/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** Memory allocation functions used throughout sqlite.
**
** $Id: malloc.c,v 1.34 2008/08/05 17:53:23 drh Exp $
*/
#include "sqliteInt.h"
#include <stdarg.h>
#include <ctype.h>
/*
** This routine runs when the memory allocator sees that the
** total memory allocation is about to exceed the soft heap
** limit.
*/
static void softHeapLimitEnforcer(
void *NotUsed,
sqlite3_int64 inUse,
int allocSize
){
sqlite3_release_memory(allocSize);
}
/*
** Set the soft heap-size limit for the library. Passing a zero or
** negative value indicates no limit.
*/
void sqlite3_soft_heap_limit(int n){
sqlite3_uint64 iLimit;
int overage;
if( n<0 ){
iLimit = 0;
}else{
iLimit = n;
}
sqlite3_initialize();
if( iLimit>0 ){
sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit);
}else{
sqlite3_memory_alarm(0, 0, 0);
}
overage = sqlite3_memory_used() - n;
if( overage>0 ){
sqlite3_release_memory(overage);
}
}
/*
** Attempt to release up to n bytes of non-essential memory currently
** held by SQLite. An example of non-essential memory is memory used to
** cache database pages that are not currently in use.
*/
int sqlite3_release_memory(int n){
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
int nRet = sqlite3VdbeReleaseMemory(n);
nRet += sqlite3PagerReleaseMemory(n-nRet);
return nRet;
#else
return SQLITE_OK;
#endif
}
/*
** State information local to the memory allocation subsystem.
*/
static struct {
sqlite3_mutex *mutex; /* Mutex to serialize access */
/*
** The alarm callback and its arguments. The mem0.mutex lock will
** be held while the callback is running. Recursive calls into
** the memory subsystem are allowed, but no new callbacks will be
** issued. The alarmBusy variable is set to prevent recursive
** callbacks.
*/
sqlite3_int64 alarmThreshold;
void (*alarmCallback)(void*, sqlite3_int64,int);
void *alarmArg;
int alarmBusy;
/*
** Pointers to the end of sqlite3Config.pScratch and
** sqlite3Config.pPage to a block of memory that records
** which pages are available.
*/
u32 *aScratchFree;
u32 *aPageFree;
/* Number of free pages for scratch and page-cache memory */
u32 nScratchFree;
u32 nPageFree;
} mem0;
/*
** Initialize the memory allocation subsystem.
*/
int sqlite3MallocInit(void){
if( sqlite3Config.m.xMalloc==0 ){
sqlite3MemSetDefault();
}
memset(&mem0, 0, sizeof(mem0));
if( sqlite3Config.bCoreMutex ){
mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
}
if( sqlite3Config.pScratch && sqlite3Config.szScratch>=100
&& sqlite3Config.nScratch>=0 ){
int i;
sqlite3Config.szScratch -= 4;
mem0.aScratchFree = (u32*)&((char*)sqlite3Config.pScratch)
[sqlite3Config.szScratch*sqlite3Config.nScratch];
for(i=0; i<sqlite3Config.nScratch; i++){ mem0.aScratchFree[i] = i; }
mem0.nScratchFree = sqlite3Config.nScratch;
}else{
sqlite3Config.pScratch = 0;
sqlite3Config.szScratch = 0;
}
if( sqlite3Config.pPage && sqlite3Config.szPage>=512
&& sqlite3Config.nPage>=1 ){
int i;
int overhead;
int sz = sqlite3Config.szPage;
int n = sqlite3Config.nPage;
overhead = (4*n + sz - 1)/sz;
sqlite3Config.nPage -= overhead;
mem0.aPageFree = (u32*)&((char*)sqlite3Config.pPage)
[sqlite3Config.szPage*sqlite3Config.nPage];
for(i=0; i<sqlite3Config.nPage; i++){ mem0.aPageFree[i] = i; }
mem0.nPageFree = sqlite3Config.nPage;
}else{
sqlite3Config.pPage = 0;
sqlite3Config.szPage = 0;
}
return sqlite3Config.m.xInit(sqlite3Config.m.pAppData);
