfo ){
+    pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
+    pInfo->nField = nExpr;
+    pInfo->enc = ENC(db);
+    for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
+      CollSeq *pColl;
+      pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
+      if( !pColl ){
+        pColl = db->pDfltColl;
+      }
+      pInfo->aColl[i] = pColl;
+      pInfo->aSortOrder[i] = pItem->sortOrder;
+    }
+  }
+  return pInfo;
+}
+
+
+/*
+** If the inner loop was generated using a non-null pOrderBy argument,
+** then the results were placed in a sorter.  After the loop is terminated
+** we need to run the sorter and output the results.  The following
+** routine generates the code needed to do that.
+*/
+static void generateSortTail(
+  Parse *pParse,    /* Parsing context */
+  Select *p,        /* The SELECT statement */
+  Vdbe *v,          /* Generate code into this VDBE */
+  int nColumn,      /* Number of columns of data */
+  SelectDest *pDest /* Write the sorted results here */
+){
+  int brk = sqlite3VdbeMakeLabel(v);
+  int cont = sqlite3VdbeMakeLabel(v);
+  int addr;
+  int iTab;
+  int pseudoTab = 0;
+  ExprList *pOrderBy = p->pOrderBy;
+
+  int eDest = pDest->eDest;
+  int iParm = pDest->iParm;
+
+  int regRow;
+  int regRowid;
+
+  iTab = pOrderBy->iECursor;
+  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
+    pseudoTab = pParse->nTab++;
+    sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn);
+    sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Output);
+  }
+  addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
+  codeOffset(v, p, cont);
+  regRow = sqlite3GetTempReg(pParse);
+  regRowid = sqlite3GetTempReg(pParse);
+  sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
+  switch( eDest ){
+    case SRT_Table:
+    case SRT_EphemTab: {
+      sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
+      sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
+      sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+      break;
+    }
+#ifndef SQLITE_OMIT_SUBQUERY
+    case SRT_Set: {
+      assert( nColumn==1 );
+      sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
+      sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
+      sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
+      break;
+    }
+    case SRT_Mem: {
+      assert( nColumn==1 );
+      sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
+      /* The LIMIT clause will terminate the loop for us */
+      break;
+    }
+#endif
+    case SRT_Output:
+    case SRT_Coroutine: {
+      int i;
+      sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
+      sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
+      for(i=0; i<nColumn; i++){
+        assert( regRow!=pDest->iMem+i );
+        sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
+      }
+      if( eDest==SRT_Output ){
+        sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
+        sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
+      }else{
+        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
+      }
+      break;
+    }
+    default: {
+      /* Do nothing */
+      break;
+    }
+  }
+  sqlite3ReleaseTempReg(pParse, regRow);
+  sqlite3ReleaseTempReg(pParse, regRowid);
+
+  /* LIMIT has been implemented by the pushOntoSorter() routine.
+  */
+  assert( p->iLimit==0 );
+
+  /* The bottom of the loop
+  */
+  sqlite3VdbeResolveLabel(v, cont);
+  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
+  sqlite3VdbeResolveLabel(v, brk);
+  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
+    sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
+  }
+
+}
+
+/*
+** Return a pointer to a string containing the 'declaration type' of the
+** expression pExpr. The string may be treated as static by the caller.
+**
+** The declaration type is the exact datatype definition extracted from the
+** original CREATE TABLE statement if the expression is a column. The
+** declaration type for a ROWID field is INTEGER. Exactly when an expression
+** is considered a column can be complex in the presence of subqueries. The
+** result-set expression in all of the following SELECT statements is 
+** considered a column by this function.
+**
+**   SELECT col FROM tbl;
+**   SELECT (SELECT col FROM tbl;
+**   SELECT (SELECT col FROM tbl);
+**   SELECT abc FROM (SELECT col AS abc FROM tbl);
+** 
+** The declaration type for any expression other than a column is NULL.
+*/
+static const char *columnType(
+  NameContext *pNC, 
+  Expr *pExpr,
+  const char **pzOriginDb,
+  const char **pzOriginTab,
+  const char **pzOriginCol
+){
+  char const *zType = 0;
+  char const *zOriginDb = 0;
+  char const *zOriginTab = 0;
+  char const *zOriginCol = 0;
+  int j;
+  if( pExpr==0 || pNC->pSrcList==0 ) return 0;
+
+  switch( pExpr->op ){
+    case TK_AGG_COLUMN:
+    case TK_COLUMN: {
+      /* The expression is a column. Locate the table the column is being
+      ** extracted from in NameContext.pSrcList. This table may be real
+      ** database table or a subquery.
+      */
+      Table *pTab = 0;            /* Table structure column is extracted from */
+      Select *pS = 0;             /* Select the column is extracted from */
+      int iCol = pExpr->iColumn;  /* Index of column in pTab */
+      while( pNC && !pTab ){
+        SrcList *pTabList = pNC->pSrcList;
+        for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
+        if( j<pTabList->nSrc ){
+          pTab = pTabList->a[j].pTab;
+          pS = pTabList->a[j].pSelect;
+        }else{
+          pNC = pNC->pNext;
+        }
+      }
+
+      if( pTab==0 ){
+        /* FIX ME:
+        ** This can occurs if you have something like "SELECT new.x;" inside
+        ** a trigger.  In other words, if you reference the special "new"
+        ** table in the result set of a select.  We do not have a good way
+        ** to find the actual table type, so call it "TEXT".  This is really
+        ** something of a bug, but I do not know how to fix it.
+        **
+        ** This code does not produce the correct answer - it just prevents
+        ** a segfault.  See ticket #1229.
+        */
+        zType = "TEXT";
+        break;
+      }
+
+      assert( pTab );
+      if( pS ){
+        /* The "table" is actually a sub-select or a view in the FROM clause
+        ** of the SELECT statement. Return the declaration type and origin
+        ** data for the result-set column of the sub-select.
+        */
+        if( iCol>=0 && iCol<pS->pEList->nExpr ){
+          /* If iCol is less than zero, then the expression requests the
+          ** rowid of the sub-select or view. This expression is legal (see 
+          ** test case misc2.2.2) - it always evaluates to NULL.
+          */
+          NameContext sNC;
+          Expr *p = pS->pEList->a[iCol].pExpr;
+          sNC.pSrcList = pS->pSrc;
+          sNC.pNext = 0;
+          sNC.pParse = pNC->pParse;
+          zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
+        }
+      }else if( pTab->pSchema ){
+        /* A real table */
+        assert( !pS );
+        if( iCol<0 ) iCol = pTab->iPKey;
+        assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
+        if( iCol<0 ){
+          zType = "INTEGER";
+          zOriginCol = "rowid";
+        }else{
+          zType = pTab->aCol[iCol].zType;
+          zOriginCol = pTab->aCol[iCol].zName;
+        }
+        zOriginTab = pTab->zName;
+        if( pNC->pParse ){
+          int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
+          zOriginDb = pNC->pParse->db->aDb[iDb].zName;
+        }
+      }
+      break;
+    }
+#ifndef SQLITE_OMIT_SUBQUERY
+    case TK_SELECT: {
+      /* The expression is a sub-select. Return the declaration type and
+      ** origin info for the single column in the result set of the SELECT
+      ** statement.
+      */
+      NameContext sNC;
+      Select *pS = pExpr->pSelect;
+      Expr *p = pS->pEList->a[0].pExpr;
+      sNC.pSrcList = pS->pSrc;
+      sNC.pNext = pNC;
+      sNC.pParse = pNC->pParse;
+      zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
+      break;
+    }
+#endif
+  }
+  
+  if( pzOriginDb ){
+    assert( pzOriginTab && pzOriginCol );
+    *pzOriginDb = zOriginDb;
+    *pzOriginTab = zOriginTab;
+    *pzOriginCol = zOriginCol;
+  }
+  return zType;
+}
+
+/*
+** Generate code that will tell the VDBE the declaration types of columns
+** in the result set.
+*/
+static void generateColumnTypes(
+  Parse *pParse,      /* Parser context */
+  SrcList *pTabList,  /* List of tables */
+  ExprList *pEList    /* Expressions defining the result set */
+){
+#ifndef SQLITE_OMIT_DECLTYPE
+  Vdbe *v = pParse->pVdbe;
+  int i;
+  NameContext sNC;
+  sNC.pSrcList = pTabList;
+  sNC.pParse = pParse;
+  for(i=0; i<pEList->nExpr; i++){
+    Expr *p = pEList->a[i].pExpr;
+    const char *zType;
+#ifdef SQLITE_ENABLE_COLUMN_METADATA
+    const char *zOrigDb = 0;
+    const char *zOrigTab = 0;
+    const char *zOrigCol = 0;
+    zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
+
+    /* The vdbe must make its own copy of the column-type and other 
+    ** column specific strings, in case the schema is reset before this
+    ** virtual machine is deleted.
+    */
+    sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT);
+    sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT);
+    sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT);
+#else
+    zType = columnType(&sNC, p, 0, 0, 0);
+#endif
+    sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT);
+  }
+#endif /* SQLITE_OMIT_DECLTYPE */
+}
+
+/*
+** Generate code that will tell the VDBE the names of columns
+** in the result set.  This information is used to provide the
+** azCol[] values in the callback.
+*/
+static void generateColumnNames(
+  Parse *pParse,      /* Parser context */
+  SrcList *pTabList,  /* List of tables */
+  ExprList *pEList    /* Expressions defining the result set */
+){
+  Vdbe *v = pParse->pVdbe;
+  int i, j;
+  sqlite3 *db = pParse->db;
+  int fullNames, shortNames;
+
+#ifndef SQLITE_OMIT_EXPLAIN
+  /* If this is an EXPLAIN, skip this step */
+  if( pParse->explain ){
+    return;
+  }
+#endif
+
+  assert( v!=0 );
+  if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
+  pParse->colNamesSet = 1;
+  fullNames = (db->flags & SQLITE_FullColNames)!=0;
+  shortNames = (db->flags & SQLITE_ShortColNames)!=0;
+  sqlite3VdbeSetNumCols(v, pEList->nExpr);
+  for(i=0; i<pEList->nExpr; i++){
+    Expr *p;
+    p = pEList->a[i].pExpr;
+    if( p==0 ) continue;
+    if( pEList->a[i].zName ){
+      char *zName = pEList->a[i].zName;
+      sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
+    }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
+      Table *pTab;
+      char *zCol;
+      int iCol = p->iColumn;
+      for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
+      assert( j<pTabList->nSrc );
+      pTab = pTabList->a[j].pTab;
+      if( iCol<0 ) iCol = pTab->iPKey;
+      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
+      if( iCol<0 ){
+        zCol = "rowid";
+      }else{
+        zCol = pTab->aCol[iCol].zName;
+      }
+      if( !shortNames && !fullNames ){
+        sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
+      }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
+        char *zName = 0;
+        char *zTab;
+ 
+        zTab = pTabList->a[j].zAlias;
+        if( fullNames || zTab==0 ) zTab = pTab->zName;
+        zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol);
+        sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC);
+      }else{
+        sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
+      }
+    }else{
+      sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
+    }
+  }
+  generateColumnTypes(pParse, pTabList, pEList);
+}
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+/*
+** Name of the connection operator, used for error messages.
+*/
+static const char *selectOpName(int id){
+  char *z;
+  switch( id ){
+    case TK_ALL:       z = "UNION ALL";   break;
+    case TK_INTERSECT: z = "INTERSECT";   break;
+    case TK_EXCEPT:    z = "EXCEPT";      break;
+    default:           z = "UNION";       break;
+  }
+  return z;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+/*
+** Given a an expression list (which is really the list of expressions
+** that form the result set of a SELECT statement) compute appropriate
+** column names for a table that would hold the expression list.
+**
+** All column names will be unique.
+**
+** Only the column names are computed.  Column.zType, Column.zColl,
+** and other fields of Column are zeroed.
+**
+** Return SQLITE_OK on success.  If a memory allocation error occurs,
+** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
+*/
+static int selectColumnsFromExprList(
+  Parse *pParse,          /* Parsing context */
+  ExprList *pEList,       /* Expr list from which to derive column names */
+  int *pnCol,             /* Write the number of columns here */
+  Column **paCol          /* Write the new column list here */
+){
+  sqlite3 *db = pParse->db;
+  int i, j, cnt;
+  Column *aCol, *pCol;
+  int nCol;
+  Expr *p;
+  char *zName;
+  int nName;
+
+  *pnCol = nCol = pEList->nExpr;
+  aCol = *paCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
+  if( aCol==0 ) return SQLITE_NOMEM;
+  for(i=0, pCol=aCol; i<nCol; i++, pCol++){
+    /* Get an appropriate name for the column
+    */
+    p = pEList->a[i].pExpr;
+    assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
+    if( (zName = pEList->a[i].zName)!=0 ){
+      /* If the column contains an "AS <name>" phrase, use <name> as the name */
+      zName = sqlite3DbStrDup(db, zName);
+    }else{
+      Expr *pCol = p;
+      Table *pTab;
+      while( pCol->op==TK_DOT ) pCol = pCol->pRight;
+      if( pCol->op==TK_COLUMN && (pTab = pCol->pTab)!=0 ){
+        /* For columns use the column name name */
+        int iCol = pCol->iColumn;
+        if( iCol<0 ) iCol = pTab->iPKey;
+        zName = sqlite3MPrintf(db, "%s",
+                 iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
+      }else{
+        /* Use the original text of the column expression as its name */
+        zName = sqlite3MPrintf(db, "%T", &pCol->span);
+      }
+    }
+    if( db->mallocFailed ){
+      sqlite3DbFree(db, zName);
+      break;
+    }
+    sqlite3Dequote(zName);
+
+    /* Make sure the column name is unique.  If the name is not unique,
+    ** append a integer to the name so that it becomes unique.