}
/*
** Deinitialize the memory allocation subsystem.
*/
void sqlite3MallocEnd(void){
sqlite3Config.m.xShutdown(sqlite3Config.m.pAppData);
memset(&mem0, 0, sizeof(mem0));
}
/*
** Return the amount of memory currently checked out.
*/
sqlite3_int64 sqlite3_memory_used(void){
int n, mx;
sqlite3_int64 res;
sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
return res;
}
/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
int n, mx;
sqlite3_int64 res;
sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
return res;
}
/*
** Change the alarm callback
*/
int sqlite3_memory_alarm(
void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
void *pArg,
sqlite3_int64 iThreshold
){
sqlite3_mutex_enter(mem0.mutex);
mem0.alarmCallback = xCallback;
mem0.alarmArg = pArg;
mem0.alarmThreshold = iThreshold;
sqlite3_mutex_leave(mem0.mutex);
return SQLITE_OK;
}
/*
** Trigger the alarm
*/
static void sqlite3MallocAlarm(int nByte){
void (*xCallback)(void*,sqlite3_int64,int);
sqlite3_int64 nowUsed;
void *pArg;
if( mem0.alarmCallback==0 || mem0.alarmBusy ) return;
mem0.alarmBusy = 1;
xCallback = mem0.alarmCallback;
nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
pArg = mem0.alarmArg;
sqlite3_mutex_leave(mem0.mutex);
xCallback(pArg, nowUsed, nByte);
sqlite3_mutex_enter(mem0.mutex);
mem0.alarmBusy = 0;
}
/*
** Do a memory allocation with statistics and alarms. Assume the
** lock is already held.
*/
static int mallocWithAlarm(int n, void **pp){
int nFull;
void *p;
assert( sqlite3_mutex_held(mem0.mutex) );
nFull = sqlite3Config.m.xRoundup(n);
sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
if( mem0.alarmCallback!=0 ){
int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
if( nUsed+nFull >= mem0.alarmThreshold ){
sqlite3MallocAlarm(nFull);
}
}
p = sqlite3Config.m.xMalloc(nFull);
if( p==0 && mem0.alarmCallback ){
sqlite3MallocAlarm(nFull);
p = sqlite3Config.m.xMalloc(nFull);
}
if( p ){
nFull = sqlite3MallocSize(p);
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
}
*pp = p;
return nFull;
}
/*
** Allocate memory. This routine is like sqlite3_malloc() except that it
** assumes the memory subsystem has already been initialized.
*/
void *sqlite3Malloc(int n){
void *p;
if( n<=0 ){
p = 0;
}else if( sqlite3Config.bMemstat ){
sqlite3_mutex_enter(mem0.mutex);
mallocWithAlarm(n, &p);
sqlite3_mutex_leave(mem0.mutex);
}else{
p = sqlite3Config.m.xMalloc(n);
}
return p;
}
/*
** This version of the memory allocation is for use by the application.
** First make sure the memory subsystem is initialized, then do the
** allocation.
*/
void *sqlite3_malloc(int n){
#ifndef SQLITE_OMIT_AUTOINIT
if( sqlite3_initialize() ) return 0;
#endif
return sqlite3Malloc(n);
}
/*
** Each thread may only have a single outstanding allocation from
** xScratchMalloc(). We verify this constraint in the single-threaded
** case by setting scratchAllocOut to 1 when an allocation
** is outstanding clearing it when the allocation is freed.
*/
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
static int scratchAllocOut = 0;