+    */
+    nName = strlen(zName);
+    for(j=cnt=0; j<i; j++){
+      if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
+        char *zNewName;
+        zName[nName] = 0;
+        zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
+        sqlite3DbFree(db, zName);
+        zName = zNewName;
+        j = -1;
+        if( zName==0 ) break;
+      }
+    }
+    pCol->zName = zName;
+  }
+  if( db->mallocFailed ){
+    int j;
+    for(j=0; j<i; j++){
+      sqlite3DbFree(db, aCol[j].zName);
+    }
+    sqlite3DbFree(db, aCol);
+    *paCol = 0;
+    *pnCol = 0;
+    return SQLITE_NOMEM;
+  }
+  return SQLITE_OK;
+}
+
+/*
+** Add type and collation information to a column list based on
+** a SELECT statement.
+** 
+** The column list presumably came from selectColumnNamesFromExprList().
+** The column list has only names, not types or collations.  This
+** routine goes through and adds the types and collations.
+**
+** This routine requires that all indentifiers in the SELECT
+** statement be resolved.
+*/
+static void selectAddColumnTypeAndCollation(
+  Parse *pParse,        /* Parsing contexts */
+  int nCol,             /* Number of columns */
+  Column *aCol,         /* List of columns */
+  Select *pSelect       /* SELECT used to determine types and collations */
+){
+  sqlite3 *db = pParse->db;
+  NameContext sNC;
+  Column *pCol;
+  CollSeq *pColl;
+  int i;
+  Expr *p;
+  struct ExprList_item *a;
+
+  assert( pSelect!=0 );
+  assert( (pSelect->selFlags & SF_Resolved)!=0 );
+  assert( nCol==pSelect->pEList->nExpr || db->mallocFailed );
+  if( db->mallocFailed ) return;
+  memset(&sNC, 0, sizeof(sNC));
+  sNC.pSrcList = pSelect->pSrc;
+  a = pSelect->pEList->a;
+  for(i=0, pCol=aCol; i<nCol; i++, pCol++){
+    p = a[i].pExpr;
+    pCol->zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
+    pCol->affinity = sqlite3ExprAffinity(p);
+    pColl = sqlite3ExprCollSeq(pParse, p);
+    if( pColl ){
+      pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
+    }
+  }
+}
+
+/*
+** Given a SELECT statement, generate a Table structure that describes
+** the result set of that SELECT.
+*/
+Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){
+  Table *pTab;
+  sqlite3 *db = pParse->db;
+  int savedFlags;
+
+  savedFlags = db->flags;
+  db->flags &= ~SQLITE_FullColNames;
+  db->flags |= SQLITE_ShortColNames;
+  sqlite3SelectPrep(pParse, pSelect, 0);
+  if( pParse->nErr ) return 0;
+  while( pSelect->pPrior ) pSelect = pSelect->pPrior;
+  db->flags = savedFlags;
+  pTab = sqlite3DbMallocZero(db, sizeof(Table) );
+  if( pTab==0 ){
+    return 0;
+  }
+  pTab->db = db;
+  pTab->nRef = 1;
+  pTab->zName = 0;
+  selectColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
+  selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSelect);
+  pTab->iPKey = -1;
+  if( db->mallocFailed ){
+    sqlite3DeleteTable(pTab);
+    return 0;
+  }
+  return pTab;
+}
+
+/*
+** Get a VDBE for the given parser context.  Create a new one if necessary.
+** If an error occurs, return NULL and leave a message in pParse.
+*/
+Vdbe *sqlite3GetVdbe(Parse *pParse){
+  Vdbe *v = pParse->pVdbe;
+  if( v==0 ){
+    v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
+#ifndef SQLITE_OMIT_TRACE
+    if( v ){
+      sqlite3VdbeAddOp0(v, OP_Trace);
+    }
+#endif
+  }
+  return v;
+}
+
+
+/*
+** Compute the iLimit and iOffset fields of the SELECT based on the
+** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
+** that appear in the original SQL statement after the LIMIT and OFFSET
+** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset 
+** are the integer memory register numbers for counters used to compute 
+** the limit and offset.  If there is no limit and/or offset, then 
+** iLimit and iOffset are negative.
+**
+** This routine changes the values of iLimit and iOffset only if
+** a limit or offset is defined by pLimit and pOffset.  iLimit and
+** iOffset should have been preset to appropriate default values
+** (usually but not always -1) prior to calling this routine.
+** Only if pLimit!=0 or pOffset!=0 do the limit registers get
+** redefined.  The UNION ALL operator uses this property to force
+** the reuse of the same limit and offset registers across multiple
+** SELECT statements.
+*/
+static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
+  Vdbe *v = 0;
+  int iLimit = 0;
+  int iOffset;
+  int addr1;
+  if( p->iLimit ) return;
+
+  /* 
+  ** "LIMIT -1" always shows all rows.  There is some
+  ** contraversy about what the correct behavior should be.
+  ** The current implementation interprets "LIMIT 0" to mean
+  ** no rows.
+  */
+  if( p->pLimit ){
+    p->iLimit = iLimit = ++pParse->nMem;
+    v = sqlite3GetVdbe(pParse);
+    if( v==0 ) return;
+    sqlite3ExprCode(pParse, p->pLimit, iLimit);
+    sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
+    VdbeComment((v, "LIMIT counter"));
+    sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
+  }
+  if( p->pOffset ){
+    p->iOffset = iOffset = ++pParse->nMem;
+    if( p->pLimit ){
+      pParse->nMem++;   /* Allocate an extra register for limit+offset */
+    }
+    v = sqlite3GetVdbe(pParse);
+    if( v==0 ) return;
+    sqlite3ExprCode(pParse, p->pOffset, iOffset);
+    sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
+    VdbeComment((v, "OFFSET counter"));
+    addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
+    sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
+    sqlite3VdbeJumpHere(v, addr1);
+    if( p->pLimit ){
+      sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
+      VdbeComment((v, "LIMIT+OFFSET"));
+      addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
+      sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
+      sqlite3VdbeJumpHere(v, addr1);
+    }
+  }
+}
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+/*
+** Return the appropriate collating sequence for the iCol-th column of
+** the result set for the compound-select statement "p".  Return NULL if
+** the column has no default collating sequence.
+**
+** The collating sequence for the compound select is taken from the
+** left-most term of the select that has a collating sequence.
+*/
+static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
+  CollSeq *pRet;
+  if( p->pPrior ){
+    pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
+  }else{
+    pRet = 0;
+  }
+  if( pRet==0 ){
+    pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
+  }
+  return pRet;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+/* Forward reference */
+static int multiSelectOrderBy(
+  Parse *pParse,        /* Parsing context */
+  Select *p,            /* The right-most of SELECTs to be coded */
+  SelectDest *pDest     /* What to do with query results */
+);
+
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+/*
+** This routine is called to process a compound query form from
+** two or more separate queries using UNION, UNION ALL, EXCEPT, or
+** INTERSECT
+**
+** "p" points to the right-most of the two queries.  the query on the
+** left is p->pPrior.  The left query could also be a compound query
+** in which case this routine will be called recursively. 
+**
+** The results of the total query are to be written into a destination
+** of type eDest with parameter iParm.
+**
+** Example 1:  Consider a three-way compound SQL statement.
+**
+**     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
+**
+** This statement is parsed up as follows:
+**
+**     SELECT c FROM t3
+**      |
+**      `----->  SELECT b FROM t2
+**                |
+**                `------>  SELECT a FROM t1
+**
+** The arrows in the diagram above represent the Select.pPrior pointer.
+** So if this routine is called with p equal to the t3 query, then
+** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
+**
+** Notice that because of the way SQLite parses compound SELECTs, the
+** individual selects always group from left to right.
+*/
+static int multiSelect(
+  Parse *pParse,        /* Parsing context */
+  Select *p,            /* The right-most of SELECTs to be coded */
+  SelectDest *pDest     /* What to do with query results */
+){
+  int rc = SQLITE_OK;   /* Success code from a subroutine */
+  Select *pPrior;       /* Another SELECT immediately to our left */
+  Vdbe *v;              /* Generate code to this VDBE */
+  SelectDest dest;      /* Alternative data destination */
+  Select *pDelete = 0;  /* Chain of simple selects to delete */
+  sqlite3 *db;          /* Database connection */
+
+  /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
+  ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
+  */
+  assert( p && p->pPrior );  /* Calling function guarantees this much */
+  db = pParse->db;
+  pPrior = p->pPrior;
+  assert( pPrior->pRightmost!=pPrior );
+  assert( pPrior->pRightmost==p->pRightmost );
+  dest = *pDest;
+  if( pPrior->pOrderBy ){
+    sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
+      selectOpName(p->op));
+    rc = 1;
+    goto multi_select_end;
+  }
+  if( pPrior->pLimit ){
+    sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
+      selectOpName(p->op));
+    rc = 1;
+    goto multi_select_end;
+  }
+
+  v = sqlite3GetVdbe(pParse);
+  assert( v!=0 );  /* The VDBE already created by calling function */
+
+  /* Create the destination temporary table if necessary
+  */
+  if( dest.eDest==SRT_EphemTab ){
+    assert( p->pEList );
+    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
+    dest.eDest = SRT_Table;
+  }
+
+  /* Make sure all SELECTs in the statement have the same number of elements
+  ** in their result sets.
+  */
+  assert( p->pEList && pPrior->pEList );
+  if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
+    sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
+      " do not have the same number of result columns", selectOpName(p->op));
+    rc = 1;
+    goto multi_select_end;
+  }
+
+  /* Compound SELECTs that have an ORDER BY clause are handled separately.
+  */
+  if( p->pOrderBy ){
+    return multiSelectOrderBy(pParse, p, pDest);
+  }
+
+  /* Generate code for the left and right SELECT statements.
+  */
+  switch( p->op ){
+    case TK_ALL: {
+      int addr = 0;
+      assert( !pPrior->pLimit );
+      pPrior->pLimit = p->pLimit;
+      pPrior->pOffset = p->pOffset;
+      rc = sqlite3Select(pParse, pPrior, &dest);
+      p->pLimit = 0;
+      p->pOffset = 0;
+      if( rc ){
+        goto multi_select_end;
+      }
+      p->pPrior = 0;
+      p->iLimit = pPrior->iLimit;
+      p->iOffset = pPrior->iOffset;
+      if( p->iLimit ){
+        addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
+        VdbeComment((v, "Jump ahead if LIMIT reached"));
+      }
+      rc = sqlite3Select(pParse, p, &dest);
+      pDelete = p->pPrior;
+      p->pPrior = pPrior;
+      if( rc ){
+        goto multi_select_end;
+      }
+      if( addr ){
+        sqlite3VdbeJumpHere(v, addr);
+      }
+      break;
+    }
+    case TK_EXCEPT:
+    case TK_UNION: {
+      int unionTab;    /* Cursor number of the temporary table holding result */
+      int op = 0;      /* One of the SRT_ operations to apply to self */
+      int priorOp;     /* The SRT_ operation to apply to prior selects */
+      Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
+      int addr;
+      SelectDest uniondest;
+
+      priorOp = SRT_Union;
+      if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){
+        /* We can reuse a temporary table generated by a SELECT to our
+        ** right.
+        */
+        unionTab = dest.iParm;
+      }else{
+        /* We will need to create our own temporary table to hold the
+        ** intermediate results.
+        */
+        unionTab = pParse->nTab++;
+        assert( p->pOrderBy==0 );
+        addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
+        assert( p->addrOpenEphm[0] == -1 );
+        p->addrOpenEphm[0] = addr;
+        p->pRightmost->selFlags |= SF_UsesEphemeral;
+        assert( p->pEList );
+      }
+
+      /* Code the SELECT statements to our left
+      */
+      assert( !pPrior->pOrderBy );
+      sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
+      rc = sqlite3Select(pParse, pPrior, &uniondest);
+      if( rc ){
+        goto multi_select_end;
+      }
+
+      /* Code the current SELECT statement
+      */
+      if( p->op==TK_EXCEPT ){
+        op = SRT_Except;
+      }else{
+        assert( p->op==TK_UNION );
+        op = SRT_Union;
+      }
+      p->pPrior = 0;
+      pLimit = p->pLimit;
+      p->pLimit = 0;
+      pOffset = p->pOffset;
+      p->pOffset = 0;
+      uniondest.eDest = op;
+      rc = sqlite3Select(pParse, p, &uniondest);
+      /* Query flattening in sqlite3Select() might refill p->pOrderBy.
+      ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
+      sqlite3ExprListDelete(db, p->pOrderBy);
+      pDelete = p->pPrior;
+      p->pPrior = pPrior;
+      p->pOrderBy = 0;
+      sqlite3ExprDelete(db, p->pLimit);
+      p->pLimit = pLimit;
+      p->pOffset = pOffset;
+      p->iLimit = 0;
+      p->iOffset = 0;
+      if( rc ){
+        goto multi_select_end;
+      }
+
+
+      /* Convert the data in the temporary table into whatever form
+      ** it is that we currently need.
+      */      
+      if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
+        int iCont, iBreak, iStart;
+        assert( p->pEList );
+        if( dest.eDest==SRT_Output ){
+          Select *pFirst = p;
+          while( pFirst->pPrior ) pFirst = pFirst->pPrior;
+          generateColumnNames(pParse, 0, pFirst->pEList);
+        }
+        iBreak = sqlite3VdbeMakeLabel(v);
+        iCont = sqlite3VdbeMakeLabel(v);
+        computeLimitRegisters(pParse, p, iBreak);
+        sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
+        iStart = sqlite3VdbeCurrentAddr(v);
+        selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
+                        0, -1, &dest, iCont, iBreak);
+        sqlite3VdbeResolveLabel(v, iCont);
+        sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
+        sqlite3VdbeResolveLabel(v, iBreak);
+        sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
+      }
+      break;
+    }
+    case TK_INTERSECT: {
+      int tab1, tab2;
+      int iCont, iBreak, iStart;
+      Expr *pLimit, *pOffset;
+      int addr;
+      SelectDest intersectdest;
+      int r1;
+
+      /* INTERSECT is different from the others since it requires
+      ** two temporary tables.  Hence it has its own case.  Begin
+      ** by allocating the tables we will need.
+      */
+      tab1 = pParse->nTab++;
+      tab2 = pParse->nTab++;
+      assert( p->pOrderBy==0 );
+
+      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
+      assert( p->addrOpenEphm[0] == -1 );
+      p->addrOpenEphm[0] = addr;
+      p->pRightmost->selFlags |= SF_UsesEphemeral;
+      assert( p->pEList );
+
+      /* Code the SELECTs to our left into temporary table "tab1".
+      */
+      sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
+      rc = sqlite3Select(pParse, pPrior, &intersectdest);
+      if( rc ){
+        goto multi_select_end;
+      }
+
+      /* Code the current SELECT into temporary table "tab2"
+      */
+      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
+      assert( p->addrOpenEphm[1] == -1 );
+      p->addrOpenEphm[1] = addr;
+      p->pPrior = 0;
+      pLimit = p->pLimit;
+      p->pLimit = 0;
+      pOffset = p->pOffset;
+      p->pOffset = 0;
+      intersectdest.iParm = tab2;
+      rc = sqlite3Select(pParse, p, &intersectdest);
+      pDelete = p->pPrior;
+      p->pPrior = pPrior;
+      sqlite3ExprDelete(db, p->pLimit);
+      p->pLimit = pLimit;
+      p->pOffset = pOffset;
+      if( rc ){
+        goto multi_select_end;
+      }
+
+      /* Generate code to take the intersection of the two temporary
+      ** tables.
+      */
+      assert( p->pEList );
+      if( dest.eDest==SRT_Output ){
+        Select *pFirst = p;
+        while( pFirst->pPrior ) pFirst = pFirst->pPrior;
+        generateColumnNames(pParse, 0, pFirst->pEList);
+      }
+      iBreak = sqlite3VdbeMakeLabel(v);
+      iCont = sqlite3VdbeMakeLabel(v);
+      computeLimitRegisters(pParse, p, iBreak);
+      sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
+      r1 = sqlite3GetTempReg(pParse);
+      iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
+      sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
+      sqlite3ReleaseTempReg(pParse, r1);
+      selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
+                      0, -1, &dest, iCont, iBreak);
+      sqlite3VdbeResolveLabel(v, iCont);
+      sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
+      sqlite3VdbeResolveLabel(v, iBreak);
+      sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
+      sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
+      break;
+    }
+  }
+
+  /* Compute collating sequences used by 
+  ** temporary tables needed to implement the compound select.
+  ** Attach the KeyInfo structure to all temporary tables.
+  **
+  ** This section is run by the right-most SELECT statement only.
+  ** SELECT statements to the left always skip this part.  The right-most
+  ** SELECT might also skip this part if it has no ORDER BY clause and
+  ** no temp tables are required.
+  */
+  if( p->selFlags & SF_UsesEphemeral ){
+    int i;                        /* Loop counter */
+    KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
+    Select *pLoop;                /* For looping through SELECT statements */
+    CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
+    int nCol;                     /* Number of columns in result set */
+
+    assert( p->pRightmost==p );
+    nCol = p->pEList->nExpr;
+    pKeyInfo = sqlite3DbMallocZero(db,
+                       sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
+    if( !pKeyInfo ){
+      rc = SQLITE_NOMEM;
+      goto multi_select_end;
+    }
+
+    pKeyInfo->enc = ENC(db);
+    pKeyInfo->nField = nCol;
+
+    for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
+      *apColl = multiSelectCollSeq(pParse, p, i);
+      if( 0==*apColl ){
+        *apColl = db->pDfltColl;
+      }
+    }
+
+    for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
+      for(i=0; i<2; i++){
+        int addr = pLoop->addrOpenEphm[i];
+        if( addr<0 ){
+          /* If [0] is unused then [1] is also unused.  So we can
+          ** always safely abort as soon as the first unused slot is found */
+          assert( pLoop->addrOpenEphm[1]<0 );
+          break;
+        }
+        sqlite3VdbeChangeP2(v, addr, nCol);
+        sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
+        pLoop->addrOpenEphm[i] = -1;
+      }
+    }
+    sqlite3DbFree(db, pKeyInfo);
+  }
+
+multi_select_end:
+  pDest->iMem = dest.iMem;
+  pDest->nMem = dest.nMem;
+  sqlite3SelectDelete(db, pDelete);
+  return rc;
+}
+#endif /* SQLITE_OMIT_COMPOUND_SELECT */
+
+/*
+** Code an output subroutine for a coroutine implementation of a
+** SELECT statment.
+**
+** The data to be output is contained in pIn->iMem.  There are
+** pIn->nMem columns to be output.  pDest is where the output should
+** be sent.
+**
+** regReturn is the number of the register holding the subroutine
+** return address.
+**
+** If regPrev>0 then it is a the first register in a vector that
+** records the previous output.  mem[regPrev] is a flag that is false
+** if there has been no previous output.  If regPrev>0 then code is
+** generated to suppress duplicates.  pKeyInfo is used for comparing
+** keys.
+**
+** If the LIMIT found in p->iLimit is reached, jump immediately to
+** iBreak.
+*/
+static int generateOutputSubroutine(
+  Parse *pParse,          /* Parsing context */
+  Select *p,              /* The SELECT statement */
+  SelectDest *pIn,        /* Coroutine supplying data */
+  SelectDest *pDest,      /* Where to send the data */
+  int regReturn,          /* The return address register */
+  int regPrev,            /* Previous result register.  No uniqueness if 0 */
+  KeyInfo *pKeyInfo,      /* For comparing with previous entry */
+  int p4type,             /* The p4 type for pKeyInfo */
+  int iBreak              /* Jump here if we hit the LIMIT */
+){
+  Vdbe *v = pParse->pVdbe;
+  int iContinue;
+  int addr;
+
+  addr = sqlite3VdbeCurrentAddr(v);
+  iContinue = sqlite3VdbeMakeLabel(v);
+
+  /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 
+  */
+  if( regPrev ){
+    int j1, j2;
+    j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
+    j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
+                              (char*)pKeyInfo, p4type);
+    sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
+    sqlite3VdbeJumpHere(v, j1);
+    sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
+    sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
+  }
+  if( pParse->db->mallocFailed ) return 0;
+
+  /* Suppress the the first OFFSET entries if there is an OFFSET clause
+  */
+  codeOffset(v, p, iContinue);
+
+  switch( pDest->eDest ){
+    /* Store the result as data using a unique key.
+    */
+    case SRT_Table:
+    case SRT_EphemTab: {
+      int r1 = sqlite3GetTempReg(pParse);
+      int r2 = sqlite3GetTempReg(pParse);
+      sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
+      sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
+      sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
+      sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
+      sqlite3ReleaseTempReg(pParse, r2);
+      sqlite3ReleaseTempReg(pParse, r1);
+      break;
+    }
+
+#ifndef SQLITE_OMIT_SUBQUERY
+    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
+    ** then there should be a single item on the stack.  Write this
+    ** item into the set table with bogus data.
+    */
+    case SRT_Set: {
+      int r1;
+      assert( pIn->nMem==1 );
+      p->affinity = 
+         sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
+      r1 = sqlite3GetTempReg(pParse);
+      sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
+      sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
+      sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
+      sqlite3ReleaseTempReg(pParse, r1);
+      break;
+    }
+
+#if 0  /* Never occurs on an ORDER BY query */
+    /* If any row exist in the result set, record that fact and abort.
+    */
+    case SRT_Exists: {
+      sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
+      /* The LIMIT clause will terminate the loop for us */
+      break;
+    }
+#endif
+
+    /* If this is a scalar select that is part of an expression, then
+    ** store the results in the appropriate memory cell and break out
+    ** of the scan loop.
+    */
+    case SRT_Mem: {
+      assert( pIn->nMem==1 );
+      sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
+      /* The LIMIT clause will jump out of the loop for us */
+      break;
+    }
+#endif /* #ifndef SQLITE_OMIT_SUBQUERY */
+
+    /* The results are stored in a sequence of registers
+    ** starting at pDest->iMem.  Then the co-routine yields.
+    */
+    case SRT_Coroutine: {
+      if( pDest->iMem==0 ){
+        pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
+        pDest->nMem = pIn->nMem;
+      }
+      sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
+      sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
+      break;
+    }
+
+    /* Results are stored in a sequence of registers.  Then the
+    ** OP_ResultRow opcode is used to cause sqlite3_step() to return
+    ** the next row of result.
+    */
+    case SRT_Output: {
+      sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
+      sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
+      break;
+    }
+
+#if !defined(SQLITE_OMIT_TRIGGER)
+    /* Discard the results.  This is used for SELECT statements inside
+    ** the body of a TRIGGER.  The purpose of such selects is to call
+    ** user-defined functions that have side effects.  We do not care
+    ** about the actual results of the select.
+    */
+    default: {
+      break;
+    }
+#endif
+  }
+
+  /* Jump to the end of the loop if the LIMIT is reached.
+  */
+  if( p->iLimit ){
+    sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
+    sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
+  }
+
+  /* Generate the subroutine return
+  */
+  sqlite3VdbeResolveLabel(v, iContinue);
+  sqlite3VdbeAddOp1(v, OP_Return, regReturn);
+
+  return addr;
+}
+
+/*
+** Alternative compound select code generator for cases when there
+** is an ORDER BY clause.
+**
+** We assume a query of the following form:
+**
+**      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
+**
+** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
+** is to code both <selectA> and <selectB> with the ORDER BY clause as
+** co-routines.  Then run the co-routines in parallel and merge the results
+** into the output.  In addition to the two coroutines (called selectA and
+** selectB) there are 7 subroutines:
+**
+**    outA:    Move the output of the selectA coroutine into the output
+**             of the compound query.
+**
+**    outB:    Move the output of the selectB coroutine into the output
+**             of the compound query.  (Only generated for UNION and
+**             UNION ALL.  EXCEPT and INSERTSECT never output a row that
+**             appears only in B.)
+**
+**    AltB:    Called when there is data from both coroutines and A<B.
+**
+**    AeqB:    Called when there is data from both coroutines and A==B.
+**
+**    AgtB:    Called when there is data from both coroutines and A>B.
+**
+**    EofA:    Called when data is exhausted from selectA.
+**
+**    EofB:    Called when data is exhausted from selectB.
+**
+** The implementation of the latter five subroutines depend on which 
+** <operator> is used:
+**
+**
+**             UNION ALL         UNION            EXCEPT          INTERSECT
+**          -------------  -----------------  --------------  -----------------
+**   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
+**
+**   AeqB:   outA, nextA         nextA             nextA         outA, nextA
+**
+**   AgtB:   outB, nextB      outB, nextB          nextB            nextB
+**
+**   EofA:   outB, nextB      outB, nextB          halt             halt
+**
+**   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
+**
+** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
+** causes an immediate jump to EofA and an EOF on B following nextB causes
+** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
+** following nextX causes a jump to the end of the select processing.
+**
+** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
+** within the output subroutine.  The regPrev register set holds the previously
+** output value.  A comparison is made against this value and the output
+** is skipped if the next results would be the same as the previous.
+**
+** The implementation plan is to implement the two coroutines and seven
+** subroutines first, then put the control logic at the bottom.  Like this:
+**
+**          goto Init
+**     coA: coroutine for left query (A)
+**     coB: coroutine for right query (B)
+**    outA: output one row of A
+**    outB: output one row of B (UNION and UNION ALL only)
+**    EofA: ...
+**    EofB: ...
+**    AltB: ...
+**    AeqB: ...
+**    AgtB: ...
+**    Init: initialize coroutine registers
+**          yield coA
+**          if eof(A) goto EofA
+**          yield coB
+**          if eof(B) goto EofB
+**    Cmpr: Compare A, B
+**          Jump AltB, AeqB, AgtB
+**     End: ...
+**
+** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
+** actually called using Gosub and they do not Return.  EofA and EofB loop
+** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
+** and AgtB jump to either L2 or to one of EofA or EofB.