#endif
/*
** Allocate memory that is to be used and released right away.
** This routine is similar to alloca() in that it is not intended
** for situations where the memory might be held long-term. This
** routine is intended to get memory to old large transient data
** structures that would not normally fit on the stack of an
** embedded processor.
*/
void *sqlite3ScratchMalloc(int n){
void *p;
assert( n>0 );
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
/* Verify that no more than one scratch allocation per thread
** is outstanding at one time. (This is only checked in the
** single-threaded case since checking in the multi-threaded case
** would be much more complicated.) */
assert( scratchAllocOut==0 );
#endif
if( sqlite3Config.szScratch<n ){
goto scratch_overflow;
}else{
sqlite3_mutex_enter(mem0.mutex);
if( mem0.nScratchFree==0 ){
sqlite3_mutex_leave(mem0.mutex);
goto scratch_overflow;
}else{
int i;
i = mem0.aScratchFree[--mem0.nScratchFree];
sqlite3_mutex_leave(mem0.mutex);
i *= sqlite3Config.szScratch;
sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
p = (void*)&((char*)sqlite3Config.pScratch)[i];
}
}
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
scratchAllocOut = p!=0;
#endif
return p;
scratch_overflow:
if( sqlite3Config.bMemstat ){
sqlite3_mutex_enter(mem0.mutex);
sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
n = mallocWithAlarm(n, &p);
if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
sqlite3_mutex_leave(mem0.mutex);
}else{
p = sqlite3Config.m.xMalloc(n);
}
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
scratchAllocOut = p!=0;
#endif
return p;
}
void sqlite3ScratchFree(void *p){
if( p ){
#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
/* Verify that no more than one scratch allocation per thread
** is outstanding at one time. (This is only checked in the
** single-threaded case since checking in the multi-threaded case
** would be much more complicated.) */
assert( scratchAllocOut==1 );
scratchAllocOut = 0;
#endif
if( sqlite3Config.pScratch==0
|| p<sqlite3Config.pScratch
|| p>=(void*)mem0.aScratchFree ){
if( sqlite3Config.bMemstat ){
int iSize = sqlite3MallocSize(p);
sqlite3_mutex_enter(mem0.mutex);
sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
sqlite3Config.m.xFree(p);
sqlite3_mutex_leave(mem0.mutex);
}else{
sqlite3Config.m.xFree(p);
}
}else{
int i;
i = (u8 *)p - (u8 *)sqlite3Config.pScratch;
i /= sqlite3Config.szScratch;
assert( i>=0 && i<sqlite3Config.nScratch );
sqlite3_mutex_enter(mem0.mutex);
assert( mem0.nScratchFree<sqlite3Config.nScratch );
mem0.aScratchFree[mem0.nScratchFree++] = i;
sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
sqlite3_mutex_leave(mem0.mutex);
}
}
}
/*
** Allocate memory to be used by the page cache. Make use of the
** memory buffer provided by SQLITE_CONFIG_PAGECACHE if there is one
** and that memory is of the right size and is not completely
** consumed. Otherwise, failover to sqlite3Malloc().
*/
void *sqlite3PageMalloc(int n){
void *p;
assert( n>0 );
assert( (n & (n-1))==0 );
assert( n>=512 && n<=32768 );
if( sqlite3Config.szPage<n ){
goto page_overflow;
}else{
sqlite3_mutex_enter(mem0.mutex);
if( mem0.nPageFree==0 ){
sqlite3_mutex_leave(mem0.mutex);
goto page_overflow;
}else{
int i;
i = mem0.aPageFree[--mem0.nPageFree];
sqlite3_mutex_leave(mem0.mutex);
i *= sqlite3Config.szPage;
sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
p = (void*)&((char*)sqlite3Config.pPage)[i];
}
}
return p;
page_overflow:
if( sqlite3Config.bMemstat ){
sqlite3_mutex_enter(mem0.mutex);
sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
n = mallocWithAlarm(n, &p);
if( p ) sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, n);
sqlite3_mutex_leave(mem0.mutex);
}else{
p = sqlite3Config.m.xMalloc(n);
}
return p;
}
void sqlite3PageFree(void *p){
if( p ){
if( sqlite3Config.pPage==0
|| p<sqlite3Config.pPage
|| p>=(void*)mem0.aPageFree ){
/* In this case, the page allocation was obtained from a regular
** call to sqlite3_mem_methods.xMalloc() (a page-cache-memory
** "overflow"). Free the block with sqlite3_mem_methods.xFree().
*/
if( sqlite3Config.bMemstat ){
int iSize = sqlite3MallocSize(p);
sqlite3_mutex_enter(mem0.mutex);
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
sqlite3Config.m.xFree(p);
sqlite3_mutex_leave(mem0.mutex);
}else{
sqlite3Config.m.xFree(p);