+*/
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+static int multiSelectOrderBy(
+  Parse *pParse,        /* Parsing context */
+  Select *p,            /* The right-most of SELECTs to be coded */
+  SelectDest *pDest     /* What to do with query results */
+){
+  int i, j;             /* Loop counters */
+  Select *pPrior;       /* Another SELECT immediately to our left */
+  Vdbe *v;              /* Generate code to this VDBE */
+  SelectDest destA;     /* Destination for coroutine A */
+  SelectDest destB;     /* Destination for coroutine B */
+  int regAddrA;         /* Address register for select-A coroutine */
+  int regEofA;          /* Flag to indicate when select-A is complete */
+  int regAddrB;         /* Address register for select-B coroutine */
+  int regEofB;          /* Flag to indicate when select-B is complete */
+  int addrSelectA;      /* Address of the select-A coroutine */
+  int addrSelectB;      /* Address of the select-B coroutine */
+  int regOutA;          /* Address register for the output-A subroutine */
+  int regOutB;          /* Address register for the output-B subroutine */
+  int addrOutA;         /* Address of the output-A subroutine */
+  int addrOutB;         /* Address of the output-B subroutine */
+  int addrEofA;         /* Address of the select-A-exhausted subroutine */
+  int addrEofB;         /* Address of the select-B-exhausted subroutine */
+  int addrAltB;         /* Address of the A<B subroutine */
+  int addrAeqB;         /* Address of the A==B subroutine */
+  int addrAgtB;         /* Address of the A>B subroutine */
+  int regLimitA;        /* Limit register for select-A */
+  int regLimitB;        /* Limit register for select-A */
+  int regPrev;          /* A range of registers to hold previous output */
+  int savedLimit;       /* Saved value of p->iLimit */
+  int savedOffset;      /* Saved value of p->iOffset */
+  int labelCmpr;        /* Label for the start of the merge algorithm */
+  int labelEnd;         /* Label for the end of the overall SELECT stmt */
+  int j1;               /* Jump instructions that get retargetted */
+  int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
+  KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
+  KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
+  sqlite3 *db;          /* Database connection */
+  ExprList *pOrderBy;   /* The ORDER BY clause */
+  int nOrderBy;         /* Number of terms in the ORDER BY clause */
+  int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
+
+  assert( p->pOrderBy!=0 );
+  assert( pKeyDup==0 ); /* "Managed" code needs this.  Ticket #3382. */
+  db = pParse->db;
+  v = pParse->pVdbe;
+  if( v==0 ) return SQLITE_NOMEM;
+  labelEnd = sqlite3VdbeMakeLabel(v);
+  labelCmpr = sqlite3VdbeMakeLabel(v);
+
+
+  /* Patch up the ORDER BY clause
+  */
+  op = p->op;  
+  pPrior = p->pPrior;
+  assert( pPrior->pOrderBy==0 );
+  pOrderBy = p->pOrderBy;
+  assert( pOrderBy );
+  nOrderBy = pOrderBy->nExpr;
+
+  /* For operators other than UNION ALL we have to make sure that
+  ** the ORDER BY clause covers every term of the result set.  Add
+  ** terms to the ORDER BY clause as necessary.
+  */
+  if( op!=TK_ALL ){
+    for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
+      struct ExprList_item *pItem;
+      for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
+        assert( pItem->iCol>0 );
+        if( pItem->iCol==i ) break;
+      }
+      if( j==nOrderBy ){
+        Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0);
+        if( pNew==0 ) return SQLITE_NOMEM;
+        pNew->flags |= EP_IntValue;
+        pNew->iTable = i;
+        pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0);
+        pOrderBy->a[nOrderBy++].iCol = i;
+      }
+    }
+  }
+
+  /* Compute the comparison permutation and keyinfo that is used with
+  ** the permutation in order to comparisons to determine if the next
+  ** row of results comes from selectA or selectB.  Also add explicit
+  ** collations to the ORDER BY clause terms so that when the subqueries
+  ** to the right and the left are evaluated, they use the correct
+  ** collation.
+  */
+  aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
+  if( aPermute ){
+    struct ExprList_item *pItem;
+    for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){
+      assert( pItem->iCol>0  && pItem->iCol<=p->pEList->nExpr );
+      aPermute[i] = pItem->iCol - 1;
+    }
+    pKeyMerge =
+      sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
+    if( pKeyMerge ){
+      pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
+      pKeyMerge->nField = nOrderBy;
+      pKeyMerge->enc = ENC(db);
+      for(i=0; i<nOrderBy; i++){
+        CollSeq *pColl;
+        Expr *pTerm = pOrderBy->a[i].pExpr;
+        if( pTerm->flags & EP_ExpCollate ){
+          pColl = pTerm->pColl;
+        }else{
+          pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
+          pTerm->flags |= EP_ExpCollate;
+          pTerm->pColl = pColl;
+        }
+        pKeyMerge->aColl[i] = pColl;
+        pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
+      }
+    }
+  }else{
+    pKeyMerge = 0;
+  }
+
+  /* Reattach the ORDER BY clause to the query.
+  */
+  p->pOrderBy = pOrderBy;
+  pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy);
+
+  /* Allocate a range of temporary registers and the KeyInfo needed
+  ** for the logic that removes duplicate result rows when the
+  ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
+  */
+  if( op==TK_ALL ){
+    regPrev = 0;
+  }else{
+    int nExpr = p->pEList->nExpr;
+    assert( nOrderBy>=nExpr );
+    regPrev = sqlite3GetTempRange(pParse, nExpr+1);
+    sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
+    pKeyDup = sqlite3DbMallocZero(db,
+                  sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
+    if( pKeyDup ){
+      pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
+      pKeyDup->nField = nExpr;
+      pKeyDup->enc = ENC(db);
+      for(i=0; i<nExpr; i++){
+        pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
+        pKeyDup->aSortOrder[i] = 0;
+      }
+    }
+  }
+ 
+  /* Separate the left and the right query from one another
+  */
+  p->pPrior = 0;
+  pPrior->pRightmost = 0;
+  sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
+  if( pPrior->pPrior==0 ){
+    sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
+  }
+
+  /* Compute the limit registers */
+  computeLimitRegisters(pParse, p, labelEnd);
+  if( p->iLimit && op==TK_ALL ){
+    regLimitA = ++pParse->nMem;
+    regLimitB = ++pParse->nMem;
+    sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
+                                  regLimitA);
+    sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
+  }else{
+    regLimitA = regLimitB = 0;
+  }
+  sqlite3ExprDelete(db, p->pLimit);
+  p->pLimit = 0;
+  sqlite3ExprDelete(db, p->pOffset);
+  p->pOffset = 0;
+
+  regAddrA = ++pParse->nMem;
+  regEofA = ++pParse->nMem;
+  regAddrB = ++pParse->nMem;
+  regEofB = ++pParse->nMem;
+  regOutA = ++pParse->nMem;
+  regOutB = ++pParse->nMem;
+  sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
+  sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
+
+  /* Jump past the various subroutines and coroutines to the main
+  ** merge loop
+  */
+  j1 = sqlite3VdbeAddOp0(v, OP_Goto);
+  addrSelectA = sqlite3VdbeCurrentAddr(v);
+
+
+  /* Generate a coroutine to evaluate the SELECT statement to the
+  ** left of the compound operator - the "A" select.
+  */
+  VdbeNoopComment((v, "Begin coroutine for left SELECT"));
+  pPrior->iLimit = regLimitA;
+  sqlite3Select(pParse, pPrior, &destA);
+  sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
+  sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+  VdbeNoopComment((v, "End coroutine for left SELECT"));
+
+  /* Generate a coroutine to evaluate the SELECT statement on 
+  ** the right - the "B" select
+  */
+  addrSelectB = sqlite3VdbeCurrentAddr(v);
+  VdbeNoopComment((v, "Begin coroutine for right SELECT"));
+  savedLimit = p->iLimit;
+  savedOffset = p->iOffset;
+  p->iLimit = regLimitB;
+  p->iOffset = 0;  
+  sqlite3Select(pParse, p, &destB);
+  p->iLimit = savedLimit;
+  p->iOffset = savedOffset;
+  sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
+  sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
+  VdbeNoopComment((v, "End coroutine for right SELECT"));
+
+  /* Generate a subroutine that outputs the current row of the A
+  ** select as the next output row of the compound select.
+  */
+  VdbeNoopComment((v, "Output routine for A"));
+  addrOutA = generateOutputSubroutine(pParse,
+                 p, &destA, pDest, regOutA,
+                 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
+  
+  /* Generate a subroutine that outputs the current row of the B
+  ** select as the next output row of the compound select.
+  */
+  if( op==TK_ALL || op==TK_UNION ){
+    VdbeNoopComment((v, "Output routine for B"));
+    addrOutB = generateOutputSubroutine(pParse,
+                 p, &destB, pDest, regOutB,
+                 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
+  }
+
+  /* Generate a subroutine to run when the results from select A
+  ** are exhausted and only data in select B remains.
+  */
+  VdbeNoopComment((v, "eof-A subroutine"));
+  if( op==TK_EXCEPT || op==TK_INTERSECT ){
+    addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
+  }else{  
+    addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
+    sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
+    sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
+    sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
+  }
+
+  /* Generate a subroutine to run when the results from select B
+  ** are exhausted and only data in select A remains.
+  */
+  if( op==TK_INTERSECT ){
+    addrEofB = addrEofA;
+  }else{  
+    VdbeNoopComment((v, "eof-B subroutine"));
+    addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
+    sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
+    sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+    sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
+  }
+
+  /* Generate code to handle the case of A<B
+  */
+  VdbeNoopComment((v, "A-lt-B subroutine"));
+  addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
+  sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+  sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
+  sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
+
+  /* Generate code to handle the case of A==B
+  */
+  if( op==TK_ALL ){
+    addrAeqB = addrAltB;
+  }else if( op==TK_INTERSECT ){
+    addrAeqB = addrAltB;
+    addrAltB++;
+  }else{
+    VdbeNoopComment((v, "A-eq-B subroutine"));
+    addrAeqB =
+    sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
+    sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
+    sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
+  }
+
+  /* Generate code to handle the case of A>B
+  */
+  VdbeNoopComment((v, "A-gt-B subroutine"));
+  addrAgtB = sqlite3VdbeCurrentAddr(v);
+  if( op==TK_ALL || op==TK_UNION ){
+    sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
+  }
+  sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
+  sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
+  sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
+
+  /* This code runs once to initialize everything.
+  */
+  sqlite3VdbeJumpHere(v, j1);
+  sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
+  sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
+  sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
+  sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
+  sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
+  sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
+
+  /* Implement the main merge loop
+  */
+  sqlite3VdbeResolveLabel(v, labelCmpr);
+  sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
+  sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
+                         (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
+  sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);
+
+  /* Release temporary registers
+  */
+  if( regPrev ){
+    sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
+  }
+
+  /* Jump to the this point in order to terminate the query.
+  */
+  sqlite3VdbeResolveLabel(v, labelEnd);
+
+  /* Set the number of output columns
+  */
+  if( pDest->eDest==SRT_Output ){
+    Select *pFirst = pPrior;
+    while( pFirst->pPrior ) pFirst = pFirst->pPrior;
+    generateColumnNames(pParse, 0, pFirst->pEList);
+  }
+
+  /* Reassembly the compound query so that it will be freed correctly
+  ** by the calling function */
+  if( p->pPrior ){
+    sqlite3SelectDelete(db, p->pPrior);
+  }
+  p->pPrior = pPrior;
+
+  /*** TBD:  Insert subroutine calls to close cursors on incomplete
+  **** subqueries ****/
+  return SQLITE_OK;
+}
+#endif
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/* Forward Declarations */
+static void substExprList(sqlite3*, ExprList*, int, ExprList*);
+static void substSelect(sqlite3*, Select *, int, ExprList *);
+
+/*
+** Scan through the expression pExpr.  Replace every reference to
+** a column in table number iTable with a copy of the iColumn-th
+** entry in pEList.  (But leave references to the ROWID column 
+** unchanged.)
+**
+** This routine is part of the flattening procedure.  A subquery
+** whose result set is defined by pEList appears as entry in the
+** FROM clause of a SELECT such that the VDBE cursor assigned to that
+** FORM clause entry is iTable.  This routine make the necessary 
+** changes to pExpr so that it refers directly to the source table
+** of the subquery rather the result set of the subquery.
+*/
+static void substExpr(
+  sqlite3 *db,        /* Report malloc errors to this connection */
+  Expr *pExpr,        /* Expr in which substitution occurs */
+  int iTable,         /* Table to be substituted */
+  ExprList *pEList    /* Substitute expressions */
+){
+  if( pExpr==0 ) return;
+  if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
+    if( pExpr->iColumn<0 ){
+      pExpr->op = TK_NULL;
+    }else{
+      Expr *pNew;
+      assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
+      assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
+      pNew = pEList->a[pExpr->iColumn].pExpr;
+      assert( pNew!=0 );
+      pExpr->op = pNew->op;
+      assert( pExpr->pLeft==0 );
+      pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
+      assert( pExpr->pRight==0 );
+      pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
+      assert( pExpr->pList==0 );
+      pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
+      pExpr->iTable = pNew->iTable;
+      pExpr->pTab = pNew->pTab;
+      pExpr->iColumn = pNew->iColumn;
+      pExpr->iAgg = pNew->iAgg;
+      sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
+      sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
+      pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
+      pExpr->flags = pNew->flags;
+    }
+  }else{
+    substExpr(db, pExpr->pLeft, iTable, pEList);
+    substExpr(db, pExpr->pRight, iTable, pEList);
+    substSelect(db, pExpr->pSelect, iTable, pEList);
+    substExprList(db, pExpr->pList, iTable, pEList);
+  }
+}
+static void substExprList(
+  sqlite3 *db,         /* Report malloc errors here */
+  ExprList *pList,     /* List to scan and in which to make substitutes */
+  int iTable,          /* Table to be substituted */
+  ExprList *pEList     /* Substitute values */
+){
+  int i;
+  if( pList==0 ) return;
+  for(i=0; i<pList->nExpr; i++){
+    substExpr(db, pList->a[i].pExpr, iTable, pEList);
+  }
+}
+static void substSelect(
+  sqlite3 *db,         /* Report malloc errors here */
+  Select *p,           /* SELECT statement in which to make substitutions */
+  int iTable,          /* Table to be replaced */
+  ExprList *pEList     /* Substitute values */
+){
+  SrcList *pSrc;
+  struct SrcList_item *pItem;
+  int i;
+  if( !p ) return;
+  substExprList(db, p->pEList, iTable, pEList);
+  substExprList(db, p->pGroupBy, iTable, pEList);
+  substExprList(db, p->pOrderBy, iTable, pEList);
+  substExpr(db, p->pHaving, iTable, pEList);
+  substExpr(db, p->pWhere, iTable, pEList);
+  substSelect(db, p->pPrior, iTable, pEList);
+  pSrc = p->pSrc;
+  if( pSrc ){
+    for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
+      substSelect(db, pItem->pSelect, iTable, pEList);
+    }
+  }
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+/*
+** This routine attempts to flatten subqueries in order to speed
+** execution.  It returns 1 if it makes changes and 0 if no flattening
+** occurs.
+**
+** To understand the concept of flattening, consider the following
+** query:
+**
+**     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
+**
+** The default way of implementing this query is to execute the
+** subquery first and store the results in a temporary table, then
+** run the outer query on that temporary table.  This requires two
+** passes over the data.  Furthermore, because the temporary table
+** has no indices, the WHERE clause on the outer query cannot be
+** optimized.
+**
+** This routine attempts to rewrite queries such as the above into
+** a single flat select, like this:
+**
+**     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
+**
+** The code generated for this simpification gives the same result
+** but only has to scan the data once.  And because indices might 
+** exist on the table t1, a complete scan of the data might be
+** avoided.
+**
+** Flattening is only attempted if all of the following are true:
+**
+**   (1)  The subquery and the outer query do not both use aggregates.
+**
+**   (2)  The subquery is not an aggregate or the outer query is not a join.
+**
+**   (3)  The subquery is not the right operand of a left outer join
+**        (Originally ticket #306.  Strenghtened by ticket #3300)
+**
+**   (4)  The subquery is not DISTINCT or the outer query is not a join.
+**
+**   (5)  The subquery is not DISTINCT or the outer query does not use
+**        aggregates.
+**
+**   (6)  The subquery does not use aggregates or the outer query is not
+**        DISTINCT.
+**
+**   (7)  The subquery has a FROM clause.
+**
+**   (8)  The subquery does not use LIMIT or the outer query is not a join.
+**
+**   (9)  The subquery does not use LIMIT or the outer query does not use
+**        aggregates.
+**
+**  (10)  The subquery does not use aggregates or the outer query does not
+**        use LIMIT.
+**
+**  (11)  The subquery and the outer query do not both have ORDER BY clauses.
+**
+**  (12)  Not implemented.  Subsumed into restriction (3).  Was previously
+**        a separate restriction deriving from ticket #350.
+**
+**  (13)  The subquery and outer query do not both use LIMIT
+**
+**  (14)  The subquery does not use OFFSET
+**
+**  (15)  The outer query is not part of a compound select or the
+**        subquery does not have both an ORDER BY and a LIMIT clause.
+**        (See ticket #2339)
+**
+**  (16)  The outer query is not an aggregate or the subquery does
+**        not contain ORDER BY.  (Ticket #2942)  This used to not matter
+**        until we introduced the group_concat() function.  
+**
+**  (17)  The sub-query is not a compound select, or it is a UNION ALL 
+**        compound clause made up entirely of non-aggregate queries, and 
+**        the parent query:
+**
+**          * is not itself part of a compound select,
+**          * is not an aggregate or DISTINCT query, and
+**          * has no other tables or sub-selects in the FROM clause.
+**
+**        The parent and sub-query may contain WHERE clauses. Subject to
+**        rules (11), (13) and (14), they may also contain ORDER BY,
+**        LIMIT and OFFSET clauses.
+**
+**  (18)  If the sub-query is a compound select, then all terms of the
+**        ORDER by clause of the parent must be simple references to 
+**        columns of the sub-query.
+**
+**  (19)  The subquery does not use LIMIT or the outer query does not
+**        have a WHERE clause.
+**
+** In this routine, the "p" parameter is a pointer to the outer query.
+** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
+** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
+**
+** If flattening is not attempted, this routine is a no-op and returns 0.
+** If flattening is attempted this routine returns 1.
+**
+** All of the expression analysis must occur on both the outer query and
+** the subquery before this routine runs.
+*/
+static int flattenSubquery(
+  Parse *pParse,       /* Parsing context */
+  Select *p,           /* The parent or outer SELECT statement */
+  int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
+  int isAgg,           /* True if outer SELECT uses aggregate functions */
+  int subqueryIsAgg    /* True if the subquery uses aggregate functions */
+){
+  const char *zSavedAuthContext = pParse->zAuthContext;
+  Select *pParent;
+  Select *pSub;       /* The inner query or "subquery" */
+  Select *pSub1;      /* Pointer to the rightmost select in sub-query */
+  SrcList *pSrc;      /* The FROM clause of the outer query */
+  SrcList *pSubSrc;   /* The FROM clause of the subquery */
+  ExprList *pList;    /* The result set of the outer query */
+  int iParent;        /* VDBE cursor number of the pSub result set temp table */
+  int i;              /* Loop counter */
+  Expr *pWhere;                    /* The WHERE clause */
+  struct SrcList_item *pSubitem;   /* The subquery */
+  sqlite3 *db = pParse->db;
+
+  /* Check to see if flattening is permitted.  Return 0 if not.
+  */
+  if( p==0 ) return 0;
+  pSrc = p->pSrc;
+  assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
+  pSubitem = &pSrc->a[iFrom];
+  iParent = pSubitem->iCursor;
+  pSub = pSubitem->pSelect;
+  assert( pSub!=0 );
+  if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
+  if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
+  pSubSrc = pSub->pSrc;
+  assert( pSubSrc );
+  /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
+  ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
+  ** because they could be computed at compile-time.  But when LIMIT and OFFSET
+  ** became arbitrary expressions, we were forced to add restrictions (13)
+  ** and (14). */
+  if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
+  if( pSub->pOffset ) return 0;                          /* Restriction (14) */
+  if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
+    return 0;                                            /* Restriction (15) */
+  }
+  if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
+  if( ((pSub->selFlags & SF_Distinct)!=0 || pSub->pLimit) 
+         && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
+     return 0;       
+  }
+  if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){
+     return 0;         /* Restriction (6)  */
+  }
+  if( p->pOrderBy && pSub->pOrderBy ){
+     return 0;                                           /* Restriction (11) */
+  }
+  if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */
+  if( pSub->pLimit && p->pWhere ) return 0;              /* Restriction (19) */
+
+  /* OBSOLETE COMMENT 1:
+  ** Restriction 3:  If the subquery is a join, make sure the subquery is 
+  ** not used as the right operand of an outer join.  Examples of why this
+  ** is not allowed:
+  **
+  **         t1 LEFT OUTER JOIN (t2 JOIN t3)
+  **
+  ** If we flatten the above, we would get
+  **
+  **         (t1 LEFT OUTER JOIN t2) JOIN t3
+  **
+  ** which is not at all the same thing.
+  **
+  ** OBSOLETE COMMENT 2:
+  ** Restriction 12:  If the subquery is the right operand of a left outer
+  ** join, make sure the subquery has no WHERE clause.
+  ** An examples of why this is not allowed:
+  **
+  **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
+  **
+  ** If we flatten the above, we would get
+  **
+  **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
+  **
+  ** But the t2.x>0 test will always fail on a NULL row of t2, which
+  ** effectively converts the OUTER JOIN into an INNER JOIN.
+  **
+  ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
+  ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
+  ** is fraught with danger.  Best to avoid the whole thing.  If the
+  ** subquery is the right term of a LEFT JOIN, then do not flatten.
+  */
+  if( (pSubitem->jointype & JT_OUTER)!=0 ){
+    return 0;
+  }
+
+  /* Restriction 17: If the sub-query is a compound SELECT, then it must
+  ** use only the UNION ALL operator. And none of the simple select queries
+  ** that make up the compound SELECT are allowed to be aggregate or distinct
+  ** queries.
+  */
+  if( pSub->pPrior ){
+    if( p->pPrior || isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
+      return 0;
+    }
+    for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
+      if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
+       || (pSub1->pPrior && pSub1->op!=TK_ALL) 
+       || !pSub1->pSrc || pSub1->pSrc->nSrc!=1
+      ){
+        return 0;
+      }
+    }
+
+    /* Restriction 18. */
+    if( p->pOrderBy ){
+      int ii;
+      for(ii=0; ii<p->pOrderBy->nExpr; ii++){
+        if( p->pOrderBy->a[ii].iCol==0 ) return 0;
+      }
+    }
+  }
+
+  /***** If we reach this point, flattening is permitted. *****/
+
+  /* Authorize the subquery */
+  pParse->zAuthContext = pSubitem->zName;
+  sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
+  pParse->zAuthContext = zSavedAuthContext;
+
+  /* If the sub-query is a compound SELECT statement, then (by restrictions
+  ** 17 and 18 above) it must be a UNION ALL and the parent query must 
+  ** be of the form:
+  **
+  **     SELECT <expr-list> FROM (<sub-query>) <where-clause> 
+  **
+  ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
+  ** creates N copies of the parent query without any ORDER BY, LIMIT or 
+  ** OFFSET clauses and joins them to the left-hand-side of the original
+  ** using UNION ALL operators. In this case N is the number of simple
+  ** select statements in the compound sub-query.
+  */
+  for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
+    Select *pNew;
+    ExprList *pOrderBy = p->pOrderBy;
+    Expr *pLimit = p->pLimit;
+    Expr *pOffset = p->pOffset;
+    Select *pPrior = p->pPrior;
+    p->pOrderBy = 0;
+    p->pSrc = 0;
+    p->pPrior = 0;
+    p->pLimit = 0;
+    pNew = sqlite3SelectDup(db, p);
+    pNew->pPrior = pPrior;
+    p->pPrior = pNew;
+    p->pOrderBy = pOrderBy;
+    p->op = TK_ALL;
+    p->pSrc = pSrc;
+    p->pLimit = pLimit;
+    p->pOffset = pOffset;
+    p->pRightmost = 0;
+    pNew->pRightmost = 0;
+  }
+
+  /* Begin flattening the iFrom-th entry of the FROM clause 
+  ** in the outer query.
+  */
+  pSub = pSub1 = pSubitem->pSelect;
+  for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
+    int nSubSrc = pSubSrc->nSrc;
+    int jointype = 0;
+    pSubSrc = pSub->pSrc;
+    pSrc = pParent->pSrc;
+
+    /* Move all of the FROM elements of the subquery into the
+    ** the FROM clause of the outer query.  Before doing this, remember
+    ** the cursor number for the original outer query FROM element in
+    ** iParent.  The iParent cursor will never be used.  Subsequent code
+    ** will scan expressions looking for iParent references and replace
+    ** those references with expressions that resolve to the subquery FROM
+    ** elements we are now copying in.
+    */
+    if( pSrc ){
+      Table *pTabToDel;
+      pSubitem = &pSrc->a[iFrom];
+      nSubSrc = pSubSrc->nSrc;
+      jointype = pSubitem->jointype;
+      sqlite3DbFree(db, pSubitem->zDatabase);
+      sqlite3DbFree(db, pSubitem->zName);
+      sqlite3DbFree(db, pSubitem->zAlias);
+      pSubitem->zDatabase = 0;
+      pSubitem->zName = 0;
+      pSubitem->zAlias = 0;
+
+      /* If the FROM element is a subquery, defer deleting the Table
+      ** object associated with that subquery until code generation is
+      ** complete, since there may still exist Expr.pTab entires that
+      ** refer to the subquery even after flattening.  Ticket #3346.
+      */
+      if( (pTabToDel = pSubitem->pTab)!=0 ){
+        if( pTabToDel->nRef==1 ){
+          pTabToDel->pNextZombie = pParse->pZombieTab;
+          pParse->pZombieTab = pTabToDel;
+        }else{
+          pTabToDel->nRef--;
+        }
+      }
+      pSubitem->pTab = 0;
+    }
+    if( nSubSrc!=1 || !pSrc ){
+      int extra = nSubSrc - 1;
+      for(i=(pSrc?1:0); i<nSubSrc; i++){
+        pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
+        if( pSrc==0 ){
+          pParent->pSrc = 0;
+          return 1;
+        }
+      }
+      pParent->pSrc = pSrc;
+      for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
+        pSrc->a[i] = pSrc->a[i-extra];
+      }
+    }
+    for(i=0; i<nSubSrc; i++){
+      pSrc->a[i+iFrom] = pSubSrc->a[i];
+      memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
+    }
+    pSrc->a[iFrom].jointype = jointype;
+  
+    /* Now begin substituting subquery result set expressions for 
+    ** references to the iParent in the outer query.
+    ** 
+    ** Example:
+    **
+    **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
+    **   \                     \_____________ subquery __________/          /
+    **    \_____________________ outer query ______________________________/
+    **
+    ** We look at every expression in the outer query and every place we see
+    ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
+    */
+    pList = pParent->pEList;
+    for(i=0; i<pList->nExpr; i++){
+      Expr *pExpr;
+      if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
+        pList->a[i].zName = 
+               sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
+      }
+    }
+    substExprList(db, pParent->pEList, iParent, pSub->pEList);
+    if( isAgg ){
+      substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
+      substExpr(db, pParent->pHaving, iParent, pSub->pEList);
+    }
+    if( pSub->pOrderBy ){
+      assert( pParent->pOrderBy==0 );
+      pParent->pOrderBy = pSub->pOrderBy;
+      pSub->pOrderBy = 0;
+    }else if( pParent->pOrderBy ){
+      substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
+    }
+    if( pSub->pWhere ){
+      pWhere = sqlite3ExprDup(db, pSub->pWhere);
+    }else{
+      pWhere = 0;
+    }
+    if( subqueryIsAgg ){
+      assert( pParent->pHaving==0 );
+      pParent->pHaving = pParent->pWhere;
+      pParent->pWhere = pWhere;
+      substExpr(db, pParent->pHaving, iParent, pSub->pEList);
+      pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 
+                                  sqlite3ExprDup(db, pSub->pHaving));
+      assert( pParent->pGroupBy==0 );
+      pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
+    }else{
+      substExpr(db, pParent->pWhere, iParent, pSub->pEList);
+      pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
+    }
+  
+    /* The flattened query is distinct if either the inner or the
+    ** outer query is distinct. 
+    */
+    pParent->selFlags |= pSub->selFlags & SF_Distinct;
+  
+    /*
+    ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
+    **
+    ** One is tempted to try to add a and b to combine the limits.  But this
+    ** does not work if either limit is negative.