}
}else{
/* The page allocation was allocated from the sqlite3Config.pPage
** buffer. In this case all that is add the index of the page in
** the sqlite3Config.pPage array to the set of free indexes stored
** in the mem0.aPageFree[] array.
*/
int i;
i = (u8 *)p - (u8 *)sqlite3Config.pPage;
i /= sqlite3Config.szPage;
assert( i>=0 && i<sqlite3Config.nPage );
sqlite3_mutex_enter(mem0.mutex);
assert( mem0.nPageFree<sqlite3Config.nPage );
mem0.aPageFree[mem0.nPageFree++] = i;
sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
sqlite3_mutex_leave(mem0.mutex);
#if !defined(NDEBUG) && 0
/* Assert that a duplicate was not just inserted into aPageFree[]. */
for(i=0; i<mem0.nPageFree-1; i++){
assert( mem0.aPageFree[i]!=mem0.aPageFree[mem0.nPageFree-1] );
}
#endif
}
}
}
/*
** TRUE if p is a lookaside memory allocation from db
*/
static int isLookaside(sqlite3 *db, void *p){
return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
}
/*
** Return the size of a memory allocation previously obtained from
** sqlite3Malloc() or sqlite3_malloc().
*/
int sqlite3MallocSize(void *p){
return sqlite3Config.m.xSize(p);
}
int sqlite3DbMallocSize(sqlite3 *db, void *p){
if( isLookaside(db, p) ){
return db->lookaside.sz;
}else{
return sqlite3Config.m.xSize(p);
}
}
/*
** Free memory previously obtained from sqlite3Malloc().
*/
void sqlite3_free(void *p){
if( p==0 ) return;
if( sqlite3Config.bMemstat ){
sqlite3_mutex_enter(mem0.mutex);
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
sqlite3Config.m.xFree(p);
sqlite3_mutex_leave(mem0.mutex);
}else{
sqlite3Config.m.xFree(p);
}
}
/*
** Free memory that might be associated with a particular database
** connection.
*/
void sqlite3DbFree(sqlite3 *db, void *p){
if( isLookaside(db, p) ){
LookasideSlot *pBuf = (LookasideSlot*)p;
pBuf->pNext = db->lookaside.pFree;
db->lookaside.pFree = pBuf;
db->lookaside.nOut--;
}else{
sqlite3_free(p);
}
}
/*
** Change the size of an existing memory allocation
*/
void *sqlite3Realloc(void *pOld, int nBytes){
int nOld, nNew;
void *pNew;
if( pOld==0 ){
return sqlite3Malloc(nBytes);
}
if( nBytes<=0 ){
sqlite3_free(pOld);
return 0;
}
nOld = sqlite3MallocSize(pOld);
if( sqlite3Config.bMemstat ){
sqlite3_mutex_enter(mem0.mutex);
sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
nNew = sqlite3Config.m.xRoundup(nBytes);
if( nOld==nNew ){
pNew = pOld;
}else{
if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
mem0.alarmThreshold ){
sqlite3MallocAlarm(nNew-nOld);
}
pNew = sqlite3Config.m.xRealloc(pOld, nNew);
if( pNew==0 && mem0.alarmCallback ){
sqlite3MallocAlarm(nBytes);
pNew = sqlite3Config.m.xRealloc(pOld, nNew);
}
if( pNew ){
nNew = sqlite3MallocSize(pNew);
sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
}
}
sqlite3_mutex_leave(mem0.mutex);
}else{
pNew = sqlite3Config.m.xRealloc(pOld, nBytes);
}
return pNew;
}
/*
** The public interface to sqlite3Realloc. Make sure that the memory
** subsystem is initialized prior to invoking sqliteRealloc.
*/
void *sqlite3_realloc(void *pOld, int n){
#ifndef SQLITE_OMIT_AUTOINIT
if( sqlite3_initialize() ) return 0;
#endif
return sqlite3Realloc(pOld, n);
}
/*
** Allocate and zero memory.
*/
void *sqlite3MallocZero(int n){
void *p = sqlite3Malloc(n);
if( p ){
memset(p, 0, n);
}
return p;
}
/*
** Allocate and zero memory. If the allocation fails, make
** the mallocFailed flag in the connection pointer.
*/
void *sqlite3DbMallocZero(sqlite3 *db, int n){
void *p = sqlite3DbMallocRaw(db, n);
if( p ){
memset(p, 0, n);
}
return p;
}
/*
** Allocate and zero memory. If the allocation fails, make
** the mallocFailed flag in the connection pointer.
*/
void *sqlite3DbMallocRaw(sqlite3 *db, int n){
void *p;
if( db ){
LookasideSlot *pBuf;
if( db->mallocFailed ){
return 0;
}
if( db->lookaside.bEnabled && n<=db->lookaside.sz
&& (pBuf = db->lookaside.pFree)!=0 ){
db->lookaside.pFree = pBuf->pNext;
db->lookaside.nOut++;
if( db->lookaside.nOut>db->lookaside.mxOut ){
db->lookaside.mxOut = db->lookaside.nOut;
}
return (void*)pBuf;
}
}
p = sqlite3Malloc(n);
if( !p && db ){
db->mallocFailed = 1;
}
return p;
}
/*
** Resize the block of memory pointed to by p to n bytes. If the
** resize fails, set the mallocFailed flag in the connection object.
*/
void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
void *pNew = 0;
if( db->mallocFailed==0 ){
if( p==0 ){
return sqlite3DbMallocRaw(db, n);
}
if( isLookaside(db, p) ){
if( n<=db->lookaside.sz ){
return p;
}
pNew = sqlite3DbMallocRaw(db, n);
if( pNew ){
memcpy(pNew, p, db->lookaside.sz);
sqlite3DbFree(db, p);
}
}else{
pNew = sqlite3_realloc(p, n);
if( !pNew ){
db->mallocFailed = 1;
}
}
}
return pNew;
}
/*
** Attempt to reallocate p. If the reallocation fails, then free p
** and set the mallocFailed flag in the database connection.
*/
void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
void *pNew;
pNew = sqlite3DbRealloc(db, p, n);
if( !pNew ){
sqlite3DbFree(db, p);
}
return pNew;
}
/*
** Make a copy of a string in memory obtained from sqliteMalloc(). These
** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
** is because when memory debugging is turned on, these two functions are
** called via macros that record the current file and line number in the
** ThreadData structure.
*/
char *sqlite3DbStrDup(sqlite3 *db, const char *z){
char *zNew;
size_t n;
if( z==0 ){
return 0;
}
n = strlen(z)+1;
assert( (n&0x7fffffff)==n );
zNew = sqlite3DbMallocRaw(db, (int)n);
if( zNew ){
memcpy(zNew, z, n);
}
return zNew;
}
char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
char *zNew;
if( z==0 ){
return 0;
}
assert( (n&0x7fffffff)==n );
zNew = sqlite3DbMallocRaw(db, n+1);
if( zNew ){
memcpy(zNew, z, n);
zNew[n] = 0;
}
return zNew;
}
/*
** Create a string from the zFromat argument and the va_list that follows.
** Store the string in memory obtained from sqliteMalloc() and make *pz
** point to that string.
*/
void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
va_list ap;
char *z;
va_start(ap, zFormat);
z = sqlite3VMPrintf(db, zFormat, ap);
va_end(ap);
sqlite3DbFree(db, *pz);
*pz = z;
}
/*
** This function must be called before exiting any API function (i.e.
** returning control to the user) that has called sqlite3_malloc or
** sqlite3_realloc.
**
** The returned value is normally a copy of the second argument to this
** function. However, if a malloc() failure has occured since the previous
** invocation SQLITE_NOMEM is returned instead.
**
** If the first argument, db, is not NULL and a malloc() error has occured,
** then the connection error-code (the value returned by sqlite3_errcode())
** is set to SQLITE_NOMEM.
*/
int sqlite3ApiExit(sqlite3* db, int rc){
/* If the db handle is not NULL, then we must hold the connection handle
** mutex here. Otherwise the read (and possible write) of db->mallocFailed
** is unsafe, as is the call to sqlite3Error().
*/
assert( !db || sqlite3_mutex_held(db->mutex) );
if( db && db->mallocFailed ){
sqlite3Error(db, SQLITE_NOMEM, 0);
db->mallocFailed = 0;
rc = SQLITE_NOMEM;
}
return rc & (db ? db->errMask : 0xff);
}