+    */
+    if( pSub->pLimit ){
+      pParent->pLimit = pSub->pLimit;
+      pSub->pLimit = 0;
+    }
+  }
+
+  /* Finially, delete what is left of the subquery and return
+  ** success.
+  */
+  sqlite3SelectDelete(db, pSub1);
+
+  return 1;
+}
+#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
+
+/*
+** Analyze the SELECT statement passed as an argument to see if it
+** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 
+** it is, or 0 otherwise. At present, a query is considered to be
+** a min()/max() query if:
+**
+**   1. There is a single object in the FROM clause.
+**
+**   2. There is a single expression in the result set, and it is
+**      either min(x) or max(x), where x is a column reference.
+*/
+static int minMaxQuery(Parse *pParse, Select *p){
+  Expr *pExpr;
+  ExprList *pEList = p->pEList;
+
+  if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
+  pExpr = pEList->a[0].pExpr;
+  pEList = pExpr->pList;
+  if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0;
+  if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
+  if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL;
+  if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
+    return WHERE_ORDERBY_MIN;
+  }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
+    return WHERE_ORDERBY_MAX;
+  }
+  return WHERE_ORDERBY_NORMAL;
+}
+
+/*
+** This routine is a Walker callback for "expanding" a SELECT statement.
+** "Expanding" means to do the following:
+**
+**    (1)  Make sure VDBE cursor numbers have been assigned to every
+**         element of the FROM clause.
+**
+**    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
+**         defines FROM clause.  When views appear in the FROM clause,
+**         fill pTabList->a[].pSelect with a copy of the SELECT statement
+**         that implements the view.  A copy is made of the view's SELECT
+**         statement so that we can freely modify or delete that statement
+**         without worrying about messing up the presistent representation
+**         of the view.
+**
+**    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
+**         on joins and the ON and USING clause of joins.
+**
+**    (4)  Scan the list of columns in the result set (pEList) looking
+**         for instances of the "*" operator or the TABLE.* operator.
+**         If found, expand each "*" to be every column in every table
+**         and TABLE.* to be every column in TABLE.
+**
+*/
+static int selectExpander(Walker *pWalker, Select *p){
+  Parse *pParse = pWalker->pParse;
+  int i, j, k;
+  SrcList *pTabList;
+  ExprList *pEList;
+  struct SrcList_item *pFrom;
+  sqlite3 *db = pParse->db;
+
+  if( db->mallocFailed  ){
+    return WRC_Abort;
+  }
+  if( p->pSrc==0 || (p->selFlags & SF_Expanded)!=0 ){
+    return WRC_Prune;
+  }
+  p->selFlags |= SF_Expanded;
+  pTabList = p->pSrc;
+  pEList = p->pEList;
+
+  /* Make sure cursor numbers have been assigned to all entries in
+  ** the FROM clause of the SELECT statement.
+  */
+  sqlite3SrcListAssignCursors(pParse, pTabList);
+
+  /* Look up every table named in the FROM clause of the select.  If
+  ** an entry of the FROM clause is a subquery instead of a table or view,
+  ** then create a transient table structure to describe the subquery.
+  */
+  for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+    Table *pTab;
+    if( pFrom->pTab!=0 ){
+      /* This statement has already been prepared.  There is no need
+      ** to go further. */
+      assert( i==0 );
+      return WRC_Prune;
+    }
+    if( pFrom->zName==0 ){
+#ifndef SQLITE_OMIT_SUBQUERY
+      Select *pSel = pFrom->pSelect;
+      /* A sub-query in the FROM clause of a SELECT */
+      assert( pSel!=0 );
+      assert( pFrom->pTab==0 );
+      sqlite3WalkSelect(pWalker, pSel);
+      pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
+      if( pTab==0 ) return WRC_Abort;
+      pTab->db = db;
+      pTab->nRef = 1;
+      pTab->zName = sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pTab);
+      while( pSel->pPrior ){ pSel = pSel->pPrior; }
+      selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
+      pTab->iPKey = -1;
+      pTab->tabFlags |= TF_Ephemeral;
+#endif
+    }else{
+      /* An ordinary table or view name in the FROM clause */
+      assert( pFrom->pTab==0 );
+      pFrom->pTab = pTab = 
+        sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
+      if( pTab==0 ) return WRC_Abort;
+      pTab->nRef++;
+#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
+      if( pTab->pSelect || IsVirtual(pTab) ){
+        /* We reach here if the named table is a really a view */
+        if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
+
+        /* If pFrom->pSelect!=0 it means we are dealing with a
+        ** view within a view.  The SELECT structure has already been
+        ** copied by the outer view so we can skip the copy step here
+        ** in the inner view.
+        */
+        if( pFrom->pSelect==0 ){
+          pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
+          sqlite3WalkSelect(pWalker, pFrom->pSelect);
+        }
+      }
+#endif
+    }
+  }
+
+  /* Process NATURAL keywords, and ON and USING clauses of joins.
+  */
+  if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
+    return WRC_Abort;
+  }
+
+  /* For every "*" that occurs in the column list, insert the names of
+  ** all columns in all tables.  And for every TABLE.* insert the names
+  ** of all columns in TABLE.  The parser inserted a special expression
+  ** with the TK_ALL operator for each "*" that it found in the column list.
+  ** The following code just has to locate the TK_ALL expressions and expand
+  ** each one to the list of all columns in all tables.
+  **
+  ** The first loop just checks to see if there are any "*" operators
+  ** that need expanding.
+  */
+  for(k=0; k<pEList->nExpr; k++){
+    Expr *pE = pEList->a[k].pExpr;
+    if( pE->op==TK_ALL ) break;
+    if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
+         && pE->pLeft && pE->pLeft->op==TK_ID ) break;
+  }
+  if( k<pEList->nExpr ){
+    /*
+    ** If we get here it means the result set contains one or more "*"
+    ** operators that need to be expanded.  Loop through each expression
+    ** in the result set and expand them one by one.
+    */
+    struct ExprList_item *a = pEList->a;
+    ExprList *pNew = 0;
+    int flags = pParse->db->flags;
+    int longNames = (flags & SQLITE_FullColNames)!=0
+                      && (flags & SQLITE_ShortColNames)==0;
+
+    for(k=0; k<pEList->nExpr; k++){
+      Expr *pE = a[k].pExpr;
+      if( pE->op!=TK_ALL &&
+           (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
+        /* This particular expression does not need to be expanded.
+        */
+        pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
+        if( pNew ){
+          pNew->a[pNew->nExpr-1].zName = a[k].zName;
+        }
+        a[k].pExpr = 0;
+        a[k].zName = 0;
+      }else{
+        /* This expression is a "*" or a "TABLE.*" and needs to be
+        ** expanded. */
+        int tableSeen = 0;      /* Set to 1 when TABLE matches */
+        char *zTName;            /* text of name of TABLE */
+        if( pE->op==TK_DOT && pE->pLeft ){
+          zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
+        }else{
+          zTName = 0;
+        }
+        for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+          Table *pTab = pFrom->pTab;
+          char *zTabName = pFrom->zAlias;
+          if( zTabName==0 || zTabName[0]==0 ){ 
+            zTabName = pTab->zName;
+          }
+          if( db->mallocFailed ) break;
+          if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
+            continue;
+          }
+          tableSeen = 1;
+          for(j=0; j<pTab->nCol; j++){
+            Expr *pExpr, *pRight;
+            char *zName = pTab->aCol[j].zName;
+
+            /* If a column is marked as 'hidden' (currently only possible
+            ** for virtual tables), do not include it in the expanded
+            ** result-set list.
+            */
+            if( IsHiddenColumn(&pTab->aCol[j]) ){
+              assert(IsVirtual(pTab));
+              continue;
+            }
+
+            if( i>0 ){
+              struct SrcList_item *pLeft = &pTabList->a[i-1];
+              if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
+                        columnIndex(pLeft->pTab, zName)>=0 ){
+                /* In a NATURAL join, omit the join columns from the 
+                ** table on the right */
+                continue;
+              }
+              if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
+                /* In a join with a USING clause, omit columns in the
+                ** using clause from the table on the right. */
+                continue;
+              }
+            }
+            pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
+            if( pRight==0 ) break;
+            setQuotedToken(pParse, &pRight->token, zName);
+            if( longNames || pTabList->nSrc>1 ){
+              Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
+              pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
+              if( pExpr==0 ) break;
+              setQuotedToken(pParse, &pLeft->token, zTabName);
+              setToken(&pExpr->span, 
+                  sqlite3MPrintf(db, "%s.%s", zTabName, zName));
+              pExpr->span.dyn = 1;
+              pExpr->token.z = 0;
+              pExpr->token.n = 0;
+              pExpr->token.dyn = 0;
+            }else{
+              pExpr = pRight;
+              pExpr->span = pExpr->token;
+              pExpr->span.dyn = 0;
+            }
+            if( longNames ){
+              pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
+            }else{
+              pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
+            }
+          }
+        }
+        if( !tableSeen ){
+          if( zTName ){
+            sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
+          }else{
+            sqlite3ErrorMsg(pParse, "no tables specified");
+          }
+        }
+        sqlite3DbFree(db, zTName);
+      }
+    }
+    sqlite3ExprListDelete(db, pEList);
+    p->pEList = pNew;
+  }
+#if SQLITE_MAX_COLUMN
+  if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
+    sqlite3ErrorMsg(pParse, "too many columns in result set");
+  }
+#endif
+  return WRC_Continue;
+}
+
+/*
+** No-op routine for the parse-tree walker.
+**
+** When this routine is the Walker.xExprCallback then expression trees
+** are walked without any actions being taken at each node.  Presumably,
+** when this routine is used for Walker.xExprCallback then 
+** Walker.xSelectCallback is set to do something useful for every 
+** subquery in the parser tree.
+*/
+static int exprWalkNoop(Walker *pWalker, Expr *pExpr){
+  return WRC_Continue;
+}
+
+/*
+** This routine "expands" a SELECT statement and all of its subqueries.
+** For additional information on what it means to "expand" a SELECT
+** statement, see the comment on the selectExpand worker callback above.
+**
+** Expanding a SELECT statement is the first step in processing a
+** SELECT statement.  The SELECT statement must be expanded before
+** name resolution is performed.
+**
+** If anything goes wrong, an error message is written into pParse.
+** The calling function can detect the problem by looking at pParse->nErr
+** and/or pParse->db->mallocFailed.
+*/
+static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
+  Walker w;
+  w.xSelectCallback = selectExpander;
+  w.xExprCallback = exprWalkNoop;
+  w.pParse = pParse;
+  sqlite3WalkSelect(&w, pSelect);
+}
+
+
+#ifndef SQLITE_OMIT_SUBQUERY
+/*
+** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
+** interface.
+**
+** For each FROM-clause subquery, add Column.zType and Column.zColl
+** information to the Table structure that represents the result set
+** of that subquery.
+**
+** The Table structure that represents the result set was constructed
+** by selectExpander() but the type and collation information was omitted
+** at that point because identifiers had not yet been resolved.  This
+** routine is called after identifier resolution.
+*/
+static int selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
+  Parse *pParse;
+  int i;
+  SrcList *pTabList;
+  struct SrcList_item *pFrom;
+
+  assert( p->selFlags & SF_Resolved );
+  if( (p->selFlags & SF_HasTypeInfo)==0 ){
+    p->selFlags |= SF_HasTypeInfo;
+    pParse = pWalker->pParse;
+    pTabList = p->pSrc;
+    for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
+      Table *pTab = pFrom->pTab;
+      if( pTab && (pTab->tabFlags & TF_Ephemeral)!=0 ){
+        /* A sub-query in the FROM clause of a SELECT */
+        Select *pSel = pFrom->pSelect;
+        assert( pSel );
+        while( pSel->pPrior ) pSel = pSel->pPrior;
+        selectAddColumnTypeAndCollation(pParse, pTab->nCol, pTab->aCol, pSel);
+      }
+    }
+  }
+  return WRC_Continue;
+}
+#endif
+
+
+/*
+** This routine adds datatype and collating sequence information to
+** the Table structures of all FROM-clause subqueries in a
+** SELECT statement.
+**
+** Use this routine after name resolution.
+*/
+static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
+#ifndef SQLITE_OMIT_SUBQUERY
+  Walker w;
+  w.xSelectCallback = selectAddSubqueryTypeInfo;
+  w.xExprCallback = exprWalkNoop;
+  w.pParse = pParse;
+  sqlite3WalkSelect(&w, pSelect);
+#endif
+}
+
+
+/*
+** This routine sets of a SELECT statement for processing.  The
+** following is accomplished:
+**
+**     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
+**     *  Ephemeral Table objects are created for all FROM-clause subqueries.
+**     *  ON and USING clauses are shifted into WHERE statements
+**     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
+**     *  Identifiers in expression are matched to tables.
+**
+** This routine acts recursively on all subqueries within the SELECT.
+*/
+void sqlite3SelectPrep(
+  Parse *pParse,         /* The parser context */
+  Select *p,             /* The SELECT statement being coded. */
+  NameContext *pOuterNC  /* Name context for container */
+){
+  sqlite3 *db;
+  if( p==0 ) return;
+  db = pParse->db;
+  if( p->selFlags & SF_HasTypeInfo ) return;
+  if( pParse->nErr || db->mallocFailed ) return;
+  sqlite3SelectExpand(pParse, p);
+  if( pParse->nErr || db->mallocFailed ) return;
+  sqlite3ResolveSelectNames(pParse, p, pOuterNC);
+  if( pParse->nErr || db->mallocFailed ) return;
+  sqlite3SelectAddTypeInfo(pParse, p);
+}
+
+/*
+** Reset the aggregate accumulator.
+**
+** The aggregate accumulator is a set of memory cells that hold
+** intermediate results while calculating an aggregate.  This
+** routine simply stores NULLs in all of those memory cells.
+*/
+static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
+  Vdbe *v = pParse->pVdbe;
+  int i;
+  struct AggInfo_func *pFunc;
+  if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
+    return;
+  }
+  for(i=0; i<pAggInfo->nColumn; i++){
+    sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
+  }
+  for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
+    sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
+    if( pFunc->iDistinct>=0 ){
+      Expr *pE = pFunc->pExpr;
+      if( pE->pList==0 || pE->pList->nExpr!=1 ){
+        sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
+           "by an expression");
+        pFunc->iDistinct = -1;
+      }else{
+        KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
+        sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
+                          (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
+      }
+    }
+  }
+}
+
+/*
+** Invoke the OP_AggFinalize opcode for every aggregate function
+** in the AggInfo structure.
+*/
+static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
+  Vdbe *v = pParse->pVdbe;
+  int i;
+  struct AggInfo_func *pF;
+  for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
+    ExprList *pList = pF->pExpr->pList;
+    sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
+                      (void*)pF->pFunc, P4_FUNCDEF);
+  }
+}
+
+/*
+** Update the accumulator memory cells for an aggregate based on
+** the current cursor position.
+*/
+static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
+  Vdbe *v = pParse->pVdbe;
+  int i;
+  struct AggInfo_func *pF;
+  struct AggInfo_col *pC;
+
+  pAggInfo->directMode = 1;
+  for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
+    int nArg;
+    int addrNext = 0;
+    int regAgg;
+    ExprList *pList = pF->pExpr->pList;
+    if( pList ){
+      nArg = pList->nExpr;
+      regAgg = sqlite3GetTempRange(pParse, nArg);
+      sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
+    }else{
+      nArg = 0;
+      regAgg = 0;
+    }
+    if( pF->iDistinct>=0 ){
+      addrNext = sqlite3VdbeMakeLabel(v);
+      assert( nArg==1 );
+      codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
+    }
+    if( pF->pFunc->needCollSeq ){
+      CollSeq *pColl = 0;
+      struct ExprList_item *pItem;
+      int j;
+      assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
+      for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
+        pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
+      }
+      if( !pColl ){
+        pColl = pParse->db->pDfltColl;
+      }
+      sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
+    }
+    sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
+                      (void*)pF->pFunc, P4_FUNCDEF);
+    sqlite3VdbeChangeP5(v, nArg);
+    sqlite3ReleaseTempRange(pParse, regAgg, nArg);
+    sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
+    if( addrNext ){
+      sqlite3VdbeResolveLabel(v, addrNext);
+    }
+  }
+  for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
+    sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
+  }
+  pAggInfo->directMode = 0;
+}
+
+/*
+** Generate code for the SELECT statement given in the p argument.  
+**
+** The results are distributed in various ways depending on the
+** contents of the SelectDest structure pointed to by argument pDest
+** as follows:
+**
+**     pDest->eDest    Result
+**     ------------    -------------------------------------------
+**     SRT_Output      Generate a row of output (using the OP_ResultRow
+**                     opcode) for each row in the result set.
+**
+**     SRT_Mem         Only valid if the result is a single column.
+**                     Store the first column of the first result row
+**                     in register pDest->iParm then abandon the rest
+**                     of the query.  This destination implies "LIMIT 1".
+**
+**     SRT_Set         The result must be a single column.  Store each
+**                     row of result as the key in table pDest->iParm. 
+**                     Apply the affinity pDest->affinity before storing
+**                     results.  Used to implement "IN (SELECT ...)".
+**
+**     SRT_Union       Store results as a key in a temporary table pDest->iParm.
+**
+**     SRT_Except      Remove results from the temporary table pDest->iParm.
+**
+**     SRT_Table       Store results in temporary table pDest->iParm.
+**                     This is like SRT_EphemTab except that the table
+**                     is assumed to already be open.
+**
+**     SRT_EphemTab    Create an temporary table pDest->iParm and store
+**                     the result there. The cursor is left open after
+**                     returning.  This is like SRT_Table except that
+**                     this destination uses OP_OpenEphemeral to create
+**                     the table first.
+**
+**     SRT_Coroutine   Generate a co-routine that returns a new row of
+**                     results each time it is invoked.  The entry point
+**                     of the co-routine is stored in register pDest->iParm.
+**
+**     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
+**                     set is not empty.
+**
+**     SRT_Discard     Throw the results away.  This is used by SELECT
+**                     statements within triggers whose only purpose is
+**                     the side-effects of functions.
+**
+** This routine returns the number of errors.  If any errors are
+** encountered, then an appropriate error message is left in
+** pParse->zErrMsg.
+**
+** This routine does NOT free the Select structure passed in.  The
+** calling function needs to do that.
+*/
+int sqlite3Select(
+  Parse *pParse,         /* The parser context */
+  Select *p,             /* The SELECT statement being coded. */
+  SelectDest *pDest      /* What to do with the query results */
+){
+  int i, j;              /* Loop counters */
+  WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
+  Vdbe *v;               /* The virtual machine under construction */
+  int isAgg;             /* True for select lists like "count(*)" */
+  ExprList *pEList;      /* List of columns to extract. */
+  SrcList *pTabList;     /* List of tables to select from */
+  Expr *pWhere;          /* The WHERE clause.  May be NULL */
+  ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
+  ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
+  Expr *pHaving;         /* The HAVING clause.  May be NULL */
+  int isDistinct;        /* True if the DISTINCT keyword is present */
+  int distinct;          /* Table to use for the distinct set */
+  int rc = 1;            /* Value to return from this function */
+  int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
+  AggInfo sAggInfo;      /* Information used by aggregate queries */
+  int iEnd;              /* Address of the end of the query */
+  sqlite3 *db;           /* The database connection */
+
+  db = pParse->db;
+  if( p==0 || db->mallocFailed || pParse->nErr ){
+    return 1;
+  }
+  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
+  memset(&sAggInfo, 0, sizeof(sAggInfo));
+
+  pOrderBy = p->pOrderBy;
+  if( IgnorableOrderby(pDest) ){
+    p->pOrderBy = 0;
+
+    /* In these cases the DISTINCT operator makes no difference to the
+    ** results, so remove it if it were specified.
+    */
+    assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 
+           pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
+    p->selFlags &= ~SF_Distinct;
+  }
+  sqlite3SelectPrep(pParse, p, 0);
+  if( pParse->nErr ){
+    goto select_end;
+  }
+  p->pOrderBy = pOrderBy;
+
+
+  /* Make local copies of the parameters for this query.
+  */
+  pTabList = p->pSrc;
+  isAgg = (p->selFlags & SF_Aggregate)!=0;
+  pEList = p->pEList;
+  if( pEList==0 ) goto select_end;
+
+  /* 
+  ** Do not even attempt to generate any code if we have already seen
+  ** errors before this routine starts.
+  */
+  if( pParse->nErr>0 ) goto select_end;
+
+  /* ORDER BY is ignored for some destinations.
+  */
+  if( IgnorableOrderby(pDest) ){
+    pOrderBy = 0;
+  }
+
+  /* Begin generating code.
+  */
+  v = sqlite3GetVdbe(pParse);
+  if( v==0 ) goto select_end;
+
+  /* Generate code for all sub-queries in the FROM clause
+  */
+#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
+  for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
+    struct SrcList_item *pItem = &pTabList->a[i];
+    SelectDest dest;
+    Select *pSub = pItem->pSelect;
+    int isAggSub;
+
+    if( pSub==0 || pItem->isPopulated ) continue;
+
+    /* Increment Parse.nHeight by the height of the largest expression
+    ** tree refered to by this, the parent select. The child select
+    ** may contain expression trees of at most
+    ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
+    ** more conservative than necessary, but much easier than enforcing
+    ** an exact limit.
+    */
+    pParse->nHeight += sqlite3SelectExprHeight(p);
+
+    /* Check to see if the subquery can be absorbed into the parent. */
+    isAggSub = (pSub->selFlags & SF_Aggregate)!=0;
+    if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
+      if( isAggSub ){
+        isAgg = 1;
+        p->selFlags |= SF_Aggregate;
+      }
+      i = -1;
+    }else{
+      sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
+      assert( pItem->isPopulated==0 );
+      sqlite3Select(pParse, pSub, &dest);
+      pItem->isPopulated = 1;
+    }
+    if( pParse->nErr || db->mallocFailed ){
+      goto select_end;
+    }
+    pParse->nHeight -= sqlite3SelectExprHeight(p);
+    pTabList = p->pSrc;
+    if( !IgnorableOrderby(pDest) ){
+      pOrderBy = p->pOrderBy;
+    }
+  }
+  pEList = p->pEList;
+#endif
+  pWhere = p->pWhere;
+  pGroupBy = p->pGroupBy;
+  pHaving = p->pHaving;
+  isDistinct = (p->selFlags & SF_Distinct)!=0;
+
+#ifndef SQLITE_OMIT_COMPOUND_SELECT
+  /* If there is are a sequence of queries, do the earlier ones first.
+  */
+  if( p->pPrior ){
+    if( p->pRightmost==0 ){
+      Select *pLoop, *pRight = 0;
+      int cnt = 0;
+      int mxSelect;
+      for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
+        pLoop->pRightmost = p;
+        pLoop->pNext = pRight;
+        pRight = pLoop;
+      }
+      mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
+      if( mxSelect && cnt>mxSelect ){
+        sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
+        return 1;
+      }
+    }
+    return multiSelect(pParse, p, pDest);
+  }
+#endif
+
+  /* If writing to memory or generating a set
+  ** only a single column may be output.
+  */
+#ifndef SQLITE_OMIT_SUBQUERY
+  if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
+    goto select_end;
+  }
+#endif
+
+  /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
+  ** GROUP BY might use an index, DISTINCT never does.
+  */
+  if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && !p->pGroupBy ){
+    p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
+    pGroupBy = p->pGroupBy;
+    p->selFlags &= ~SF_Distinct;
+    isDistinct = 0;
+  }
+
+  /* If there is an ORDER BY clause, then this sorting
+  ** index might end up being unused if the data can be 
+  ** extracted in pre-sorted order.  If that is the case, then the
+  ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
+  ** we figure out that the sorting index is not needed.  The addrSortIndex
+  ** variable is used to facilitate that change.
+  */
+  if( pOrderBy ){
+    KeyInfo *pKeyInfo;
+    pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
+    pOrderBy->iECursor = pParse->nTab++;
+    p->addrOpenEphm[2] = addrSortIndex =
+      sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
+                           pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
+                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
+  }else{
+    addrSortIndex = -1;
+  }
+
+  /* If the output is destined for a temporary table, open that table.
+  */
+  if( pDest->eDest==SRT_EphemTab ){
+    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
+  }
+
+  /* Set the limiter.
+  */
+  iEnd = sqlite3VdbeMakeLabel(v);
+  computeLimitRegisters(pParse, p, iEnd);
+
+  /* Open a virtual index to use for the distinct set.
+  */
+  if( isDistinct ){
+    KeyInfo *pKeyInfo;
+    assert( isAgg || pGroupBy );
+    distinct = pParse->nTab++;
+    pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
+    sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
+                        (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
+  }else{
+    distinct = -1;
+  }
+
+  /* Aggregate and non-aggregate queries are handled differently */
+  if( !isAgg && pGroupBy==0 ){
+    /* This case is for non-aggregate queries
+    ** Begin the database scan
+    */
+    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
+    if( pWInfo==0 ) goto select_end;
+
+    /* If sorting index that was created by a prior OP_OpenEphemeral 
+    ** instruction ended up not being needed, then change the OP_OpenEphemeral
+    ** into an OP_Noop.
+    */
+    if( addrSortIndex>=0 && pOrderBy==0 ){
+      sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
+      p->addrOpenEphm[2] = -1;
+    }
+
+    /* Use the standard inner loop
+    */
+    assert(!isDistinct);
+    selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
+                    pWInfo->iContinue, pWInfo->iBreak);
+
+    /* End the database scan loop.
+    */
+    sqlite3WhereEnd(pWInfo);
+  }else{
+    /* This is the processing for aggregate queries */
+    NameContext sNC;    /* Name context for processing aggregate information */
+    int iAMem;          /* First Mem address for storing current GROUP BY */
+    int iBMem;          /* First Mem address for previous GROUP BY */
+    int iUseFlag;       /* Mem address holding flag indicating that at least
+                        ** one row of the input to the aggregator has been
+                        ** processed */
+    int iAbortFlag;     /* Mem address which causes query abort if positive */
+    int groupBySort;    /* Rows come from source in GROUP BY order */
+    int addrEnd;        /* End of processing for this SELECT */
+
+    /* Remove any and all aliases between the result set and the
+    ** GROUP BY clause.
+    */
+    if( pGroupBy ){
+      int i;                        /* Loop counter */
+      struct ExprList_item *pItem;  /* For looping over expression in a list */
+
+      for(i=p->pEList->nExpr, pItem=p->pEList->a; i>0; i--, pItem++){
+        pItem->iAlias = 0;
+      }
+      for(i=pGroupBy->nExpr, pItem=pGroupBy->a; i>0; i--, pItem++){
+        pItem->iAlias = 0;
+      }
+    }
+
+ 
+    /* Create a label to jump to when we want to abort the query */
+    addrEnd = sqlite3VdbeMakeLabel(v);
+
+    /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
+    ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
+    ** SELECT statement.
+    */
+    memset(&sNC, 0, sizeof(sNC));
+    sNC.pParse = pParse;
+    sNC.pSrcList = pTabList;
+    sNC.pAggInfo = &sAggInfo;
+    sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
+    sAggInfo.pGroupBy = pGroupBy;
+    sqlite3ExprAnalyzeAggList(&sNC, pEList);
+    sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
+    if( pHaving ){
+      sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
+    }
+    sAggInfo.nAccumulator = sAggInfo.nColumn;
+    for(i=0; i<sAggInfo.nFunc; i++){
+      sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList);
+    }
+    if( db->mallocFailed ) goto select_end;
+
+    /* Processing for aggregates with GROUP BY is very different and
+    ** much more complex than aggregates without a GROUP BY.
+    */
+    if( pGroupBy ){
+      KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
+      int j1;             /* A-vs-B comparision jump */
+      int addrOutputRow;  /* Start of subroutine that outputs a result row */
+      int regOutputRow;   /* Return address register for output subroutine */
+      int addrSetAbort;   /* Set the abort flag and return */
+      int addrTopOfLoop;  /* Top of the input loop */
+      int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
+      int addrReset;      /* Subroutine for resetting the accumulator */
+      int regReset;       /* Return address register for reset subroutine */
+
+      /* If there is a GROUP BY clause we might need a sorting index to
+      ** implement it.  Allocate that sorting index now.  If it turns out
+      ** that we do not need it after all, the OpenEphemeral instruction
+      ** will be converted into a Noop.  
+      */
+      sAggInfo.sortingIdx = pParse->nTab++;
+      pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
+      addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 
+          sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 
+          0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
+
+      /* Initialize memory locations used by GROUP BY aggregate processing
+      */
+      iUseFlag = ++pParse->nMem;
+      iAbortFlag = ++pParse->nMem;
+      regOutputRow = ++pParse->nMem;
+      addrOutputRow = sqlite3VdbeMakeLabel(v);
+      regReset = ++pParse->nMem;
+      addrReset = sqlite3VdbeMakeLabel(v);
+      iAMem = pParse->nMem + 1;
+      pParse->nMem += pGroupBy->nExpr;
+      iBMem = pParse->nMem + 1;
+      pParse->nMem += pGroupBy->nExpr;
+      sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
+      VdbeComment((v, "clear abort flag"));
+      sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
+      VdbeComment((v, "indicate accumulator empty"));
+
+      /* Begin a loop that will extract all source rows in GROUP BY order.
+      ** This might involve two separate loops with an OP_Sort in between, or
+      ** it might be a single loop that uses an index to extract information
+      ** in the right order to begin with.
+      */
+      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
+      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
+      if( pWInfo==0 ) goto select_end;
+      if( pGroupBy==0 ){
+        /* The optimizer is able to deliver rows in group by order so
+        ** we do not have to sort.  The OP_OpenEphemeral table will be
+        ** cancelled later because we still need to use the pKeyInfo
+        */
+        pGroupBy = p->pGroupBy;
+        groupBySort = 0;
+      }else{
+        /* Rows are coming out in undetermined order.  We have to push
+        ** each row into a sorting index, terminate the first loop,
+        ** then loop over the sorting index in order to get the output
+        ** in sorted order
+        */
+        int regBase;
+        int regRecord;
+        int nCol;
+        int nGroupBy;
+
+        groupBySort = 1;
+        nGroupBy = pGroupBy->nExpr;
+        nCol = nGroupBy + 1;
+        j = nGroupBy+1;
+        for(i=0; i<sAggInfo.nColumn; i++){
+          if( sAggInfo.aCol[i].iSorterColumn>=j ){
+            nCol++;
+            j++;
+          }
+        }
+        regBase = sqlite3GetTempRange(pParse, nCol);
+        sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
+        sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
+        j = nGroupBy+1;
+        for(i=0; i<sAggInfo.nColumn; i++){
+          struct AggInfo_col *pCol = &sAggInfo.aCol[i];
+          if( pCol->iSorterColumn>=j ){
+            int r1 = j + regBase;
+            int r2;
+
+            r2 = sqlite3ExprCodeGetColumn(pParse, 
+                               pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
+            if( r1!=r2 ){
+              sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
+            }
+            j++;
+          }
+        }
+        regRecord = sqlite3GetTempReg(pParse);
+        sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
+        sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
+        sqlite3ReleaseTempReg(pParse, regRecord);
+        sqlite3ReleaseTempRange(pParse, regBase, nCol);
+        sqlite3WhereEnd(pWInfo);
+        sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
+        VdbeComment((v, "GROUP BY sort"));
+        sAggInfo.useSortingIdx = 1;
+      }
+
+      /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
+      ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
+      ** Then compare the current GROUP BY terms against the GROUP BY terms
+      ** from the previous row currently stored in a0, a1, a2...
+      */
+      addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
+      for(j=0; j<pGroupBy->nExpr; j++){
+        if( groupBySort ){
+          sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
+        }else{
+          sAggInfo.directMode = 1;
+          sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
+        }
+      }
+      sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
+                          (char*)pKeyInfo, P4_KEYINFO);
+      j1 = sqlite3VdbeCurrentAddr(v);
+      sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);
+
+      /* Generate code that runs whenever the GROUP BY changes.
+      ** Changes in the GROUP BY are detected by the previous code
+      ** block.  If there were no changes, this block is skipped.
+      **
+      ** This code copies current group by terms in b0,b1,b2,...
+      ** over to a0,a1,a2.  It then calls the output subroutine
+      ** and resets the aggregate accumulator registers in preparation
+      ** for the next GROUP BY batch.
+      */
+      sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
+      sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
+      VdbeComment((v, "output one row"));
+      sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
+      VdbeComment((v, "check abort flag"));
+      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
+      VdbeComment((v, "reset accumulator"));
+
+      /* Update the aggregate accumulators based on the content of
+      ** the current row
+      */
+      sqlite3VdbeJumpHere(v, j1);
+      updateAccumulator(pParse, &sAggInfo);
+      sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
+      VdbeComment((v, "indicate data in accumulator"));
+
+      /* End of the loop
+      */
+      if( groupBySort ){
+        sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
+      }else{
+        sqlite3WhereEnd(pWInfo);
+        sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
+      }
+
+      /* Output the final row of result
+      */
+      sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
+      VdbeComment((v, "output final row"));
+
+      /* Jump over the subroutines
+      */
+      sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEnd);
+
+      /* Generate a subroutine that outputs a single row of the result
+      ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
+      ** is less than or equal to zero, the subroutine is a no-op.  If
+      ** the processing calls for the query to abort, this subroutine
+      ** increments the iAbortFlag memory location before returning in
+      ** order to signal the caller to abort.
+      */
+      addrSetAbort = sqlite3VdbeCurrentAddr(v);
+      sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
+      VdbeComment((v, "set abort flag"));
+      sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+      sqlite3VdbeResolveLabel(v, addrOutputRow);
+      addrOutputRow = sqlite3VdbeCurrentAddr(v);
+      sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
+      VdbeComment((v, "Groupby result generator entry point"));
+      sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+      finalizeAggFunctions(pParse, &sAggInfo);
+      if( pHaving ){
+        sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
+      }
+      selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
+                      distinct, pDest,
+                      addrOutputRow+1, addrSetAbort);
+      sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
+      VdbeComment((v, "end groupby result generator"));
+
+      /* Generate a subroutine that will reset the group-by accumulator
+      */
+      sqlite3VdbeResolveLabel(v, addrReset);
+      resetAccumulator(pParse, &sAggInfo);
+      sqlite3VdbeAddOp1(v, OP_Return, regReset);
+     
+    } /* endif pGroupBy */
+    else {
+      ExprList *pMinMax = 0;
+      ExprList *pDel = 0;
+      u8 flag;
+
+      /* Check if the query is of one of the following forms:
+      **
+      **   SELECT min(x) FROM ...
+      **   SELECT max(x) FROM ...
+      **
+      ** If it is, then ask the code in where.c to attempt to sort results
+      ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 
+      ** If where.c is able to produce results sorted in this order, then
+      ** add vdbe code to break out of the processing loop after the 
+      ** first iteration (since the first iteration of the loop is 
+      ** guaranteed to operate on the row with the minimum or maximum 
+      ** value of x, the only row required).
+      **
+      ** A special flag must be passed to sqlite3WhereBegin() to slightly
+      ** modify behaviour as follows:
+      **
+      **   + If the query is a "SELECT min(x)", then the loop coded by
+      **     where.c should not iterate over any values with a NULL value
+      **     for x.
+      **
+      **   + The optimizer code in where.c (the thing that decides which
+      **     index or indices to use) should place a different priority on 
+      **     satisfying the 'ORDER BY' clause than it does in other cases.
+      **     Refer to code and comments in where.c for details.
+      */
+      flag = minMaxQuery(pParse, p);
+      if( flag ){
+        pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList);
+        if( pMinMax && !db->mallocFailed ){
+          pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN;
+          pMinMax->a[0].pExpr->op = TK_COLUMN;
+        }
+      }
+
+      /* This case runs if the aggregate has no GROUP BY clause.  The
+      ** processing is much simpler since there is only a single row
+      ** of output.
+      */
+      resetAccumulator(pParse, &sAggInfo);
+      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
+      if( pWInfo==0 ){
+        sqlite3ExprListDelete(db, pDel);
+        goto select_end;
+      }
+      updateAccumulator(pParse, &sAggInfo);
+      if( !pMinMax && flag ){
+        sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
+        VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max")));
+      }
+      sqlite3WhereEnd(pWInfo);
+      finalizeAggFunctions(pParse, &sAggInfo);
+      pOrderBy = 0;
+      if( pHaving ){
+        sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
+      }
+      selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 
+                      pDest, addrEnd, addrEnd);
+
+      sqlite3ExprListDelete(db, pDel);
+    }
+    sqlite3VdbeResolveLabel(v, addrEnd);
+    
+  } /* endif aggregate query */
+
+  /* If there is an ORDER BY clause, then we need to sort the results
+  ** and send them to the callback one by one.
+  */
+  if( pOrderBy ){
+    generateSortTail(pParse, p, v, pEList->nExpr, pDest);
+  }
+
+  /* Jump here to skip this query
+  */
+  sqlite3VdbeResolveLabel(v, iEnd);
+
+  /* The SELECT was successfully coded.   Set the return code to 0
+  ** to indicate no errors.
+  */
+  rc = 0;
+
+  /* Control jumps to here if an error is encountered above, or upon
+  ** successful coding of the SELECT.
+  */
+select_end:
+
+  /* Identify column names if results of the SELECT are to be output.
+  */
+  if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){
+    generateColumnNames(pParse, pTabList, pEList);
+  }
+
+  sqlite3DbFree(db, sAggInfo.aCol);
+  sqlite3DbFree(db, sAggInfo.aFunc);
+  return rc;
+}
+
+#if defined(SQLITE_DEBUG)
+/*
+*******************************************************************************
+** The following code is used for testing and debugging only.  The code
+** that follows does not appear in normal builds.
+**
+** These routines are used to print out the content of all or part of a 
+** parse structures such as Select or Expr.  Such printouts are useful
+** for helping to understand what is happening inside the code generator
+** during the execution of complex SELECT statements.
+**
+** These routine are not called anywhere from within the normal
+** code base.  Then are intended to be called from within the debugger
+** or from temporary "printf" statements inserted for debugging.
+*/
+void sqlite3PrintExpr(Expr *p){
+  if( p->token.z && p->token.n>0 ){
+    sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
+  }else{
+    sqlite3DebugPrintf("(%d", p->op);
+  }
+  if( p->pLeft ){
+    sqlite3DebugPrintf(" ");
+    sqlite3PrintExpr(p->pLeft);
+  }
+  if( p->pRight ){
+    sqlite3DebugPrintf(" ");
+    sqlite3PrintExpr(p->pRight);
+  }
+  sqlite3DebugPrintf(")");
+}
+void sqlite3PrintExprList(ExprList *pList){
+  int i;
+  for(i=0; i<pList->nExpr; i++){
+    sqlite3PrintExpr(pList->a[i].pExpr);
+    if( i<pList->nExpr-1 ){
+      sqlite3DebugPrintf(", ");
+    }
+  }
+}
+void sqlite3PrintSelect(Select *p, int indent){
+  sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
+  sqlite3PrintExprList(p->pEList);
+  sqlite3DebugPrintf("\n");
+  if( p->pSrc ){
+    char *zPrefix;
+    int i;
+    zPrefix = "FROM";
+    for(i=0; i<p->pSrc->nSrc; i++){
+      struct SrcList_item *pItem = &p->pSrc->a[i];
+      sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
+      zPrefix = "";
+      if( pItem->pSelect ){
+        sqlite3DebugPrintf("(\n");
+        sqlite3PrintSelect(pItem->pSelect, indent+10);
+        sqlite3DebugPrintf("%*s)", indent+8, "");
+      }else if( pItem->zName ){
+        sqlite3DebugPrintf("%s", pItem->zName);
+      }
+      if( pItem->pTab ){
+        sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
+      }
+      if( pItem->zAlias ){
+        sqlite3DebugPrintf(" AS %s", pItem->zAlias);
+      }
+      if( i<p->pSrc->nSrc-1 ){
+        sqlite3DebugPrintf(",");
+      }
+      sqlite3DebugPrintf("\n");
+    }
+  }
+  if( p->pWhere ){
+    sqlite3DebugPrintf("%*s WHERE ", indent, "");
+    sqlite3PrintExpr(p->pWhere);
+    sqlite3DebugPrintf("\n");
+  }
+  if( p->pGroupBy ){
+    sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
+    sqlite3PrintExprList(p->pGroupBy);
+    sqlite3DebugPrintf("\n");
+  }
+  if( p->pHaving ){
+    sqlite3DebugPrintf("%*s HAVING ", indent, "");
+    sqlite3PrintExpr(p->pHaving);
+    sqlite3DebugPrintf("\n");
+  }
+  if( p->pOrderBy ){
+    sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
+    sqlite3PrintExprList(p->pOrderBy);
+    sqlite3DebugPrintf("\n");
+  }
+}
+/* End of the structure debug printing code
+*****************************************************************************/
+#endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */