persistentstorage/sql/SQLite/select.c
author Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
Thu, 02 Sep 2010 22:18:45 +0300
changeset 46 826b40dcb0a8
parent 17 55f2396f6d25
child 45 cc28652e0254
permissions -rw-r--r--
Revision: 201035 Kit: 201035

/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.463 2008/08/04 03:51:24 danielk1977 Exp $
*/
#include "sqliteInt.h"


/*
** Delete all the content of a Select structure but do not deallocate
** the select structure itself.
*/
static void clearSelect(sqlite3 *db, Select *p){
  sqlite3ExprListDelete(db, p->pEList);
  sqlite3SrcListDelete(db, p->pSrc);
  sqlite3ExprDelete(db, p->pWhere);
  sqlite3ExprListDelete(db, p->pGroupBy);
  sqlite3ExprDelete(db, p->pHaving);
  sqlite3ExprListDelete(db, p->pOrderBy);
  sqlite3SelectDelete(db, p->pPrior);
  sqlite3ExprDelete(db, p->pLimit);
  sqlite3ExprDelete(db, p->pOffset);
}

/*
** Initialize a SelectDest structure.
*/
void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
  pDest->eDest = eDest;
  pDest->iParm = iParm;
  pDest->affinity = 0;
  pDest->iMem = 0;
  pDest->nMem = 0;
}


/*
** Allocate a new Select structure and return a pointer to that
** structure.
*/
Select *sqlite3SelectNew(
  Parse *pParse,        /* Parsing context */
  ExprList *pEList,     /* which columns to include in the result */
  SrcList *pSrc,        /* the FROM clause -- which tables to scan */
  Expr *pWhere,         /* the WHERE clause */
  ExprList *pGroupBy,   /* the GROUP BY clause */
  Expr *pHaving,        /* the HAVING clause */
  ExprList *pOrderBy,   /* the ORDER BY clause */
  int isDistinct,       /* true if the DISTINCT keyword is present */
  Expr *pLimit,         /* LIMIT value.  NULL means not used */
  Expr *pOffset         /* OFFSET value.  NULL means no offset */
){
  Select *pNew;
  Select standin;
  sqlite3 *db = pParse->db;
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
  assert( !pOffset || pLimit );   /* Can't have OFFSET without LIMIT. */
  if( pNew==0 ){
    pNew = &standin;
    memset(pNew, 0, sizeof(*pNew));
  }
  if( pEList==0 ){
    pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0,0,0), 0);
  }
  pNew->pEList = pEList;
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
  pNew->pOrderBy = pOrderBy;
  pNew->isDistinct = isDistinct;
  pNew->op = TK_SELECT;
  assert( pOffset==0 || pLimit!=0 );
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  pNew->addrOpenEphm[2] = -1;
  if( pNew==&standin) {
    clearSelect(db, pNew);
    pNew = 0;
  }
  return pNew;
}

/*
** Delete the given Select structure and all of its substructures.
*/
void sqlite3SelectDelete(sqlite3 *db, Select *p){
  if( p ){
    clearSelect(db, p);
    sqlite3DbFree(db, p);
  }
}

/*
** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the
** type of join.  Return an integer constant that expresses that type
** in terms of the following bit values:
**
**     JT_INNER
**     JT_CROSS
**     JT_OUTER
**     JT_NATURAL
**     JT_LEFT
**     JT_RIGHT
**
** A full outer join is the combination of JT_LEFT and JT_RIGHT.
**
** If an illegal or unsupported join type is seen, then still return
** a join type, but put an error in the pParse structure.
*/
int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
  int jointype = 0;
  Token *apAll[3];
  Token *p;
  static const struct {
    const char zKeyword[8];
    u8 nChar;
    u8 code;
  } keywords[] = {
    { "natural", 7, JT_NATURAL },
    { "left",    4, JT_LEFT|JT_OUTER },
    { "right",   5, JT_RIGHT|JT_OUTER },
    { "full",    4, JT_LEFT|JT_RIGHT|JT_OUTER },
    { "outer",   5, JT_OUTER },
    { "inner",   5, JT_INNER },
    { "cross",   5, JT_INNER|JT_CROSS },
  };
  int i, j;
  apAll[0] = pA;
  apAll[1] = pB;
  apAll[2] = pC;
  for(i=0; i<3 && apAll[i]; i++){
    p = apAll[i];
    for(j=0; j<sizeof(keywords)/sizeof(keywords[0]); j++){
      if( p->n==keywords[j].nChar 
          && sqlite3StrNICmp((char*)p->z, keywords[j].zKeyword, p->n)==0 ){
        jointype |= keywords[j].code;
        break;
      }
    }
    if( j>=sizeof(keywords)/sizeof(keywords[0]) ){
      jointype |= JT_ERROR;
      break;
    }
  }
  if(
     (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
     (jointype & JT_ERROR)!=0
  ){
    const char *zSp = " ";
    assert( pB!=0 );
    if( pC==0 ){ zSp++; }
    sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
       "%T %T%s%T", pA, pB, zSp, pC);
    jointype = JT_INNER;
  }else if( jointype & JT_RIGHT ){
    sqlite3ErrorMsg(pParse, 
      "RIGHT and FULL OUTER JOINs are not currently supported");
    jointype = JT_INNER;
  }
  return jointype;
}

/*
** Return the index of a column in a table.  Return -1 if the column
** is not contained in the table.
*/
static int columnIndex(Table *pTab, const char *zCol){
  int i;
  for(i=0; i<pTab->nCol; i++){
    if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i;
  }
  return -1;
}

/*
** Set the value of a token to a '\000'-terminated string.
*/
static void setToken(Token *p, const char *z){
  p->z = (u8*)z;
  p->n = z ? strlen(z) : 0;
  p->dyn = 0;
}

/*
** Set the token to the double-quoted and escaped version of the string pointed
** to by z. For example;
**
**    {a"bc}  ->  {"a""bc"}
*/
static void setQuotedToken(Parse *pParse, Token *p, const char *z){

  /* Check if the string contains any " characters. If it does, then
  ** this function will malloc space to create a quoted version of
  ** the string in. Otherwise, save a call to sqlite3MPrintf() by
  ** just copying the pointer to the string.
  */
  const char *z2 = z;
  while( *z2 ){
    if( *z2=='"' ) break;
    z2++;
  }

  if( *z2 ){
    /* String contains " characters - copy and quote the string. */
    p->z = (u8 *)sqlite3MPrintf(pParse->db, "\"%w\"", z);
    if( p->z ){
      p->n = strlen((char *)p->z);
      p->dyn = 1;
    }
  }else{
    /* String contains no " characters - copy the pointer. */
    p->z = (u8*)z;
    p->n = (z2 - z);
    p->dyn = 0;
  }
}

/*
** Create an expression node for an identifier with the name of zName
*/
Expr *sqlite3CreateIdExpr(Parse *pParse, const char *zName){
  Token dummy;
  setToken(&dummy, zName);
  return sqlite3PExpr(pParse, TK_ID, 0, 0, &dummy);
}

/*
** Add a term to the WHERE expression in *ppExpr that requires the
** zCol column to be equal in the two tables pTab1 and pTab2.
*/
static void addWhereTerm(
  Parse *pParse,           /* Parsing context */
  const char *zCol,        /* Name of the column */
  const Table *pTab1,      /* First table */
  const char *zAlias1,     /* Alias for first table.  May be NULL */
  const Table *pTab2,      /* Second table */
  const char *zAlias2,     /* Alias for second table.  May be NULL */
  int iRightJoinTable,     /* VDBE cursor for the right table */
  Expr **ppExpr,           /* Add the equality term to this expression */
  int isOuterJoin          /* True if dealing with an OUTER join */
){
  Expr *pE1a, *pE1b, *pE1c;
  Expr *pE2a, *pE2b, *pE2c;
  Expr *pE;

  pE1a = sqlite3CreateIdExpr(pParse, zCol);
  pE2a = sqlite3CreateIdExpr(pParse, zCol);
  if( zAlias1==0 ){
    zAlias1 = pTab1->zName;
  }
  pE1b = sqlite3CreateIdExpr(pParse, zAlias1);
  if( zAlias2==0 ){
    zAlias2 = pTab2->zName;
  }
  pE2b = sqlite3CreateIdExpr(pParse, zAlias2);
  pE1c = sqlite3PExpr(pParse, TK_DOT, pE1b, pE1a, 0);
  pE2c = sqlite3PExpr(pParse, TK_DOT, pE2b, pE2a, 0);
  pE = sqlite3PExpr(pParse, TK_EQ, pE1c, pE2c, 0);
  if( pE && isOuterJoin ){
    ExprSetProperty(pE, EP_FromJoin);
    pE->iRightJoinTable = iRightJoinTable;
  }
  *ppExpr = sqlite3ExprAnd(pParse->db,*ppExpr, pE);
}

/*
** Set the EP_FromJoin property on all terms of the given expression.
** And set the Expr.iRightJoinTable to iTable for every term in the
** expression.
**
** The EP_FromJoin property is used on terms of an expression to tell
** the LEFT OUTER JOIN processing logic that this term is part of the
** join restriction specified in the ON or USING clause and not a part
** of the more general WHERE clause.  These terms are moved over to the
** WHERE clause during join processing but we need to remember that they
** originated in the ON or USING clause.
**
** The Expr.iRightJoinTable tells the WHERE clause processing that the
** expression depends on table iRightJoinTable even if that table is not
** explicitly mentioned in the expression.  That information is needed
** for cases like this:
**
**    SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
**
** The where clause needs to defer the handling of the t1.x=5
** term until after the t2 loop of the join.  In that way, a
** NULL t2 row will be inserted whenever t1.x!=5.  If we do not
** defer the handling of t1.x=5, it will be processed immediately
** after the t1 loop and rows with t1.x!=5 will never appear in
** the output, which is incorrect.
*/
static void setJoinExpr(Expr *p, int iTable){
  while( p ){
    ExprSetProperty(p, EP_FromJoin);
    p->iRightJoinTable = iTable;
    setJoinExpr(p->pLeft, iTable);
    p = p->pRight;
  } 
}

/*
** This routine processes the join information for a SELECT statement.
** ON and USING clauses are converted into extra terms of the WHERE clause.
** NATURAL joins also create extra WHERE clause terms.
**
** The terms of a FROM clause are contained in the Select.pSrc structure.
** The left most table is the first entry in Select.pSrc.  The right-most
** table is the last entry.  The join operator is held in the entry to
** the left.  Thus entry 0 contains the join operator for the join between
** entries 0 and 1.  Any ON or USING clauses associated with the join are
** also attached to the left entry.
**
** This routine returns the number of errors encountered.
*/
static int sqliteProcessJoin(Parse *pParse, Select *p){
  SrcList *pSrc;                  /* All tables in the FROM clause */
  int i, j;                       /* Loop counters */
  struct SrcList_item *pLeft;     /* Left table being joined */
  struct SrcList_item *pRight;    /* Right table being joined */

  pSrc = p->pSrc;
  pLeft = &pSrc->a[0];
  pRight = &pLeft[1];
  for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
    Table *pLeftTab = pLeft->pTab;
    Table *pRightTab = pRight->pTab;
    int isOuter;

    if( pLeftTab==0 || pRightTab==0 ) continue;
    isOuter = (pRight->jointype & JT_OUTER)!=0;

    /* When the NATURAL keyword is present, add WHERE clause terms for
    ** every column that the two tables have in common.
    */
    if( pRight->jointype & JT_NATURAL ){
      if( pRight->pOn || pRight->pUsing ){
        sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
           "an ON or USING clause", 0);
        return 1;
      }
      for(j=0; j<pLeftTab->nCol; j++){
        char *zName = pLeftTab->aCol[j].zName;
        if( columnIndex(pRightTab, zName)>=0 ){
          addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
                              pRightTab, pRight->zAlias,
                              pRight->iCursor, &p->pWhere, isOuter);
          
        }
      }
    }

    /* Disallow both ON and USING clauses in the same join
    */
    if( pRight->pOn && pRight->pUsing ){
      sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
        "clauses in the same join");
      return 1;
    }

    /* Add the ON clause to the end of the WHERE clause, connected by
    ** an AND operator.
    */
    if( pRight->pOn ){
      if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor);
      p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn);
      pRight->pOn = 0;
    }

    /* Create extra terms on the WHERE clause for each column named
    ** in the USING clause.  Example: If the two tables to be joined are 
    ** A and B and the USING clause names X, Y, and Z, then add this
    ** to the WHERE clause:    A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
    ** Report an error if any column mentioned in the USING clause is
    ** not contained in both tables to be joined.
    */
    if( pRight->pUsing ){
      IdList *pList = pRight->pUsing;
      for(j=0; j<pList->nId; j++){
        char *zName = pList->a[j].zName;
        if( columnIndex(pLeftTab, zName)<0 || columnIndex(pRightTab, zName)<0 ){
          sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
            "not present in both tables", zName);
          return 1;
        }
        addWhereTerm(pParse, zName, pLeftTab, pLeft->zAlias, 
                            pRightTab, pRight->zAlias,
                            pRight->iCursor, &p->pWhere, isOuter);
      }
    }
  }
  return 0;
}

/*
** Insert code into "v" that will push the record on the top of the
** stack into the sorter.
*/
static void pushOntoSorter(
  Parse *pParse,         /* Parser context */
  ExprList *pOrderBy,    /* The ORDER BY clause */
  Select *pSelect,       /* The whole SELECT statement */
  int regData            /* Register holding data to be sorted */
){
  Vdbe *v = pParse->pVdbe;
  int nExpr = pOrderBy->nExpr;
  int regBase = sqlite3GetTempRange(pParse, nExpr+2);
  int regRecord = sqlite3GetTempReg(pParse);
  sqlite3ExprCodeExprList(pParse, pOrderBy, regBase, 0);
  sqlite3VdbeAddOp2(v, OP_Sequence, pOrderBy->iECursor, regBase+nExpr);
  sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+1, 1);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nExpr + 2, regRecord);
  sqlite3VdbeAddOp2(v, OP_IdxInsert, pOrderBy->iECursor, regRecord);
  sqlite3ReleaseTempReg(pParse, regRecord);
  sqlite3ReleaseTempRange(pParse, regBase, nExpr+2);
  if( pSelect->iLimit ){
    int addr1, addr2;
    int iLimit;
    if( pSelect->iOffset ){
      iLimit = pSelect->iOffset+1;
    }else{
      iLimit = pSelect->iLimit;
    }
    addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit);
    sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
    addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
    sqlite3VdbeJumpHere(v, addr1);
    sqlite3VdbeAddOp1(v, OP_Last, pOrderBy->iECursor);
    sqlite3VdbeAddOp1(v, OP_Delete, pOrderBy->iECursor);
    sqlite3VdbeJumpHere(v, addr2);
    pSelect->iLimit = 0;
  }
}

/*
** Add code to implement the OFFSET
*/
static void codeOffset(
  Vdbe *v,          /* Generate code into this VM */
  Select *p,        /* The SELECT statement being coded */
  int iContinue     /* Jump here to skip the current record */
){
  if( p->iOffset && iContinue!=0 ){
    int addr;
    sqlite3VdbeAddOp2(v, OP_AddImm, p->iOffset, -1);
    addr = sqlite3VdbeAddOp1(v, OP_IfNeg, p->iOffset);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, iContinue);
    VdbeComment((v, "skip OFFSET records"));
    sqlite3VdbeJumpHere(v, addr);
  }
}

/*
** Add code that will check to make sure the N registers starting at iMem
** form a distinct entry.  iTab is a sorting index that holds previously
** seen combinations of the N values.  A new entry is made in iTab
** if the current N values are new.
**
** A jump to addrRepeat is made and the N+1 values are popped from the
** stack if the top N elements are not distinct.
*/
static void codeDistinct(
  Parse *pParse,     /* Parsing and code generating context */
  int iTab,          /* A sorting index used to test for distinctness */
  int addrRepeat,    /* Jump to here if not distinct */
  int N,             /* Number of elements */
  int iMem           /* First element */
){
  Vdbe *v;
  int r1;

  v = pParse->pVdbe;
  r1 = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
  sqlite3VdbeAddOp3(v, OP_Found, iTab, addrRepeat, r1);
  sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1);
  sqlite3ReleaseTempReg(pParse, r1);
}

/*
** Generate an error message when a SELECT is used within a subexpression
** (example:  "a IN (SELECT * FROM table)") but it has more than 1 result
** column.  We do this in a subroutine because the error occurs in multiple
** places.
*/
static int checkForMultiColumnSelectError(
  Parse *pParse,       /* Parse context. */
  SelectDest *pDest,   /* Destination of SELECT results */
  int nExpr            /* Number of result columns returned by SELECT */
){
  int eDest = pDest->eDest;
  if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){
    sqlite3ErrorMsg(pParse, "only a single result allowed for "
       "a SELECT that is part of an expression");
    return 1;
  }else{
    return 0;
  }
}

/*
** This routine generates the code for the inside of the inner loop
** of a SELECT.
**
** If srcTab and nColumn are both zero, then the pEList expressions
** are evaluated in order to get the data for this row.  If nColumn>0
** then data is pulled from srcTab and pEList is used only to get the
** datatypes for each column.
*/
static void selectInnerLoop(
  Parse *pParse,          /* The parser context */
  Select *p,              /* The complete select statement being coded */
  ExprList *pEList,       /* List of values being extracted */
  int srcTab,             /* Pull data from this table */
  int nColumn,            /* Number of columns in the source table */
  ExprList *pOrderBy,     /* If not NULL, sort results using this key */
  int distinct,           /* If >=0, make sure results are distinct */
  SelectDest *pDest,      /* How to dispose of the results */
  int iContinue,          /* Jump here to continue with next row */
  int iBreak              /* Jump here to break out of the inner loop */
){
  Vdbe *v = pParse->pVdbe;
  int i;
  int hasDistinct;        /* True if the DISTINCT keyword is present */
  int regResult;              /* Start of memory holding result set */
  int eDest = pDest->eDest;   /* How to dispose of results */
  int iParm = pDest->iParm;   /* First argument to disposal method */
  int nResultCol;             /* Number of result columns */

  if( v==0 ) return;
  assert( pEList!=0 );
  hasDistinct = distinct>=0;
  if( pOrderBy==0 && !hasDistinct ){
    codeOffset(v, p, iContinue);
  }

  /* Pull the requested columns.
  */
  if( nColumn>0 ){
    nResultCol = nColumn;
  }else{
    nResultCol = pEList->nExpr;
  }
  if( pDest->iMem==0 ){
    pDest->iMem = pParse->nMem+1;
    pDest->nMem = nResultCol;
    pParse->nMem += nResultCol;
  }else if( pDest->nMem!=nResultCol ){
    /* This happens when two SELECTs of a compound SELECT have differing
    ** numbers of result columns.  The error message will be generated by
    ** a higher-level routine. */
    return;
  }
  regResult = pDest->iMem;
  if( nColumn>0 ){
    for(i=0; i<nColumn; i++){
      sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
    }
  }else if( eDest!=SRT_Exists ){
    /* If the destination is an EXISTS(...) expression, the actual
    ** values returned by the SELECT are not required.
    */
    sqlite3ExprCodeExprList(pParse, pEList, regResult, eDest==SRT_Callback);
  }
  nColumn = nResultCol;

  /* If the DISTINCT keyword was present on the SELECT statement
  ** and this row has been seen before, then do not make this row
  ** part of the result.
  */
  if( hasDistinct ){
    assert( pEList!=0 );
    assert( pEList->nExpr==nColumn );
    codeDistinct(pParse, distinct, iContinue, nColumn, regResult);
    if( pOrderBy==0 ){
      codeOffset(v, p, iContinue);
    }
  }

  if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
    return;
  }

  switch( eDest ){
    /* In this mode, write each query result to the key of the temporary
    ** table iParm.
    */
#ifndef SQLITE_OMIT_COMPOUND_SELECT
    case SRT_Union: {
      int r1;
      r1 = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
      sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

    /* Construct a record from the query result, but instead of
    ** saving that record, use it as a key to delete elements from
    ** the temporary table iParm.
    */
    case SRT_Except: {
      sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nColumn);
      break;
    }
#endif

    /* Store the result as data using a unique key.
    */
    case SRT_Table:
    case SRT_EphemTab: {
      int r1 = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
      if( pOrderBy ){
        pushOntoSorter(pParse, pOrderBy, p, r1);
      }else{
        int r2 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
        sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
        sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
        sqlite3ReleaseTempReg(pParse, r2);
      }
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    ** then there should be a single item on the stack.  Write this
    ** item into the set table with bogus data.
    */
    case SRT_Set: {
      assert( nColumn==1 );
      p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
      if( pOrderBy ){
        /* At first glance you would think we could optimize out the
        ** ORDER BY in this case since the order of entries in the set
        ** does not matter.  But there might be a LIMIT clause, in which
        ** case the order does matter */
        pushOntoSorter(pParse, pOrderBy, p, regResult);
      }else{
        int r1 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, 1, r1, &p->affinity, 1);
        sqlite3ExprCacheAffinityChange(pParse, regResult, 1);
        sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1);
        sqlite3ReleaseTempReg(pParse, r1);
      }
      break;
    }

    /* If any row exist in the result set, record that fact and abort.
    */
    case SRT_Exists: {
      sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
      /* The LIMIT clause will terminate the loop for us */
      break;
    }

    /* If this is a scalar select that is part of an expression, then
    ** store the results in the appropriate memory cell and break out
    ** of the scan loop.
    */
    case SRT_Mem: {
      assert( nColumn==1 );
      if( pOrderBy ){
        pushOntoSorter(pParse, pOrderBy, p, regResult);
      }else{
        sqlite3ExprCodeMove(pParse, regResult, iParm, 1);
        /* The LIMIT clause will jump out of the loop for us */
      }
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */

    /* Send the data to the callback function or to a subroutine.  In the
    ** case of a subroutine, the subroutine itself is responsible for
    ** popping the data from the stack.
    */
    case SRT_Coroutine:
    case SRT_Callback: {
      if( pOrderBy ){
        int r1 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
        pushOntoSorter(pParse, pOrderBy, p, r1);
        sqlite3ReleaseTempReg(pParse, r1);
      }else if( eDest==SRT_Coroutine ){
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
      }else{
        sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
        sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
      }
      break;
    }

#if !defined(SQLITE_OMIT_TRIGGER)
    /* Discard the results.  This is used for SELECT statements inside
    ** the body of a TRIGGER.  The purpose of such selects is to call
    ** user-defined functions that have side effects.  We do not care
    ** about the actual results of the select.
    */
    default: {
      assert( eDest==SRT_Discard );
      break;
    }
#endif
  }

  /* Jump to the end of the loop if the LIMIT is reached.
  */
  if( p->iLimit ){
    assert( pOrderBy==0 );  /* If there is an ORDER BY, the call to
                            ** pushOntoSorter() would have cleared p->iLimit */
    sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
    sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
  }
}

/*
** Given an expression list, generate a KeyInfo structure that records
** the collating sequence for each expression in that expression list.
**
** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
** KeyInfo structure is appropriate for initializing a virtual index to
** implement that clause.  If the ExprList is the result set of a SELECT
** then the KeyInfo structure is appropriate for initializing a virtual
** index to implement a DISTINCT test.
**
** Space to hold the KeyInfo structure is obtain from malloc.  The calling
** function is responsible for seeing that this structure is eventually
** freed.  Add the KeyInfo structure to the P4 field of an opcode using
** P4_KEYINFO_HANDOFF is the usual way of dealing with this.
*/
static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){
  sqlite3 *db = pParse->db;
  int nExpr;
  KeyInfo *pInfo;
  struct ExprList_item *pItem;
  int i;

  nExpr = pList->nExpr;
  pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) );
  if( pInfo ){
    pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr];
    pInfo->nField = nExpr;
    pInfo->enc = ENC(db);
    for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){
      CollSeq *pColl;
      pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
      if( !pColl ){
        pColl = db->pDfltColl;
      }
      pInfo->aColl[i] = pColl;
      pInfo->aSortOrder[i] = pItem->sortOrder;
    }
  }
  return pInfo;
}


/*
** If the inner loop was generated using a non-null pOrderBy argument,
** then the results were placed in a sorter.  After the loop is terminated
** we need to run the sorter and output the results.  The following
** routine generates the code needed to do that.
*/
static void generateSortTail(
  Parse *pParse,    /* Parsing context */
  Select *p,        /* The SELECT statement */
  Vdbe *v,          /* Generate code into this VDBE */
  int nColumn,      /* Number of columns of data */
  SelectDest *pDest /* Write the sorted results here */
){
  int brk = sqlite3VdbeMakeLabel(v);
  int cont = sqlite3VdbeMakeLabel(v);
  int addr;
  int iTab;
  int pseudoTab = 0;
  ExprList *pOrderBy = p->pOrderBy;

  int eDest = pDest->eDest;
  int iParm = pDest->iParm;

  int regRow;
  int regRowid;

  iTab = pOrderBy->iECursor;
  if( eDest==SRT_Callback || eDest==SRT_Coroutine ){
    pseudoTab = pParse->nTab++;
    sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, nColumn);
    sqlite3VdbeAddOp2(v, OP_OpenPseudo, pseudoTab, eDest==SRT_Callback);
  }
  addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, brk);
  codeOffset(v, p, cont);
  regRow = sqlite3GetTempReg(pParse);
  regRowid = sqlite3GetTempReg(pParse);
  sqlite3VdbeAddOp3(v, OP_Column, iTab, pOrderBy->nExpr + 1, regRow);
  switch( eDest ){
    case SRT_Table:
    case SRT_EphemTab: {
      sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
      sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case SRT_Set: {
      assert( nColumn==1 );
      sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, &p->affinity, 1);
      sqlite3ExprCacheAffinityChange(pParse, regRow, 1);
      sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid);
      break;
    }
    case SRT_Mem: {
      assert( nColumn==1 );
      sqlite3ExprCodeMove(pParse, regRow, iParm, 1);
      /* The LIMIT clause will terminate the loop for us */
      break;
    }
#endif
    case SRT_Callback:
    case SRT_Coroutine: {
      int i;
      sqlite3VdbeAddOp2(v, OP_Integer, 1, regRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, pseudoTab, regRow, regRowid);
      for(i=0; i<nColumn; i++){
        assert( regRow!=pDest->iMem+i );
        sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
      }
      if( eDest==SRT_Callback ){
        sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
        sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
      }else{
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
      }
      break;
    }
    default: {
      /* Do nothing */
      break;
    }
  }
  sqlite3ReleaseTempReg(pParse, regRow);
  sqlite3ReleaseTempReg(pParse, regRowid);

  /* LIMIT has been implemented by the pushOntoSorter() routine.
  */
  assert( p->iLimit==0 );

  /* The bottom of the loop
  */
  sqlite3VdbeResolveLabel(v, cont);
  sqlite3VdbeAddOp2(v, OP_Next, iTab, addr);
  sqlite3VdbeResolveLabel(v, brk);
  if( eDest==SRT_Callback || eDest==SRT_Coroutine ){
    sqlite3VdbeAddOp2(v, OP_Close, pseudoTab, 0);
  }

}

/*
** Return a pointer to a string containing the 'declaration type' of the
** expression pExpr. The string may be treated as static by the caller.
**
** The declaration type is the exact datatype definition extracted from the
** original CREATE TABLE statement if the expression is a column. The
** declaration type for a ROWID field is INTEGER. Exactly when an expression
** is considered a column can be complex in the presence of subqueries. The
** result-set expression in all of the following SELECT statements is 
** considered a column by this function.
**
**   SELECT col FROM tbl;
**   SELECT (SELECT col FROM tbl;
**   SELECT (SELECT col FROM tbl);
**   SELECT abc FROM (SELECT col AS abc FROM tbl);
** 
** The declaration type for any expression other than a column is NULL.
*/
static const char *columnType(
  NameContext *pNC, 
  Expr *pExpr,
  const char **pzOriginDb,
  const char **pzOriginTab,
  const char **pzOriginCol
){
  char const *zType = 0;
  char const *zOriginDb = 0;
  char const *zOriginTab = 0;
  char const *zOriginCol = 0;
  int j;
  if( pExpr==0 || pNC->pSrcList==0 ) return 0;

  switch( pExpr->op ){
    case TK_AGG_COLUMN:
    case TK_COLUMN: {
      /* The expression is a column. Locate the table the column is being
      ** extracted from in NameContext.pSrcList. This table may be real
      ** database table or a subquery.
      */
      Table *pTab = 0;            /* Table structure column is extracted from */
      Select *pS = 0;             /* Select the column is extracted from */
      int iCol = pExpr->iColumn;  /* Index of column in pTab */
      while( pNC && !pTab ){
        SrcList *pTabList = pNC->pSrcList;
        for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
        if( j<pTabList->nSrc ){
          pTab = pTabList->a[j].pTab;
          pS = pTabList->a[j].pSelect;
        }else{
          pNC = pNC->pNext;
        }
      }

      if( pTab==0 ){
        /* FIX ME:
        ** This can occurs if you have something like "SELECT new.x;" inside
        ** a trigger.  In other words, if you reference the special "new"
        ** table in the result set of a select.  We do not have a good way
        ** to find the actual table type, so call it "TEXT".  This is really
        ** something of a bug, but I do not know how to fix it.
        **
        ** This code does not produce the correct answer - it just prevents
        ** a segfault.  See ticket #1229.
        */
        zType = "TEXT";
        break;
      }

      assert( pTab );
      if( pS ){
        /* The "table" is actually a sub-select or a view in the FROM clause
        ** of the SELECT statement. Return the declaration type and origin
        ** data for the result-set column of the sub-select.
        */
        if( iCol>=0 && iCol<pS->pEList->nExpr ){
          /* If iCol is less than zero, then the expression requests the
          ** rowid of the sub-select or view. This expression is legal (see 
          ** test case misc2.2.2) - it always evaluates to NULL.
          */
          NameContext sNC;
          Expr *p = pS->pEList->a[iCol].pExpr;
          sNC.pSrcList = pS->pSrc;
          sNC.pNext = 0;
          sNC.pParse = pNC->pParse;
          zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
        }
      }else if( pTab->pSchema ){
        /* A real table */
        assert( !pS );
        if( iCol<0 ) iCol = pTab->iPKey;
        assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
        if( iCol<0 ){
          zType = "INTEGER";
          zOriginCol = "rowid";
        }else{
          zType = pTab->aCol[iCol].zType;
          zOriginCol = pTab->aCol[iCol].zName;
        }
        zOriginTab = pTab->zName;
        if( pNC->pParse ){
          int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
          zOriginDb = pNC->pParse->db->aDb[iDb].zName;
        }
      }
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_SELECT: {
      /* The expression is a sub-select. Return the declaration type and
      ** origin info for the single column in the result set of the SELECT
      ** statement.
      */
      NameContext sNC;
      Select *pS = pExpr->pSelect;
      Expr *p = pS->pEList->a[0].pExpr;
      sNC.pSrcList = pS->pSrc;
      sNC.pNext = pNC;
      sNC.pParse = pNC->pParse;
      zType = columnType(&sNC, p, &zOriginDb, &zOriginTab, &zOriginCol); 
      break;
    }
#endif
  }
  
  if( pzOriginDb ){
    assert( pzOriginTab && pzOriginCol );
    *pzOriginDb = zOriginDb;
    *pzOriginTab = zOriginTab;
    *pzOriginCol = zOriginCol;
  }
  return zType;
}

/*
** Generate code that will tell the VDBE the declaration types of columns
** in the result set.
*/
static void generateColumnTypes(
  Parse *pParse,      /* Parser context */
  SrcList *pTabList,  /* List of tables */
  ExprList *pEList    /* Expressions defining the result set */
){
#ifndef SQLITE_OMIT_DECLTYPE
  Vdbe *v = pParse->pVdbe;
  int i;
  NameContext sNC;
  sNC.pSrcList = pTabList;
  sNC.pParse = pParse;
  for(i=0; i<pEList->nExpr; i++){
    Expr *p = pEList->a[i].pExpr;
    const char *zType;
#ifdef SQLITE_ENABLE_COLUMN_METADATA
    const char *zOrigDb = 0;
    const char *zOrigTab = 0;
    const char *zOrigCol = 0;
    zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);

    /* The vdbe must make its own copy of the column-type and other 
    ** column specific strings, in case the schema is reset before this
    ** virtual machine is deleted.
    */
    sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, P4_TRANSIENT);
    sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, P4_TRANSIENT);
    sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, P4_TRANSIENT);
#else
    zType = columnType(&sNC, p, 0, 0, 0);
#endif
    sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, P4_TRANSIENT);
  }
#endif /* SQLITE_OMIT_DECLTYPE */
}

/*
** Generate code that will tell the VDBE the names of columns
** in the result set.  This information is used to provide the
** azCol[] values in the callback.
*/
static void generateColumnNames(
  Parse *pParse,      /* Parser context */
  SrcList *pTabList,  /* List of tables */
  ExprList *pEList    /* Expressions defining the result set */
){
  Vdbe *v = pParse->pVdbe;
  int i, j;
  sqlite3 *db = pParse->db;
  int fullNames, shortNames;

#ifndef SQLITE_OMIT_EXPLAIN
  /* If this is an EXPLAIN, skip this step */
  if( pParse->explain ){
    return;
  }
#endif

  assert( v!=0 );
  if( pParse->colNamesSet || v==0 || db->mallocFailed ) return;
  pParse->colNamesSet = 1;
  fullNames = (db->flags & SQLITE_FullColNames)!=0;
  shortNames = (db->flags & SQLITE_ShortColNames)!=0;
  sqlite3VdbeSetNumCols(v, pEList->nExpr);
  for(i=0; i<pEList->nExpr; i++){
    Expr *p;
    p = pEList->a[i].pExpr;
    if( p==0 ) continue;
    if( pEList->a[i].zName ){
      char *zName = pEList->a[i].zName;
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, strlen(zName));
    }else if( p->op==TK_COLUMN && pTabList ){
      Table *pTab;
      char *zCol;
      int iCol = p->iColumn;
      for(j=0; j<pTabList->nSrc && pTabList->a[j].iCursor!=p->iTable; j++){}
      assert( j<pTabList->nSrc );
      pTab = pTabList->a[j].pTab;
      if( iCol<0 ) iCol = pTab->iPKey;
      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
      if( iCol<0 ){
        zCol = "rowid";
      }else{
        zCol = pTab->aCol[iCol].zName;
      }
      if( !shortNames && !fullNames ){
        sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
      }else if( fullNames || (!shortNames && pTabList->nSrc>1) ){
        char *zName = 0;
        char *zTab;
 
        zTab = pTabList->a[j].zAlias;
        if( fullNames || zTab==0 ) zTab = pTab->zName;
        zName = sqlite3MPrintf(db, "%s.%s", zTab, zCol);
        sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, P4_DYNAMIC);
      }else{
        sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, strlen(zCol));
      }
    }else{
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, (char*)p->span.z, p->span.n);
    }
  }
  generateColumnTypes(pParse, pTabList, pEList);
}

#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
** Name of the connection operator, used for error messages.
*/
static const char *selectOpName(int id){
  char *z;
  switch( id ){
    case TK_ALL:       z = "UNION ALL";   break;
    case TK_INTERSECT: z = "INTERSECT";   break;
    case TK_EXCEPT:    z = "EXCEPT";      break;
    default:           z = "UNION";       break;
  }
  return z;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */

/*
** Forward declaration
*/
static int prepSelectStmt(Parse*, Select*);

/*
** Given a SELECT statement, generate a Table structure that describes
** the result set of that SELECT.
*/
Table *sqlite3ResultSetOfSelect(Parse *pParse, char *zTabName, Select *pSelect){
  Table *pTab;
  int i, j, rc;
  ExprList *pEList;
  Column *aCol, *pCol;
  sqlite3 *db = pParse->db;
  int savedFlags;

  savedFlags = db->flags;
  db->flags &= ~SQLITE_FullColNames;
  db->flags |= SQLITE_ShortColNames;
  rc = sqlite3SelectResolve(pParse, pSelect, 0);
  if( rc==SQLITE_OK ){
    while( pSelect->pPrior ) pSelect = pSelect->pPrior;
    rc = prepSelectStmt(pParse, pSelect);
    if( rc==SQLITE_OK ){
      rc = sqlite3SelectResolve(pParse, pSelect, 0);
    }
  }
  db->flags = savedFlags;
  if( rc ){
    return 0;
  }
  pTab = sqlite3DbMallocZero(db, sizeof(Table) );
  if( pTab==0 ){
    return 0;
  }
  pTab->db = db;
  pTab->nRef = 1;
  pTab->zName = zTabName ? sqlite3DbStrDup(db, zTabName) : 0;
  pEList = pSelect->pEList;
  pTab->nCol = pEList->nExpr;
  assert( pTab->nCol>0 );
  pTab->aCol = aCol = sqlite3DbMallocZero(db, sizeof(pTab->aCol[0])*pTab->nCol);
  testcase( aCol==0 );
  for(i=0, pCol=aCol; i<pTab->nCol; i++, pCol++){
    Expr *p;
    char *zType;
    char *zName;
    int nName;
    CollSeq *pColl;
    int cnt;
    NameContext sNC;
    
    /* Get an appropriate name for the column
    */
    p = pEList->a[i].pExpr;
    assert( p->pRight==0 || p->pRight->token.z==0 || p->pRight->token.z[0]!=0 );
    if( (zName = pEList->a[i].zName)!=0 ){
      /* If the column contains an "AS <name>" phrase, use <name> as the name */
      zName = sqlite3DbStrDup(db, zName);
    }else if( p->op==TK_COLUMN && p->pTab ){
      /* For columns use the column name name */
      int iCol = p->iColumn;
      if( iCol<0 ) iCol = p->pTab->iPKey;
      zName = sqlite3MPrintf(db, "%s", p->pTab->aCol[iCol].zName);
    }else{
      /* Use the original text of the column expression as its name */
      zName = sqlite3MPrintf(db, "%T", &p->span);
    }
    if( db->mallocFailed ){
      sqlite3DbFree(db, zName);
      break;
    }
    sqlite3Dequote(zName);

    /* Make sure the column name is unique.  If the name is not unique,
    ** append a integer to the name so that it becomes unique.
    */
    nName = strlen(zName);
    for(j=cnt=0; j<i; j++){
      if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
        char *zNewName;
        zName[nName] = 0;
        zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
        sqlite3DbFree(db, zName);
        zName = zNewName;
        j = -1;
        if( zName==0 ) break;
      }
    }
    pCol->zName = zName;

    /* Get the typename, type affinity, and collating sequence for the
    ** column.
    */
    memset(&sNC, 0, sizeof(sNC));
    sNC.pSrcList = pSelect->pSrc;
    zType = sqlite3DbStrDup(db, columnType(&sNC, p, 0, 0, 0));
    pCol->zType = zType;
    pCol->affinity = sqlite3ExprAffinity(p);
    pColl = sqlite3ExprCollSeq(pParse, p);
    if( pColl ){
      pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
    }
  }
  pTab->iPKey = -1;
  if( db->mallocFailed ){
    sqlite3DeleteTable(pTab);
    return 0;
  }
  return pTab;
}

/*
** Prepare a SELECT statement for processing by doing the following
** things:
**
**    (1)  Make sure VDBE cursor numbers have been assigned to every
**         element of the FROM clause.
**
**    (2)  Fill in the pTabList->a[].pTab fields in the SrcList that 
**         defines FROM clause.  When views appear in the FROM clause,
**         fill pTabList->a[].pSelect with a copy of the SELECT statement
**         that implements the view.  A copy is made of the view's SELECT
**         statement so that we can freely modify or delete that statement
**         without worrying about messing up the presistent representation
**         of the view.
**
**    (3)  Add terms to the WHERE clause to accomodate the NATURAL keyword
**         on joins and the ON and USING clause of joins.
**
**    (4)  Scan the list of columns in the result set (pEList) looking
**         for instances of the "*" operator or the TABLE.* operator.
**         If found, expand each "*" to be every column in every table
**         and TABLE.* to be every column in TABLE.
**
** Return 0 on success.  If there are problems, leave an error message
** in pParse and return non-zero.
*/
static int prepSelectStmt(Parse *pParse, Select *p){
  int i, j, k, rc;
  SrcList *pTabList;
  ExprList *pEList;
  struct SrcList_item *pFrom;
  sqlite3 *db = pParse->db;

  if( p==0 || p->pSrc==0 || db->mallocFailed ){
    return 1;
  }
  pTabList = p->pSrc;
  pEList = p->pEList;

  /* Make sure cursor numbers have been assigned to all entries in
  ** the FROM clause of the SELECT statement.
  */
  sqlite3SrcListAssignCursors(pParse, p->pSrc);

  /* Look up every table named in the FROM clause of the select.  If
  ** an entry of the FROM clause is a subquery instead of a table or view,
  ** then create a transient table structure to describe the subquery.
  */
  for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
    Table *pTab;
    if( pFrom->pTab!=0 ){
      /* This statement has already been prepared.  There is no need
      ** to go further. */
      assert( i==0 );
      return 0;
    }
    if( pFrom->zName==0 ){
#ifndef SQLITE_OMIT_SUBQUERY
      /* A sub-query in the FROM clause of a SELECT */
      assert( pFrom->pSelect!=0 );
      if( pFrom->zAlias==0 ){
        pFrom->zAlias =
          sqlite3MPrintf(db, "sqlite_subquery_%p_", (void*)pFrom->pSelect);
      }
      assert( pFrom->pTab==0 );
      pFrom->pTab = pTab = 
        sqlite3ResultSetOfSelect(pParse, pFrom->zAlias, pFrom->pSelect);
      if( pTab==0 ){
        return 1;
      }
      /* The isEphem flag indicates that the Table structure has been
      ** dynamically allocated and may be freed at any time.  In other words,
      ** pTab is not pointing to a persistent table structure that defines
      ** part of the schema. */
      pTab->isEphem = 1;
#endif
    }else{
      /* An ordinary table or view name in the FROM clause */
      assert( pFrom->pTab==0 );
      pFrom->pTab = pTab = 
        sqlite3LocateTable(pParse,0,pFrom->zName,pFrom->zDatabase);
      if( pTab==0 ){
        return 1;
      }
      pTab->nRef++;
#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
      if( pTab->pSelect || IsVirtual(pTab) ){
        /* We reach here if the named table is a really a view */
        if( sqlite3ViewGetColumnNames(pParse, pTab) ){
          return 1;
        }
        /* If pFrom->pSelect!=0 it means we are dealing with a
        ** view within a view.  The SELECT structure has already been
        ** copied by the outer view so we can skip the copy step here
        ** in the inner view.
        */
        if( pFrom->pSelect==0 ){
          pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect);
        }
      }
#endif
    }
  }

  /* Process NATURAL keywords, and ON and USING clauses of joins.
  */
  if( sqliteProcessJoin(pParse, p) ) return 1;

  /* For every "*" that occurs in the column list, insert the names of
  ** all columns in all tables.  And for every TABLE.* insert the names
  ** of all columns in TABLE.  The parser inserted a special expression
  ** with the TK_ALL operator for each "*" that it found in the column list.
  ** The following code just has to locate the TK_ALL expressions and expand
  ** each one to the list of all columns in all tables.
  **
  ** The first loop just checks to see if there are any "*" operators
  ** that need expanding.
  */
  for(k=0; k<pEList->nExpr; k++){
    Expr *pE = pEList->a[k].pExpr;
    if( pE->op==TK_ALL ) break;
    if( pE->op==TK_DOT && pE->pRight && pE->pRight->op==TK_ALL
         && pE->pLeft && pE->pLeft->op==TK_ID ) break;
  }
  rc = 0;
  if( k<pEList->nExpr ){
    /*
    ** If we get here it means the result set contains one or more "*"
    ** operators that need to be expanded.  Loop through each expression
    ** in the result set and expand them one by one.
    */
    struct ExprList_item *a = pEList->a;
    ExprList *pNew = 0;
    int flags = pParse->db->flags;
    int longNames = (flags & SQLITE_FullColNames)!=0
                      && (flags & SQLITE_ShortColNames)==0;

    for(k=0; k<pEList->nExpr; k++){
      Expr *pE = a[k].pExpr;
      if( pE->op!=TK_ALL &&
           (pE->op!=TK_DOT || pE->pRight==0 || pE->pRight->op!=TK_ALL) ){
        /* This particular expression does not need to be expanded.
        */
        pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr, 0);
        if( pNew ){
          pNew->a[pNew->nExpr-1].zName = a[k].zName;
        }else{
          rc = 1;
        }
        a[k].pExpr = 0;
        a[k].zName = 0;
      }else{
        /* This expression is a "*" or a "TABLE.*" and needs to be
        ** expanded. */
        int tableSeen = 0;      /* Set to 1 when TABLE matches */
        char *zTName;            /* text of name of TABLE */
        if( pE->op==TK_DOT && pE->pLeft ){
          zTName = sqlite3NameFromToken(db, &pE->pLeft->token);
        }else{
          zTName = 0;
        }
        for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
          Table *pTab = pFrom->pTab;
          char *zTabName = pFrom->zAlias;
          if( zTabName==0 || zTabName[0]==0 ){ 
            zTabName = pTab->zName;
          }
          assert( zTabName );
          if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
            continue;
          }
          tableSeen = 1;
          for(j=0; j<pTab->nCol; j++){
            Expr *pExpr, *pRight;
            char *zName = pTab->aCol[j].zName;

            /* If a column is marked as 'hidden' (currently only possible
            ** for virtual tables), do not include it in the expanded
            ** result-set list.
            */
            if( IsHiddenColumn(&pTab->aCol[j]) ){
              assert(IsVirtual(pTab));
              continue;
            }

            if( i>0 ){
              struct SrcList_item *pLeft = &pTabList->a[i-1];
              if( (pLeft[1].jointype & JT_NATURAL)!=0 &&
                        columnIndex(pLeft->pTab, zName)>=0 ){
                /* In a NATURAL join, omit the join columns from the 
                ** table on the right */
                continue;
              }
              if( sqlite3IdListIndex(pLeft[1].pUsing, zName)>=0 ){
                /* In a join with a USING clause, omit columns in the
                ** using clause from the table on the right. */
                continue;
              }
            }
            pRight = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
            if( pRight==0 ) break;
            setQuotedToken(pParse, &pRight->token, zName);
            if( longNames || pTabList->nSrc>1 ){
              Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, 0);
              pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
              if( pExpr==0 ) break;
              setQuotedToken(pParse, &pLeft->token, zTabName);
#if 1
              setToken(&pExpr->span, 
                  sqlite3MPrintf(db, "%s.%s", zTabName, zName));
              pExpr->span.dyn = 1;
#else
              pExpr->span = pRight->token;
              pExpr->span.dyn = 0;
#endif
              pExpr->token.z = 0;
              pExpr->token.n = 0;
              pExpr->token.dyn = 0;
            }else{
              pExpr = pRight;
              pExpr->span = pExpr->token;
              pExpr->span.dyn = 0;
            }
            if( longNames ){
              pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pExpr->span);
            }else{
              pNew = sqlite3ExprListAppend(pParse, pNew, pExpr, &pRight->token);
            }
          }
        }
        if( !tableSeen ){
          if( zTName ){
            sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
          }else{
            sqlite3ErrorMsg(pParse, "no tables specified");
          }
          rc = 1;
        }
        sqlite3DbFree(db, zTName);
      }
    }
    sqlite3ExprListDelete(db, pEList);
    p->pEList = pNew;
  }
#if SQLITE_MAX_COLUMN
  if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
    sqlite3ErrorMsg(pParse, "too many columns in result set");
    rc = SQLITE_ERROR;
  }
#endif
  if( db->mallocFailed ){
    rc = SQLITE_NOMEM;
  }
  return rc;
}

/*
** pE is a pointer to an expression which is a single term in
** ORDER BY or GROUP BY clause.
**
** At the point this routine is called, we already know that the
** ORDER BY term is not an integer index into the result set.  That
** casee is handled by the calling routine.
**
** If pE is a well-formed expression and the SELECT statement
** is not compound, then return 0.  This indicates to the
** caller that it should sort by the value of the ORDER BY
** expression.
**
** If the SELECT is compound, then attempt to match pE against
** result set columns in the left-most SELECT statement.  Return
** the index i of the matching column, as an indication to the 
** caller that it should sort by the i-th column.  If there is
** no match, return -1 and leave an error message in pParse.
*/
static int matchOrderByTermToExprList(
  Parse *pParse,     /* Parsing context for error messages */
  Select *pSelect,   /* The SELECT statement with the ORDER BY clause */
  Expr *pE,          /* The specific ORDER BY term */
  int idx,           /* When ORDER BY term is this */
  int isCompound,    /* True if this is a compound SELECT */
  u8 *pHasAgg        /* True if expression contains aggregate functions */
){
  int i;             /* Loop counter */
  ExprList *pEList;  /* The columns of the result set */
  NameContext nc;    /* Name context for resolving pE */

  assert( sqlite3ExprIsInteger(pE, &i)==0 );
  pEList = pSelect->pEList;

  /* If the term is a simple identifier that try to match that identifier
  ** against a column name in the result set.
  */
  if( pE->op==TK_ID || (pE->op==TK_STRING && pE->token.z[0]!='\'') ){
    sqlite3 *db = pParse->db;
    char *zCol = sqlite3NameFromToken(db, &pE->token);
    if( zCol==0 ){
      return -1;
    }
    for(i=0; i<pEList->nExpr; i++){
      char *zAs = pEList->a[i].zName;
      if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){
        sqlite3DbFree(db, zCol);
        return i+1;
      }
    }
    sqlite3DbFree(db, zCol);
  }

  /* Resolve all names in the ORDER BY term expression
  */
  memset(&nc, 0, sizeof(nc));
  nc.pParse = pParse;
  nc.pSrcList = pSelect->pSrc;
  nc.pEList = pEList;
  nc.allowAgg = 1;
  nc.nErr = 0;
  if( sqlite3ExprResolveNames(&nc, pE) ){
    if( isCompound ){
      sqlite3ErrorClear(pParse);
      return 0;
    }else{
      return -1;
    }
  }
  if( nc.hasAgg && pHasAgg ){
    *pHasAgg = 1;
  }

  /* For a compound SELECT, we need to try to match the ORDER BY
  ** expression against an expression in the result set
  */
  if( isCompound ){
    for(i=0; i<pEList->nExpr; i++){
      if( sqlite3ExprCompare(pEList->a[i].pExpr, pE) ){
        return i+1;
      }
    }
  }
  return 0;
}


/*
** Analyze and ORDER BY or GROUP BY clause in a simple SELECT statement.
** Return the number of errors seen.
**
** Every term of the ORDER BY or GROUP BY clause needs to be an
** expression.  If any expression is an integer constant, then
** that expression is replaced by the corresponding 
** expression from the result set.
*/
static int processOrderGroupBy(
  Parse *pParse,        /* Parsing context.  Leave error messages here */
  Select *pSelect,      /* The SELECT statement containing the clause */
  ExprList *pOrderBy,   /* The ORDER BY or GROUP BY clause to be processed */
  int isOrder,          /* 1 for ORDER BY.  0 for GROUP BY */
  u8 *pHasAgg           /* Set to TRUE if any term contains an aggregate */
){
  int i;
  sqlite3 *db = pParse->db;
  ExprList *pEList;

  if( pOrderBy==0 || pParse->db->mallocFailed ) return 0;
#if SQLITE_MAX_COLUMN
  if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
    const char *zType = isOrder ? "ORDER" : "GROUP";
    sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType);
    return 1;
  }
#endif
  pEList = pSelect->pEList;
  if( pEList==0 ){
    return 0;
  }
  for(i=0; i<pOrderBy->nExpr; i++){
    int iCol;
    Expr *pE = pOrderBy->a[i].pExpr;
    if( sqlite3ExprIsInteger(pE, &iCol) ){
      if( iCol<=0 || iCol>pEList->nExpr ){
        const char *zType = isOrder ? "ORDER" : "GROUP";
        sqlite3ErrorMsg(pParse, 
           "%r %s BY term out of range - should be "
           "between 1 and %d", i+1, zType, pEList->nExpr);
        return 1;
      }
    }else{
      iCol = matchOrderByTermToExprList(pParse, pSelect, pE, i+1, 0, pHasAgg);
      if( iCol<0 ){
        return 1;
      }
    }
    if( iCol>0 ){
      CollSeq *pColl = pE->pColl;
      int flags = pE->flags & EP_ExpCollate;
      sqlite3ExprDelete(db, pE);
      pE = sqlite3ExprDup(db, pEList->a[iCol-1].pExpr);
      pOrderBy->a[i].pExpr = pE;
      if( pE && pColl && flags ){
        pE->pColl = pColl;
        pE->flags |= flags;
      }
    }
  }
  return 0;
}

/*
** Analyze and ORDER BY or GROUP BY clause in a SELECT statement.  Return
** the number of errors seen.
**
** If iTable>0 then make the N-th term of the ORDER BY clause refer to
** the N-th column of table iTable.
**
** If iTable==0 then transform each term of the ORDER BY clause to refer
** to a column of the result set by number.
*/
static int processCompoundOrderBy(
  Parse *pParse,        /* Parsing context.  Leave error messages here */
  Select *pSelect       /* The SELECT statement containing the ORDER BY */
){
  int i;
  ExprList *pOrderBy;
  ExprList *pEList;
  sqlite3 *db;
  int moreToDo = 1;

  pOrderBy = pSelect->pOrderBy;
  if( pOrderBy==0 ) return 0;
  db = pParse->db;
#if SQLITE_MAX_COLUMN
  if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
    sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause");
    return 1;
  }
#endif
  for(i=0; i<pOrderBy->nExpr; i++){
    pOrderBy->a[i].done = 0;
  }
  while( pSelect->pPrior ){
    pSelect = pSelect->pPrior;
  }
  while( pSelect && moreToDo ){
    moreToDo = 0;
    pEList = pSelect->pEList;
    if( pEList==0 ){
      return 1;
    }
    for(i=0; i<pOrderBy->nExpr; i++){
      int iCol = -1;
      Expr *pE, *pDup;
      if( pOrderBy->a[i].done ) continue;
      pE = pOrderBy->a[i].pExpr;
      if( sqlite3ExprIsInteger(pE, &iCol) ){
        if( iCol<0 || iCol>pEList->nExpr ){
          sqlite3ErrorMsg(pParse, 
             "%r ORDER BY term out of range - should be "
             "between 1 and %d", i+1, pEList->nExpr);
          return 1;
        }
      }else{
        pDup = sqlite3ExprDup(db, pE);
        if( !db->mallocFailed ){
          assert(pDup);
          iCol = matchOrderByTermToExprList(pParse, pSelect, pDup, i+1, 1, 0);
        }
        sqlite3ExprDelete(db, pDup);
        if( iCol<0 ){
          return 1;
        }
      }
      if( iCol>0 ){
        pE->op = TK_INTEGER;
        pE->flags |= EP_IntValue;
        pE->iTable = iCol;
        pOrderBy->a[i].done = 1;
      }else{
        moreToDo = 1;
      }
    }
    pSelect = pSelect->pNext;
  }
  for(i=0; i<pOrderBy->nExpr; i++){
    if( pOrderBy->a[i].done==0 ){
      sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any "
            "column in the result set", i+1);
      return 1;
    }
  }
  return 0;
}

/*
** Get a VDBE for the given parser context.  Create a new one if necessary.
** If an error occurs, return NULL and leave a message in pParse.
*/
Vdbe *sqlite3GetVdbe(Parse *pParse){
  Vdbe *v = pParse->pVdbe;
  if( v==0 ){
    v = pParse->pVdbe = sqlite3VdbeCreate(pParse->db);
#ifndef SQLITE_OMIT_TRACE
    if( v ){
      sqlite3VdbeAddOp0(v, OP_Trace);
    }
#endif
  }
  return v;
}


/*
** Compute the iLimit and iOffset fields of the SELECT based on the
** pLimit and pOffset expressions.  pLimit and pOffset hold the expressions
** that appear in the original SQL statement after the LIMIT and OFFSET
** keywords.  Or NULL if those keywords are omitted. iLimit and iOffset 
** are the integer memory register numbers for counters used to compute 
** the limit and offset.  If there is no limit and/or offset, then 
** iLimit and iOffset are negative.
**
** This routine changes the values of iLimit and iOffset only if
** a limit or offset is defined by pLimit and pOffset.  iLimit and
** iOffset should have been preset to appropriate default values
** (usually but not always -1) prior to calling this routine.
** Only if pLimit!=0 or pOffset!=0 do the limit registers get
** redefined.  The UNION ALL operator uses this property to force
** the reuse of the same limit and offset registers across multiple
** SELECT statements.
*/
static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
  Vdbe *v = 0;
  int iLimit = 0;
  int iOffset;
  int addr1;
  if( p->iLimit ) return;

  /* 
  ** "LIMIT -1" always shows all rows.  There is some
  ** contraversy about what the correct behavior should be.
  ** The current implementation interprets "LIMIT 0" to mean
  ** no rows.
  */
  if( p->pLimit ){
    p->iLimit = iLimit = ++pParse->nMem;
    v = sqlite3GetVdbe(pParse);
    if( v==0 ) return;
    sqlite3ExprCode(pParse, p->pLimit, iLimit);
    sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
    VdbeComment((v, "LIMIT counter"));
    sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
  }
  if( p->pOffset ){
    p->iOffset = iOffset = ++pParse->nMem;
    if( p->pLimit ){
      pParse->nMem++;   /* Allocate an extra register for limit+offset */
    }
    v = sqlite3GetVdbe(pParse);
    if( v==0 ) return;
    sqlite3ExprCode(pParse, p->pOffset, iOffset);
    sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset);
    VdbeComment((v, "OFFSET counter"));
    addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iOffset);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, iOffset);
    sqlite3VdbeJumpHere(v, addr1);
    if( p->pLimit ){
      sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1);
      VdbeComment((v, "LIMIT+OFFSET"));
      addr1 = sqlite3VdbeAddOp1(v, OP_IfPos, iLimit);
      sqlite3VdbeAddOp2(v, OP_Integer, -1, iOffset+1);
      sqlite3VdbeJumpHere(v, addr1);
    }
  }
}

#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
** Return the appropriate collating sequence for the iCol-th column of
** the result set for the compound-select statement "p".  Return NULL if
** the column has no default collating sequence.
**
** The collating sequence for the compound select is taken from the
** left-most term of the select that has a collating sequence.
*/
static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
  CollSeq *pRet;
  if( p->pPrior ){
    pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
  }else{
    pRet = 0;
  }
  if( pRet==0 ){
    pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
  }
  return pRet;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */

/* Forward reference */
static int multiSelectOrderBy(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
);


#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
** This routine is called to process a compound query form from
** two or more separate queries using UNION, UNION ALL, EXCEPT, or
** INTERSECT
**
** "p" points to the right-most of the two queries.  the query on the
** left is p->pPrior.  The left query could also be a compound query
** in which case this routine will be called recursively. 
**
** The results of the total query are to be written into a destination
** of type eDest with parameter iParm.
**
** Example 1:  Consider a three-way compound SQL statement.
**
**     SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
**
** This statement is parsed up as follows:
**
**     SELECT c FROM t3
**      |
**      `----->  SELECT b FROM t2
**                |
**                `------>  SELECT a FROM t1
**
** The arrows in the diagram above represent the Select.pPrior pointer.
** So if this routine is called with p equal to the t3 query, then
** pPrior will be the t2 query.  p->op will be TK_UNION in this case.
**
** Notice that because of the way SQLite parses compound SELECTs, the
** individual selects always group from left to right.
*/
static int multiSelect(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
){
  int rc = SQLITE_OK;   /* Success code from a subroutine */
  Select *pPrior;       /* Another SELECT immediately to our left */
  Vdbe *v;              /* Generate code to this VDBE */
  SelectDest dest;      /* Alternative data destination */
  Select *pDelete = 0;  /* Chain of simple selects to delete */
  sqlite3 *db;          /* Database connection */

  /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs.  Only
  ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
  */
  assert( p && p->pPrior );  /* Calling function guarantees this much */
  db = pParse->db;
  pPrior = p->pPrior;
  assert( pPrior->pRightmost!=pPrior );
  assert( pPrior->pRightmost==p->pRightmost );
  if( pPrior->pOrderBy ){
    sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before",
      selectOpName(p->op));
    rc = 1;
    goto multi_select_end;
  }
  if( pPrior->pLimit ){
    sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before",
      selectOpName(p->op));
    rc = 1;
    goto multi_select_end;
  }

  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );  /* The VDBE already created by calling function */

  /* Create the destination temporary table if necessary
  */
  dest = *pDest;
  if( dest.eDest==SRT_EphemTab ){
    assert( p->pEList );
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
    dest.eDest = SRT_Table;
  }

  /* Make sure all SELECTs in the statement have the same number of elements
  ** in their result sets.
  */
  assert( p->pEList && pPrior->pEList );
  if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
    sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
      " do not have the same number of result columns", selectOpName(p->op));
    rc = 1;
    goto multi_select_end;
  }

  /* Compound SELECTs that have an ORDER BY clause are handled separately.
  */
  if( p->pOrderBy ){
    return multiSelectOrderBy(pParse, p, pDest);
  }

  /* Generate code for the left and right SELECT statements.
  */
  switch( p->op ){
    case TK_ALL: {
      int addr = 0;
      assert( !pPrior->pLimit );
      pPrior->pLimit = p->pLimit;
      pPrior->pOffset = p->pOffset;
      rc = sqlite3Select(pParse, pPrior, &dest, 0, 0, 0);
      p->pLimit = 0;
      p->pOffset = 0;
      if( rc ){
        goto multi_select_end;
      }
      p->pPrior = 0;
      p->iLimit = pPrior->iLimit;
      p->iOffset = pPrior->iOffset;
      if( p->iLimit ){
        addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit);
        VdbeComment((v, "Jump ahead if LIMIT reached"));
      }
      rc = sqlite3Select(pParse, p, &dest, 0, 0, 0);
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      if( rc ){
        goto multi_select_end;
      }
      if( addr ){
        sqlite3VdbeJumpHere(v, addr);
      }
      break;
    }
    case TK_EXCEPT:
    case TK_UNION: {
      int unionTab;    /* Cursor number of the temporary table holding result */
      int op = 0;      /* One of the SRT_ operations to apply to self */
      int priorOp;     /* The SRT_ operation to apply to prior selects */
      Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */
      int addr;
      SelectDest uniondest;

      priorOp = SRT_Union;
      if( dest.eDest==priorOp && !p->pLimit && !p->pOffset ){
        /* We can reuse a temporary table generated by a SELECT to our
        ** right.
        */
        unionTab = dest.iParm;
      }else{
        /* We will need to create our own temporary table to hold the
        ** intermediate results.
        */
        unionTab = pParse->nTab++;
        assert( p->pOrderBy==0 );
        addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
        assert( p->addrOpenEphm[0] == -1 );
        p->addrOpenEphm[0] = addr;
        p->pRightmost->usesEphm = 1;
        assert( p->pEList );
      }

      /* Code the SELECT statements to our left
      */
      assert( !pPrior->pOrderBy );
      sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
      rc = sqlite3Select(pParse, pPrior, &uniondest, 0, 0, 0);
      if( rc ){
        goto multi_select_end;
      }

      /* Code the current SELECT statement
      */
      if( p->op==TK_EXCEPT ){
        op = SRT_Except;
      }else{
        assert( p->op==TK_UNION );
        op = SRT_Union;
      }
      p->pPrior = 0;
      p->disallowOrderBy = 0;
      pLimit = p->pLimit;
      p->pLimit = 0;
      pOffset = p->pOffset;
      p->pOffset = 0;
      uniondest.eDest = op;
      rc = sqlite3Select(pParse, p, &uniondest, 0, 0, 0);
      /* Query flattening in sqlite3Select() might refill p->pOrderBy.
      ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
      sqlite3ExprListDelete(db, p->pOrderBy);
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      p->pOrderBy = 0;
      sqlite3ExprDelete(db, p->pLimit);
      p->pLimit = pLimit;
      p->pOffset = pOffset;
      p->iLimit = 0;
      p->iOffset = 0;
      if( rc ){
        goto multi_select_end;
      }


      /* Convert the data in the temporary table into whatever form
      ** it is that we currently need.
      */      
      if( dest.eDest!=priorOp || unionTab!=dest.iParm ){
        int iCont, iBreak, iStart;
        assert( p->pEList );
        if( dest.eDest==SRT_Callback ){
          Select *pFirst = p;
          while( pFirst->pPrior ) pFirst = pFirst->pPrior;
          generateColumnNames(pParse, 0, pFirst->pEList);
        }
        iBreak = sqlite3VdbeMakeLabel(v);
        iCont = sqlite3VdbeMakeLabel(v);
        computeLimitRegisters(pParse, p, iBreak);
        sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak);
        iStart = sqlite3VdbeCurrentAddr(v);
        selectInnerLoop(pParse, p, p->pEList, unionTab, p->pEList->nExpr,
                        0, -1, &dest, iCont, iBreak);
        sqlite3VdbeResolveLabel(v, iCont);
        sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart);
        sqlite3VdbeResolveLabel(v, iBreak);
        sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
      }
      break;
    }
    case TK_INTERSECT: {
      int tab1, tab2;
      int iCont, iBreak, iStart;
      Expr *pLimit, *pOffset;
      int addr;
      SelectDest intersectdest;
      int r1;

      /* INTERSECT is different from the others since it requires
      ** two temporary tables.  Hence it has its own case.  Begin
      ** by allocating the tables we will need.
      */
      tab1 = pParse->nTab++;
      tab2 = pParse->nTab++;
      assert( p->pOrderBy==0 );

      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
      assert( p->addrOpenEphm[0] == -1 );
      p->addrOpenEphm[0] = addr;
      p->pRightmost->usesEphm = 1;
      assert( p->pEList );

      /* Code the SELECTs to our left into temporary table "tab1".
      */
      sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
      rc = sqlite3Select(pParse, pPrior, &intersectdest, 0, 0, 0);
      if( rc ){
        goto multi_select_end;
      }

      /* Code the current SELECT into temporary table "tab2"
      */
      addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
      assert( p->addrOpenEphm[1] == -1 );
      p->addrOpenEphm[1] = addr;
      p->pPrior = 0;
      pLimit = p->pLimit;
      p->pLimit = 0;
      pOffset = p->pOffset;
      p->pOffset = 0;
      intersectdest.iParm = tab2;
      rc = sqlite3Select(pParse, p, &intersectdest, 0, 0, 0);
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      sqlite3ExprDelete(db, p->pLimit);
      p->pLimit = pLimit;
      p->pOffset = pOffset;
      if( rc ){
        goto multi_select_end;
      }

      /* Generate code to take the intersection of the two temporary
      ** tables.
      */
      assert( p->pEList );
      if( dest.eDest==SRT_Callback ){
        Select *pFirst = p;
        while( pFirst->pPrior ) pFirst = pFirst->pPrior;
        generateColumnNames(pParse, 0, pFirst->pEList);
      }
      iBreak = sqlite3VdbeMakeLabel(v);
      iCont = sqlite3VdbeMakeLabel(v);
      computeLimitRegisters(pParse, p, iBreak);
      sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak);
      r1 = sqlite3GetTempReg(pParse);
      iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
      sqlite3VdbeAddOp3(v, OP_NotFound, tab2, iCont, r1);
      sqlite3ReleaseTempReg(pParse, r1);
      selectInnerLoop(pParse, p, p->pEList, tab1, p->pEList->nExpr,
                      0, -1, &dest, iCont, iBreak);
      sqlite3VdbeResolveLabel(v, iCont);
      sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart);
      sqlite3VdbeResolveLabel(v, iBreak);
      sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
      sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
      break;
    }
  }

  /* Compute collating sequences used by 
  ** temporary tables needed to implement the compound select.
  ** Attach the KeyInfo structure to all temporary tables.
  **
  ** This section is run by the right-most SELECT statement only.
  ** SELECT statements to the left always skip this part.  The right-most
  ** SELECT might also skip this part if it has no ORDER BY clause and
  ** no temp tables are required.
  */
  if( p->usesEphm ){
    int i;                        /* Loop counter */
    KeyInfo *pKeyInfo;            /* Collating sequence for the result set */
    Select *pLoop;                /* For looping through SELECT statements */
    CollSeq **apColl;             /* For looping through pKeyInfo->aColl[] */
    int nCol;                     /* Number of columns in result set */

    assert( p->pRightmost==p );
    nCol = p->pEList->nExpr;
    pKeyInfo = sqlite3DbMallocZero(db,
                       sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1));
    if( !pKeyInfo ){
      rc = SQLITE_NOMEM;
      goto multi_select_end;
    }

    pKeyInfo->enc = ENC(db);
    pKeyInfo->nField = nCol;

    for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
      *apColl = multiSelectCollSeq(pParse, p, i);
      if( 0==*apColl ){
        *apColl = db->pDfltColl;
      }
    }

    for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
      for(i=0; i<2; i++){
        int addr = pLoop->addrOpenEphm[i];
        if( addr<0 ){
          /* If [0] is unused then [1] is also unused.  So we can
          ** always safely abort as soon as the first unused slot is found */
          assert( pLoop->addrOpenEphm[1]<0 );
          break;
        }
        sqlite3VdbeChangeP2(v, addr, nCol);
        sqlite3VdbeChangeP4(v, addr, (char*)pKeyInfo, P4_KEYINFO);
        pLoop->addrOpenEphm[i] = -1;
      }
    }
    sqlite3DbFree(db, pKeyInfo);
  }

multi_select_end:
  pDest->iMem = dest.iMem;
  pDest->nMem = dest.nMem;
  sqlite3SelectDelete(db, pDelete);
  return rc;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */

/*
** Code an output subroutine for a coroutine implementation of a
** SELECT statment.
**
** The data to be output is contained in pIn->iMem.  There are
** pIn->nMem columns to be output.  pDest is where the output should
** be sent.
**
** regReturn is the number of the register holding the subroutine
** return address.
**
** If regPrev>0 then it is a the first register in a vector that
** records the previous output.  mem[regPrev] is a flag that is false
** if there has been no previous output.  If regPrev>0 then code is
** generated to suppress duplicates.  pKeyInfo is used for comparing
** keys.
**
** If the LIMIT found in p->iLimit is reached, jump immediately to
** iBreak.
*/
static int generateOutputSubroutine(
  Parse *pParse,          /* Parsing context */
  Select *p,              /* The SELECT statement */
  SelectDest *pIn,        /* Coroutine supplying data */
  SelectDest *pDest,      /* Where to send the data */
  int regReturn,          /* The return address register */
  int regPrev,            /* Previous result register.  No uniqueness if 0 */
  KeyInfo *pKeyInfo,      /* For comparing with previous entry */
  int p4type,             /* The p4 type for pKeyInfo */
  int iBreak              /* Jump here if we hit the LIMIT */
){
  Vdbe *v = pParse->pVdbe;
  int iContinue;
  int addr;

  addr = sqlite3VdbeCurrentAddr(v);
  iContinue = sqlite3VdbeMakeLabel(v);

  /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 
  */
  if( regPrev ){
    int j1, j2;
    j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
    j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
                              (char*)pKeyInfo, p4type);
    sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
    sqlite3VdbeJumpHere(v, j1);
    sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
    sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
  }
  if( pParse->db->mallocFailed ) return 0;

  /* Suppress the the first OFFSET entries if there is an OFFSET clause
  */
  codeOffset(v, p, iContinue);

  switch( pDest->eDest ){
    /* Store the result as data using a unique key.
    */
    case SRT_Table:
    case SRT_EphemTab: {
      int r1 = sqlite3GetTempReg(pParse);
      int r2 = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
      sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
      sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
      sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
      sqlite3ReleaseTempReg(pParse, r2);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    ** then there should be a single item on the stack.  Write this
    ** item into the set table with bogus data.
    */
    case SRT_Set: {
      int r1;
      assert( pIn->nMem==1 );
      p->affinity = 
         sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
      r1 = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
      sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
      sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

#if 0  /* Never occurs on an ORDER BY query */
    /* If any row exist in the result set, record that fact and abort.
    */
    case SRT_Exists: {
      sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
      /* The LIMIT clause will terminate the loop for us */
      break;
    }
#endif

    /* If this is a scalar select that is part of an expression, then
    ** store the results in the appropriate memory cell and break out
    ** of the scan loop.
    */
    case SRT_Mem: {
      assert( pIn->nMem==1 );
      sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
      /* The LIMIT clause will jump out of the loop for us */
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */

    /* Send the data to the callback function or to a subroutine.  In the
    ** case of a subroutine, the subroutine itself is responsible for
    ** popping the data from the stack.
    */
    case SRT_Coroutine: {
      if( pDest->iMem==0 ){
        pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
        pDest->nMem = pIn->nMem;
      }
      sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
      sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
      break;
    }

    case SRT_Callback: {
      sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
      sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
      break;
    }

#if !defined(SQLITE_OMIT_TRIGGER)
    /* Discard the results.  This is used for SELECT statements inside
    ** the body of a TRIGGER.  The purpose of such selects is to call
    ** user-defined functions that have side effects.  We do not care
    ** about the actual results of the select.
    */
    default: {
      break;
    }
#endif
  }

  /* Jump to the end of the loop if the LIMIT is reached.
  */
  if( p->iLimit ){
    sqlite3VdbeAddOp2(v, OP_AddImm, p->iLimit, -1);
    sqlite3VdbeAddOp2(v, OP_IfZero, p->iLimit, iBreak);
  }

  /* Generate the subroutine return
  */
  sqlite3VdbeResolveLabel(v, iContinue);
  sqlite3VdbeAddOp1(v, OP_Return, regReturn);

  return addr;
}

/*
** Alternative compound select code generator for cases when there
** is an ORDER BY clause.
**
** We assume a query of the following form:
**
**      <selectA>  <operator>  <selectB>  ORDER BY <orderbylist>
**
** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT.  The idea
** is to code both <selectA> and <selectB> with the ORDER BY clause as
** co-routines.  Then run the co-routines in parallel and merge the results
** into the output.  In addition to the two coroutines (called selectA and
** selectB) there are 7 subroutines:
**
**    outA:    Move the output of the selectA coroutine into the output
**             of the compound query.
**
**    outB:    Move the output of the selectB coroutine into the output
**             of the compound query.  (Only generated for UNION and
**             UNION ALL.  EXCEPT and INSERTSECT never output a row that
**             appears only in B.)
**
**    AltB:    Called when there is data from both coroutines and A<B.
**
**    AeqB:    Called when there is data from both coroutines and A==B.
**
**    AgtB:    Called when there is data from both coroutines and A>B.
**
**    EofA:    Called when data is exhausted from selectA.
**
**    EofB:    Called when data is exhausted from selectB.
**
** The implementation of the latter five subroutines depend on which 
** <operator> is used:
**
**
**             UNION ALL         UNION            EXCEPT          INTERSECT
**          -------------  -----------------  --------------  -----------------
**   AltB:   outA, nextA      outA, nextA       outA, nextA         nextA
**
**   AeqB:   outA, nextA         nextA             nextA         outA, nextA
**
**   AgtB:   outB, nextB      outB, nextB          nextB            nextB
**
**   EofA:   outB, nextB      outB, nextB          halt             halt
**
**   EofB:   outA, nextA      outA, nextA       outA, nextA         halt
**
** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
** causes an immediate jump to EofA and an EOF on B following nextB causes
** an immediate jump to EofB.  Within EofA and EofB, and EOF on entry or
** following nextX causes a jump to the end of the select processing.
**
** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
** within the output subroutine.  The regPrev register set holds the previously
** output value.  A comparison is made against this value and the output
** is skipped if the next results would be the same as the previous.
**
** The implementation plan is to implement the two coroutines and seven
** subroutines first, then put the control logic at the bottom.  Like this:
**
**          goto Init
**     coA: coroutine for left query (A)
**     coB: coroutine for right query (B)
**    outA: output one row of A
**    outB: output one row of B (UNION and UNION ALL only)
**    EofA: ...
**    EofB: ...
**    AltB: ...
**    AeqB: ...
**    AgtB: ...
**    Init: initialize coroutine registers
**          yield coA
**          if eof(A) goto EofA
**          yield coB
**          if eof(B) goto EofB
**    Cmpr: Compare A, B
**          Jump AltB, AeqB, AgtB
**     End: ...
**
** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
** actually called using Gosub and they do not Return.  EofA and EofB loop
** until all data is exhausted then jump to the "end" labe.  AltB, AeqB,
** and AgtB jump to either L2 or to one of EofA or EofB.
*/
#ifndef SQLITE_OMIT_COMPOUND_SELECT
static int multiSelectOrderBy(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
){
  int i, j;             /* Loop counters */
  Select *pPrior;       /* Another SELECT immediately to our left */
  Vdbe *v;              /* Generate code to this VDBE */
  SelectDest destA;     /* Destination for coroutine A */
  SelectDest destB;     /* Destination for coroutine B */
  int regAddrA;         /* Address register for select-A coroutine */
  int regEofA;          /* Flag to indicate when select-A is complete */
  int regAddrB;         /* Address register for select-B coroutine */
  int regEofB;          /* Flag to indicate when select-B is complete */
  int addrSelectA;      /* Address of the select-A coroutine */
  int addrSelectB;      /* Address of the select-B coroutine */
  int regOutA;          /* Address register for the output-A subroutine */
  int regOutB;          /* Address register for the output-B subroutine */
  int addrOutA;         /* Address of the output-A subroutine */
  int addrOutB = 0;     /* Address of the output-B subroutine */
  int addrEofA;         /* Address of the select-A-exhausted subroutine */
  int addrEofB;         /* Address of the select-B-exhausted subroutine */
  int addrAltB;         /* Address of the A<B subroutine */
  int addrAeqB;         /* Address of the A==B subroutine */
  int addrAgtB;         /* Address of the A>B subroutine */
  int regLimitA;        /* Limit register for select-A */
  int regLimitB;        /* Limit register for select-A */
  int regPrev;          /* A range of registers to hold previous output */
  int savedLimit;       /* Saved value of p->iLimit */
  int savedOffset;      /* Saved value of p->iOffset */
  int labelCmpr;        /* Label for the start of the merge algorithm */
  int labelEnd;         /* Label for the end of the overall SELECT stmt */
  int j1;               /* Jump instructions that get retargetted */
  int op;               /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
  KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
  KeyInfo *pKeyMerge;   /* Comparison information for merging rows */
  sqlite3 *db;          /* Database connection */
  ExprList *pOrderBy;   /* The ORDER BY clause */
  int nOrderBy;         /* Number of terms in the ORDER BY clause */
  int *aPermute;        /* Mapping from ORDER BY terms to result set columns */
  u8 NotUsed;           /* Dummy variables */

  assert( p->pOrderBy!=0 );
  db = pParse->db;
  v = pParse->pVdbe;
  if( v==0 ) return SQLITE_NOMEM;
  labelEnd = sqlite3VdbeMakeLabel(v);
  labelCmpr = sqlite3VdbeMakeLabel(v);


  /* Patch up the ORDER BY clause
  */
  op = p->op;  
  pPrior = p->pPrior;
  assert( pPrior->pOrderBy==0 );
  pOrderBy = p->pOrderBy;
  assert( pOrderBy );
  if( processCompoundOrderBy(pParse, p) ){
    return SQLITE_ERROR;
  }
  nOrderBy = pOrderBy->nExpr;

  /* For operators other than UNION ALL we have to make sure that
  ** the ORDER BY clause covers every term of the result set.  Add
  ** terms to the ORDER BY clause as necessary.
  */
  if( op!=TK_ALL ){
    for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
      for(j=0; j<nOrderBy; j++){
        Expr *pTerm = pOrderBy->a[j].pExpr;
        assert( pTerm->op==TK_INTEGER );
        assert( (pTerm->flags & EP_IntValue)!=0 );
        if( pTerm->iTable==i ) break;
      }
      if( j==nOrderBy ){
        Expr *pNew = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, 0);
        if( pNew==0 ) return SQLITE_NOMEM;
        pNew->flags |= EP_IntValue;
        pNew->iTable = i;
        pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew, 0);
        nOrderBy++;
      }
    }
  }

  /* Compute the comparison permutation and keyinfo that is used with
  ** the permutation in order to comparisons to determine if the next
  ** row of results comes from selectA or selectB.  Also add explicit
  ** collations to the ORDER BY clause terms so that when the subqueries
  ** to the right and the left are evaluated, they use the correct
  ** collation.
  */
  aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy);
  if( aPermute ){
    for(i=0; i<nOrderBy; i++){
      Expr *pTerm = pOrderBy->a[i].pExpr;
      assert( pTerm->op==TK_INTEGER );
      assert( (pTerm->flags & EP_IntValue)!=0 );
      aPermute[i] = pTerm->iTable-1;
      assert( aPermute[i]>=0 && aPermute[i]<p->pEList->nExpr );
    }
    pKeyMerge =
      sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1));
    if( pKeyMerge ){
      pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy];
      pKeyMerge->nField = nOrderBy;
      pKeyMerge->enc = ENC(db);
      for(i=0; i<nOrderBy; i++){
        CollSeq *pColl;
        Expr *pTerm = pOrderBy->a[i].pExpr;
        if( pTerm->flags & EP_ExpCollate ){
          pColl = pTerm->pColl;
        }else{
          pColl = multiSelectCollSeq(pParse, p, aPermute[i]);
          pTerm->flags |= EP_ExpCollate;
          pTerm->pColl = pColl;
        }
        pKeyMerge->aColl[i] = pColl;
        pKeyMerge->aSortOrder[i] = pOrderBy->a[i].sortOrder;
      }
    }
  }else{
    pKeyMerge = 0;
  }

  /* Reattach the ORDER BY clause to the query.
  */
  p->pOrderBy = pOrderBy;
  pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy);

  /* Allocate a range of temporary registers and the KeyInfo needed
  ** for the logic that removes duplicate result rows when the
  ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
  */
  if( op==TK_ALL ){
    regPrev = 0;
  }else{
    int nExpr = p->pEList->nExpr;
    assert( nOrderBy>=nExpr );
    regPrev = sqlite3GetTempRange(pParse, nExpr+1);
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
    pKeyDup = sqlite3DbMallocZero(db,
                  sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) );
    if( pKeyDup ){
      pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr];
      pKeyDup->nField = nExpr;
      pKeyDup->enc = ENC(db);
      for(i=0; i<nExpr; i++){
        pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
        pKeyDup->aSortOrder[i] = 0;
      }
    }
  }
 
  /* Separate the left and the right query from one another
  */
  p->pPrior = 0;
  pPrior->pRightmost = 0;
  processOrderGroupBy(pParse, p, p->pOrderBy, 1, &NotUsed);
  if( pPrior->pPrior==0 ){
    processOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, 1, &NotUsed);
  }

  /* Compute the limit registers */
  computeLimitRegisters(pParse, p, labelEnd);
  if( p->iLimit && op==TK_ALL ){
    regLimitA = ++pParse->nMem;
    regLimitB = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
                                  regLimitA);
    sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
  }else{
    regLimitA = regLimitB = 0;
  }
  sqlite3ExprDelete(db, p->pLimit);
  p->pLimit = 0;
  sqlite3ExprDelete(db, p->pOffset);
  p->pOffset = 0;

  regAddrA = ++pParse->nMem;
  regEofA = ++pParse->nMem;
  regAddrB = ++pParse->nMem;
  regEofB = ++pParse->nMem;
  regOutA = ++pParse->nMem;
  regOutB = ++pParse->nMem;
  sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
  sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);

  /* Jump past the various subroutines and coroutines to the main
  ** merge loop
  */
  j1 = sqlite3VdbeAddOp0(v, OP_Goto);
  addrSelectA = sqlite3VdbeCurrentAddr(v);


  /* Generate a coroutine to evaluate the SELECT statement to the
  ** left of the compound operator - the "A" select.
  */
  VdbeNoopComment((v, "Begin coroutine for left SELECT"));
  pPrior->iLimit = regLimitA;
  sqlite3Select(pParse, pPrior, &destA, 0, 0, 0);
  sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofA);
  sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
  VdbeNoopComment((v, "End coroutine for left SELECT"));

  /* Generate a coroutine to evaluate the SELECT statement on 
  ** the right - the "B" select
  */
  addrSelectB = sqlite3VdbeCurrentAddr(v);
  VdbeNoopComment((v, "Begin coroutine for right SELECT"));
  savedLimit = p->iLimit;
  savedOffset = p->iOffset;
  p->iLimit = regLimitB;
  p->iOffset = 0;  
  sqlite3Select(pParse, p, &destB, 0, 0, 0);
  p->iLimit = savedLimit;
  p->iOffset = savedOffset;
  sqlite3VdbeAddOp2(v, OP_Integer, 1, regEofB);
  sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
  VdbeNoopComment((v, "End coroutine for right SELECT"));

  /* Generate a subroutine that outputs the current row of the A
  ** select as the next output row of the compound select.
  */
  VdbeNoopComment((v, "Output routine for A"));
  addrOutA = generateOutputSubroutine(pParse,
                 p, &destA, pDest, regOutA,
                 regPrev, pKeyDup, P4_KEYINFO_HANDOFF, labelEnd);
  
  /* Generate a subroutine that outputs the current row of the B
  ** select as the next output row of the compound select.
  */
  if( op==TK_ALL || op==TK_UNION ){
    VdbeNoopComment((v, "Output routine for B"));
    addrOutB = generateOutputSubroutine(pParse,
                 p, &destB, pDest, regOutB,
                 regPrev, pKeyDup, P4_KEYINFO_STATIC, labelEnd);
  }

  /* Generate a subroutine to run when the results from select A
  ** are exhausted and only data in select B remains.
  */
  VdbeNoopComment((v, "eof-A subroutine"));
  if( op==TK_EXCEPT || op==TK_INTERSECT ){
    addrEofA = sqlite3VdbeAddOp2(v, OP_Goto, 0, labelEnd);
  }else{  
    addrEofA = sqlite3VdbeAddOp2(v, OP_If, regEofB, labelEnd);
    sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
    sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofA);
  }

  /* Generate a subroutine to run when the results from select B
  ** are exhausted and only data in select A remains.
  */
  if( op==TK_INTERSECT ){
    addrEofB = addrEofA;
  }else{  
    VdbeNoopComment((v, "eof-B subroutine"));
    addrEofB = sqlite3VdbeAddOp2(v, OP_If, regEofA, labelEnd);
    sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
    sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, addrEofB);
  }

  /* Generate code to handle the case of A<B
  */
  VdbeNoopComment((v, "A-lt-B subroutine"));
  addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
  sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
  sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
  sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);

  /* Generate code to handle the case of A==B
  */
  if( op==TK_ALL ){
    addrAeqB = addrAltB;
  }else if( op==TK_INTERSECT ){
    addrAeqB = addrAltB;
    addrAltB++;
  }else{
    VdbeNoopComment((v, "A-eq-B subroutine"));
    addrAeqB =
    sqlite3VdbeAddOp1(v, OP_Yield, regAddrA);
    sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
    sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);
  }

  /* Generate code to handle the case of A>B
  */
  VdbeNoopComment((v, "A-gt-B subroutine"));
  addrAgtB = sqlite3VdbeCurrentAddr(v);
  if( op==TK_ALL || op==TK_UNION ){
    sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
  }
  sqlite3VdbeAddOp1(v, OP_Yield, regAddrB);
  sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);
  sqlite3VdbeAddOp2(v, OP_Goto, 0, labelCmpr);

  /* This code runs once to initialize everything.
  */
  sqlite3VdbeJumpHere(v, j1);
  sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofA);
  sqlite3VdbeAddOp2(v, OP_Integer, 0, regEofB);
  sqlite3VdbeAddOp2(v, OP_Gosub, regAddrA, addrSelectA);
  sqlite3VdbeAddOp2(v, OP_Gosub, regAddrB, addrSelectB);
  sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
  sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);

  /* Implement the main merge loop
  */
  sqlite3VdbeResolveLabel(v, labelCmpr);
  sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
  sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
                         (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
  sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);

  /* Release temporary registers
  */
  if( regPrev ){
    sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
  }

  /* Jump to the this point in order to terminate the query.
  */
  sqlite3VdbeResolveLabel(v, labelEnd);

  /* Set the number of output columns
  */
  if( pDest->eDest==SRT_Callback ){
    Select *pFirst = pPrior;
    while( pFirst->pPrior ) pFirst = pFirst->pPrior;
    generateColumnNames(pParse, 0, pFirst->pEList);
  }

  /* Reassembly the compound query so that it will be freed correctly
  ** by the calling function */
  if( p->pPrior ){
    sqlite3SelectDelete(db, p->pPrior);
  }
  p->pPrior = pPrior;

  /*** TBD:  Insert subroutine calls to close cursors on incomplete
  **** subqueries ****/
  return SQLITE_OK;
}
#endif

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
/* Forward Declarations */
static void substExprList(sqlite3*, ExprList*, int, ExprList*);
static void substSelect(sqlite3*, Select *, int, ExprList *);

/*
** Scan through the expression pExpr.  Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList.  (But leave references to the ROWID column 
** unchanged.)
**
** This routine is part of the flattening procedure.  A subquery
** whose result set is defined by pEList appears as entry in the
** FROM clause of a SELECT such that the VDBE cursor assigned to that
** FORM clause entry is iTable.  This routine make the necessary 
** changes to pExpr so that it refers directly to the source table
** of the subquery rather the result set of the subquery.
*/
static void substExpr(
  sqlite3 *db,        /* Report malloc errors to this connection */
  Expr *pExpr,        /* Expr in which substitution occurs */
  int iTable,         /* Table to be substituted */
  ExprList *pEList    /* Substitute expressions */
){
  if( pExpr==0 ) return;
  if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
    if( pExpr->iColumn<0 ){
      pExpr->op = TK_NULL;
    }else{
      Expr *pNew;
      assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
      assert( pExpr->pLeft==0 && pExpr->pRight==0 && pExpr->pList==0 );
      pNew = pEList->a[pExpr->iColumn].pExpr;
      assert( pNew!=0 );
      pExpr->op = pNew->op;
      assert( pExpr->pLeft==0 );
      pExpr->pLeft = sqlite3ExprDup(db, pNew->pLeft);
      assert( pExpr->pRight==0 );
      pExpr->pRight = sqlite3ExprDup(db, pNew->pRight);
      assert( pExpr->pList==0 );
      pExpr->pList = sqlite3ExprListDup(db, pNew->pList);
      pExpr->iTable = pNew->iTable;
      pExpr->pTab = pNew->pTab;
      pExpr->iColumn = pNew->iColumn;
      pExpr->iAgg = pNew->iAgg;
      sqlite3TokenCopy(db, &pExpr->token, &pNew->token);
      sqlite3TokenCopy(db, &pExpr->span, &pNew->span);
      pExpr->pSelect = sqlite3SelectDup(db, pNew->pSelect);
      pExpr->flags = pNew->flags;
    }
  }else{
    substExpr(db, pExpr->pLeft, iTable, pEList);
    substExpr(db, pExpr->pRight, iTable, pEList);
    substSelect(db, pExpr->pSelect, iTable, pEList);
    substExprList(db, pExpr->pList, iTable, pEList);
  }
}
static void substExprList(
  sqlite3 *db,         /* Report malloc errors here */
  ExprList *pList,     /* List to scan and in which to make substitutes */
  int iTable,          /* Table to be substituted */
  ExprList *pEList     /* Substitute values */
){
  int i;
  if( pList==0 ) return;
  for(i=0; i<pList->nExpr; i++){
    substExpr(db, pList->a[i].pExpr, iTable, pEList);
  }
}
static void substSelect(
  sqlite3 *db,         /* Report malloc errors here */
  Select *p,           /* SELECT statement in which to make substitutions */
  int iTable,          /* Table to be replaced */
  ExprList *pEList     /* Substitute values */
){
  if( !p ) return;
  substExprList(db, p->pEList, iTable, pEList);
  substExprList(db, p->pGroupBy, iTable, pEList);
  substExprList(db, p->pOrderBy, iTable, pEList);
  substExpr(db, p->pHaving, iTable, pEList);
  substExpr(db, p->pWhere, iTable, pEList);
  substSelect(db, p->pPrior, iTable, pEList);
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
/*
** This routine attempts to flatten subqueries in order to speed
** execution.  It returns 1 if it makes changes and 0 if no flattening
** occurs.
**
** To understand the concept of flattening, consider the following
** query:
**
**     SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
**
** The default way of implementing this query is to execute the
** subquery first and store the results in a temporary table, then
** run the outer query on that temporary table.  This requires two
** passes over the data.  Furthermore, because the temporary table
** has no indices, the WHERE clause on the outer query cannot be
** optimized.
**
** This routine attempts to rewrite queries such as the above into
** a single flat select, like this:
**
**     SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
**
** The code generated for this simpification gives the same result
** but only has to scan the data once.  And because indices might 
** exist on the table t1, a complete scan of the data might be
** avoided.
**
** Flattening is only attempted if all of the following are true:
**
**   (1)  The subquery and the outer query do not both use aggregates.
**
**   (2)  The subquery is not an aggregate or the outer query is not a join.
**
**   (3)  The subquery is not the right operand of a left outer join, or
**        the subquery is not itself a join.  (Ticket #306)
**
**   (4)  The subquery is not DISTINCT or the outer query is not a join.
**
**   (5)  The subquery is not DISTINCT or the outer query does not use
**        aggregates.
**
**   (6)  The subquery does not use aggregates or the outer query is not
**        DISTINCT.
**
**   (7)  The subquery has a FROM clause.
**
**   (8)  The subquery does not use LIMIT or the outer query is not a join.
**
**   (9)  The subquery does not use LIMIT or the outer query does not use
**        aggregates.
**
**  (10)  The subquery does not use aggregates or the outer query does not
**        use LIMIT.
**
**  (11)  The subquery and the outer query do not both have ORDER BY clauses.
**
**  (12)  The subquery is not the right term of a LEFT OUTER JOIN or the
**        subquery has no WHERE clause.  (added by ticket #350)
**
**  (13)  The subquery and outer query do not both use LIMIT
**
**  (14)  The subquery does not use OFFSET
**
**  (15)  The outer query is not part of a compound select or the
**        subquery does not have both an ORDER BY and a LIMIT clause.
**        (See ticket #2339)
**
**  (16)  The outer query is not an aggregate or the subquery does
**        not contain ORDER BY.  (Ticket #2942)  This used to not matter
**        until we introduced the group_concat() function.  
**
**  (17)  The sub-query is not a compound select, or it is a UNION ALL 
**        compound clause made up entirely of non-aggregate queries, and 
**        the parent query:
**
**          * is not itself part of a compound select,
**          * is not an aggregate or DISTINCT query, and
**          * has no other tables or sub-selects in the FROM clause.
**
**        The parent and sub-query may contain WHERE clauses. Subject to
**        rules (11), (13) and (14), they may also contain ORDER BY,
**        LIMIT and OFFSET clauses.
**
**  (18)  If the sub-query is a compound select, then all terms of the
**        ORDER by clause of the parent must be simple references to 
**        columns of the sub-query.
**
** In this routine, the "p" parameter is a pointer to the outer query.
** The subquery is p->pSrc->a[iFrom].  isAgg is true if the outer query
** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
**
** If flattening is not attempted, this routine is a no-op and returns 0.
** If flattening is attempted this routine returns 1.
**
** All of the expression analysis must occur on both the outer query and
** the subquery before this routine runs.
*/
static int flattenSubquery(
  Parse *pParse,       /* Parsing context */
  Select *p,           /* The parent or outer SELECT statement */
  int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
  int isAgg,           /* True if outer SELECT uses aggregate functions */
  int subqueryIsAgg    /* True if the subquery uses aggregate functions */
){
  const char *zSavedAuthContext = pParse->zAuthContext;
  Select *pParent;
  Select *pSub;       /* The inner query or "subquery" */
  Select *pSub1;      /* Pointer to the rightmost select in sub-query */
  SrcList *pSrc;      /* The FROM clause of the outer query */
  SrcList *pSubSrc;   /* The FROM clause of the subquery */
  ExprList *pList;    /* The result set of the outer query */
  int iParent;        /* VDBE cursor number of the pSub result set temp table */
  int i;              /* Loop counter */
  Expr *pWhere;                    /* The WHERE clause */
  struct SrcList_item *pSubitem;   /* The subquery */
  sqlite3 *db = pParse->db;

  /* Check to see if flattening is permitted.  Return 0 if not.
  */
  if( p==0 ) return 0;
  pSrc = p->pSrc;
  assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
  pSubitem = &pSrc->a[iFrom];
  iParent = pSubitem->iCursor;
  pSub = pSubitem->pSelect;
  assert( pSub!=0 );
  if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
  if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */
  pSubSrc = pSub->pSrc;
  assert( pSubSrc );
  /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
  ** not arbitrary expresssions, we allowed some combining of LIMIT and OFFSET
  ** because they could be computed at compile-time.  But when LIMIT and OFFSET
  ** became arbitrary expressions, we were forced to add restrictions (13)
  ** and (14). */
  if( pSub->pLimit && p->pLimit ) return 0;              /* Restriction (13) */
  if( pSub->pOffset ) return 0;                          /* Restriction (14) */
  if( p->pRightmost && pSub->pLimit && pSub->pOrderBy ){
    return 0;                                            /* Restriction (15) */
  }
  if( pSubSrc->nSrc==0 ) return 0;                       /* Restriction (7)  */
  if( (pSub->isDistinct || pSub->pLimit) 
         && (pSrc->nSrc>1 || isAgg) ){          /* Restrictions (4)(5)(8)(9) */
     return 0;       
  }
  if( p->isDistinct && subqueryIsAgg ) return 0;         /* Restriction (6)  */
  if( (p->disallowOrderBy || p->pOrderBy) && pSub->pOrderBy ){
     return 0;                                           /* Restriction (11) */
  }
  if( isAgg && pSub->pOrderBy ) return 0;                /* Restriction (16) */

  /* Restriction 3:  If the subquery is a join, make sure the subquery is 
  ** not used as the right operand of an outer join.  Examples of why this
  ** is not allowed:
  **
  **         t1 LEFT OUTER JOIN (t2 JOIN t3)
  **
  ** If we flatten the above, we would get
  **
  **         (t1 LEFT OUTER JOIN t2) JOIN t3
  **
  ** which is not at all the same thing.
  */
  if( pSubSrc->nSrc>1 && (pSubitem->jointype & JT_OUTER)!=0 ){
    return 0;
  }

  /* Restriction 12:  If the subquery is the right operand of a left outer
  ** join, make sure the subquery has no WHERE clause.
  ** An examples of why this is not allowed:
  **
  **         t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
  **
  ** If we flatten the above, we would get
  **
  **         (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
  **
  ** But the t2.x>0 test will always fail on a NULL row of t2, which
  ** effectively converts the OUTER JOIN into an INNER JOIN.
  */
  if( (pSubitem->jointype & JT_OUTER)!=0 && pSub->pWhere!=0 ){
    return 0;
  }

  /* Restriction 17: If the sub-query is a compound SELECT, then it must
  ** use only the UNION ALL operator. And none of the simple select queries
  ** that make up the compound SELECT are allowed to be aggregate or distinct
  ** queries.
  */
  if( pSub->pPrior ){
    if( p->pPrior || isAgg || p->isDistinct || pSrc->nSrc!=1 ){
      return 0;
    }
    for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
      if( pSub1->isAgg || pSub1->isDistinct 
       || (pSub1->pPrior && pSub1->op!=TK_ALL) 
       || !pSub1->pSrc || pSub1->pSrc->nSrc!=1
      ){
        return 0;
      }
    }

    /* Restriction 18. */
    if( p->pOrderBy ){
      int ii;
      for(ii=0; ii<p->pOrderBy->nExpr; ii++){
        Expr *pExpr = p->pOrderBy->a[ii].pExpr;
        if( pExpr->op!=TK_COLUMN || pExpr->iTable!=iParent ){ 
          return 0;
        }
      }
    }
  }

  pParse->zAuthContext = pSubitem->zName;
  sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
  pParse->zAuthContext = zSavedAuthContext;

  /* If the sub-query is a compound SELECT statement, then it must be
  ** a UNION ALL and the parent query must be of the form:
  **
  **     SELECT <expr-list> FROM (<sub-query>) <where-clause> 
  **
  ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
  ** creates N copies of the parent query without any ORDER BY, LIMIT or 
  ** OFFSET clauses and joins them to the left-hand-side of the original
  ** using UNION ALL operators. In this case N is the number of simple
  ** select statements in the compound sub-query.
  */
  for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
    Select *pNew;
    ExprList *pOrderBy = p->pOrderBy;
    Expr *pLimit = p->pLimit;
    Expr *pOffset = p->pOffset;
    Select *pPrior = p->pPrior;
    p->pOrderBy = 0;
    p->pSrc = 0;
    p->pPrior = 0;
    p->pLimit = 0;
    pNew = sqlite3SelectDup(db, p);
    pNew->pPrior = pPrior;
    p->pPrior = pNew;
    p->pOrderBy = pOrderBy;
    p->op = TK_ALL;
    p->pSrc = pSrc;
    p->pLimit = pLimit;
    p->pOffset = pOffset;
    p->pRightmost = 0;
    pNew->pRightmost = 0;
  }

  /* If we reach this point, it means flattening is permitted for the
  ** iFrom-th entry of the FROM clause in the outer query.
  */
  pSub = pSub1 = pSubitem->pSelect;
  for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
    int nSubSrc = pSubSrc->nSrc;
    int jointype = 0;
    pSubSrc = pSub->pSrc;
    pSrc = pParent->pSrc;

    /* Move all of the FROM elements of the subquery into the
    ** the FROM clause of the outer query.  Before doing this, remember
    ** the cursor number for the original outer query FROM element in
    ** iParent.  The iParent cursor will never be used.  Subsequent code
    ** will scan expressions looking for iParent references and replace
    ** those references with expressions that resolve to the subquery FROM
    ** elements we are now copying in.
    */
    if( pSrc ){
      pSubitem = &pSrc->a[iFrom];
      nSubSrc = pSubSrc->nSrc;
      jointype = pSubitem->jointype;
      sqlite3DeleteTable(pSubitem->pTab);
      sqlite3DbFree(db, pSubitem->zDatabase);
      sqlite3DbFree(db, pSubitem->zName);
      sqlite3DbFree(db, pSubitem->zAlias);
      pSubitem->pTab = 0;
      pSubitem->zDatabase = 0;
      pSubitem->zName = 0;
      pSubitem->zAlias = 0;
    }
    if( nSubSrc!=1 || !pSrc ){
      int extra = nSubSrc - 1;
      for(i=(pSrc?1:0); i<nSubSrc; i++){
        pSrc = sqlite3SrcListAppend(db, pSrc, 0, 0);
        if( pSrc==0 ){
          pParent->pSrc = 0;
          return 1;
        }
      }
      pParent->pSrc = pSrc;
      for(i=pSrc->nSrc-1; i-extra>=iFrom; i--){
        pSrc->a[i] = pSrc->a[i-extra];
      }
    }
    for(i=0; i<nSubSrc; i++){
      pSrc->a[i+iFrom] = pSubSrc->a[i];
      memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
    }
    pSrc->a[iFrom].jointype = jointype;
  
    /* Now begin substituting subquery result set expressions for 
    ** references to the iParent in the outer query.
    ** 
    ** Example:
    **
    **   SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
    **   \                     \_____________ subquery __________/          /
    **    \_____________________ outer query ______________________________/
    **
    ** We look at every expression in the outer query and every place we see
    ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
    */
    pList = pParent->pEList;
    for(i=0; i<pList->nExpr; i++){
      Expr *pExpr;
      if( pList->a[i].zName==0 && (pExpr = pList->a[i].pExpr)->span.z!=0 ){
        pList->a[i].zName = 
               sqlite3DbStrNDup(db, (char*)pExpr->span.z, pExpr->span.n);
      }
    }
    substExprList(db, pParent->pEList, iParent, pSub->pEList);
    if( isAgg ){
      substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
      substExpr(db, pParent->pHaving, iParent, pSub->pEList);
    }
    if( pSub->pOrderBy ){
      assert( pParent->pOrderBy==0 );
      pParent->pOrderBy = pSub->pOrderBy;
      pSub->pOrderBy = 0;
    }else if( pParent->pOrderBy ){
      substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
    }
    if( pSub->pWhere ){
      pWhere = sqlite3ExprDup(db, pSub->pWhere);
    }else{
      pWhere = 0;
    }
    if( subqueryIsAgg ){
      assert( pParent->pHaving==0 );
      pParent->pHaving = pParent->pWhere;
      pParent->pWhere = pWhere;
      substExpr(db, pParent->pHaving, iParent, pSub->pEList);
      pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 
                                  sqlite3ExprDup(db, pSub->pHaving));
      assert( pParent->pGroupBy==0 );
      pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy);
    }else{
      substExpr(db, pParent->pWhere, iParent, pSub->pEList);
      pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
    }
  
    /* The flattened query is distinct if either the inner or the
    ** outer query is distinct. 
    */
    pParent->isDistinct = pParent->isDistinct || pSub->isDistinct;
  
    /*
    ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
    **
    ** One is tempted to try to add a and b to combine the limits.  But this
    ** does not work if either limit is negative.
    */
    if( pSub->pLimit ){
      pParent->pLimit = pSub->pLimit;
      pSub->pLimit = 0;
    }
  }

  /* Finially, delete what is left of the subquery and return
  ** success.
  */
  sqlite3SelectDelete(db, pSub1);

  return 1;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

/*
** Analyze the SELECT statement passed as an argument to see if it
** is a min() or max() query. Return WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX if 
** it is, or 0 otherwise. At present, a query is considered to be
** a min()/max() query if:
**
**   1. There is a single object in the FROM clause.
**
**   2. There is a single expression in the result set, and it is
**      either min(x) or max(x), where x is a column reference.
*/
static int minMaxQuery(Parse *pParse, Select *p){
  Expr *pExpr;
  ExprList *pEList = p->pEList;

  if( pEList->nExpr!=1 ) return WHERE_ORDERBY_NORMAL;
  pExpr = pEList->a[0].pExpr;
  pEList = pExpr->pList;
  if( pExpr->op!=TK_AGG_FUNCTION || pEList==0 || pEList->nExpr!=1 ) return 0;
  if( pEList->a[0].pExpr->op!=TK_AGG_COLUMN ) return WHERE_ORDERBY_NORMAL;
  if( pExpr->token.n!=3 ) return WHERE_ORDERBY_NORMAL;
  if( sqlite3StrNICmp((char*)pExpr->token.z,"min",3)==0 ){
    return WHERE_ORDERBY_MIN;
  }else if( sqlite3StrNICmp((char*)pExpr->token.z,"max",3)==0 ){
    return WHERE_ORDERBY_MAX;
  }
  return WHERE_ORDERBY_NORMAL;
}

/*
** This routine resolves any names used in the result set of the
** supplied SELECT statement. If the SELECT statement being resolved
** is a sub-select, then pOuterNC is a pointer to the NameContext 
** of the parent SELECT.
*/
int sqlite3SelectResolve(
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  NameContext *pOuterNC  /* The outer name context. May be NULL. */
){
  ExprList *pEList;          /* Result set. */
  int i;                     /* For-loop variable used in multiple places */
  NameContext sNC;           /* Local name-context */
  ExprList *pGroupBy;        /* The group by clause */

  /* If this routine has run before, return immediately. */
  if( p->isResolved ){
    assert( !pOuterNC );
    return SQLITE_OK;
  }
  p->isResolved = 1;

  /* If there have already been errors, do nothing. */
  if( pParse->nErr>0 ){
    return SQLITE_ERROR;
  }

  /* Prepare the select statement. This call will allocate all cursors
  ** required to handle the tables and subqueries in the FROM clause.
  */
  if( prepSelectStmt(pParse, p) ){
    return SQLITE_ERROR;
  }

  /* Resolve the expressions in the LIMIT and OFFSET clauses. These
  ** are not allowed to refer to any names, so pass an empty NameContext.
  */
  memset(&sNC, 0, sizeof(sNC));
  sNC.pParse = pParse;
  if( sqlite3ExprResolveNames(&sNC, p->pLimit) ||
      sqlite3ExprResolveNames(&sNC, p->pOffset) ){
    return SQLITE_ERROR;
  }

  /* Set up the local name-context to pass to ExprResolveNames() to
  ** resolve the expression-list.
  */
  sNC.allowAgg = 1;
  sNC.pSrcList = p->pSrc;
  sNC.pNext = pOuterNC;

  /* Resolve names in the result set. */
  pEList = p->pEList;
  if( !pEList ) return SQLITE_ERROR;
  for(i=0; i<pEList->nExpr; i++){
    Expr *pX = pEList->a[i].pExpr;
    if( sqlite3ExprResolveNames(&sNC, pX) ){
      return SQLITE_ERROR;
    }
  }

  /* If there are no aggregate functions in the result-set, and no GROUP BY 
  ** expression, do not allow aggregates in any of the other expressions.
  */
  assert( !p->isAgg );
  pGroupBy = p->pGroupBy;
  if( pGroupBy || sNC.hasAgg ){
    p->isAgg = 1;
  }else{
    sNC.allowAgg = 0;
  }

  /* If a HAVING clause is present, then there must be a GROUP BY clause.
  */
  if( p->pHaving && !pGroupBy ){
    sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
    return SQLITE_ERROR;
  }

  /* Add the expression list to the name-context before parsing the
  ** other expressions in the SELECT statement. This is so that
  ** expressions in the WHERE clause (etc.) can refer to expressions by
  ** aliases in the result set.
  **
  ** Minor point: If this is the case, then the expression will be
  ** re-evaluated for each reference to it.
  */
  sNC.pEList = p->pEList;
  if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
     sqlite3ExprResolveNames(&sNC, p->pHaving) ){
    return SQLITE_ERROR;
  }
  if( p->pPrior==0 ){
    if( processOrderGroupBy(pParse, p, p->pOrderBy, 1, &sNC.hasAgg) ){
      return SQLITE_ERROR;
    }
  }
  if( processOrderGroupBy(pParse, p, pGroupBy, 0, &sNC.hasAgg) ){
    return SQLITE_ERROR;
  }

  if( pParse->db->mallocFailed ){
    return SQLITE_NOMEM;
  }

  /* Make sure the GROUP BY clause does not contain aggregate functions.
  */
  if( pGroupBy ){
    struct ExprList_item *pItem;
  
    for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
      if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
        sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
            "the GROUP BY clause");
        return SQLITE_ERROR;
      }
    }
  }

  /* If this is one SELECT of a compound, be sure to resolve names
  ** in the other SELECTs.
  */
  if( p->pPrior ){
    return sqlite3SelectResolve(pParse, p->pPrior, pOuterNC);
  }else{
    return SQLITE_OK;
  }
}

/*
** Reset the aggregate accumulator.
**
** The aggregate accumulator is a set of memory cells that hold
** intermediate results while calculating an aggregate.  This
** routine simply stores NULLs in all of those memory cells.
*/
static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
  Vdbe *v = pParse->pVdbe;
  int i;
  struct AggInfo_func *pFunc;
  if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
    return;
  }
  for(i=0; i<pAggInfo->nColumn; i++){
    sqlite3VdbeAddOp2(v, OP_Null, 0, pAggInfo->aCol[i].iMem);
  }
  for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
    sqlite3VdbeAddOp2(v, OP_Null, 0, pFunc->iMem);
    if( pFunc->iDistinct>=0 ){
      Expr *pE = pFunc->pExpr;
      if( pE->pList==0 || pE->pList->nExpr!=1 ){
        sqlite3ErrorMsg(pParse, "DISTINCT in aggregate must be followed "
           "by an expression");
        pFunc->iDistinct = -1;
      }else{
        KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->pList);
        sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
                          (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
      }
    }
  }
}

/*
** Invoke the OP_AggFinalize opcode for every aggregate function
** in the AggInfo structure.
*/
static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
  Vdbe *v = pParse->pVdbe;
  int i;
  struct AggInfo_func *pF;
  for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
    ExprList *pList = pF->pExpr->pList;
    sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0,
                      (void*)pF->pFunc, P4_FUNCDEF);
  }
}

/*
** Update the accumulator memory cells for an aggregate based on
** the current cursor position.
*/
static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
  Vdbe *v = pParse->pVdbe;
  int i;
  struct AggInfo_func *pF;
  struct AggInfo_col *pC;

  pAggInfo->directMode = 1;
  for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
    int nArg;
    int addrNext = 0;
    int regAgg;
    ExprList *pList = pF->pExpr->pList;
    if( pList ){
      nArg = pList->nExpr;
      regAgg = sqlite3GetTempRange(pParse, nArg);
      sqlite3ExprCodeExprList(pParse, pList, regAgg, 0);
    }else{
      nArg = 0;
      regAgg = 0;
    }
    if( pF->iDistinct>=0 ){
      addrNext = sqlite3VdbeMakeLabel(v);
      assert( nArg==1 );
      codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
    }
    if( pF->pFunc->needCollSeq ){
      CollSeq *pColl = 0;
      struct ExprList_item *pItem;
      int j;
      assert( pList!=0 );  /* pList!=0 if pF->pFunc->needCollSeq is true */
      for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
        pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
      }
      if( !pColl ){
        pColl = pParse->db->pDfltColl;
      }
      sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
    }
    sqlite3VdbeAddOp4(v, OP_AggStep, 0, regAgg, pF->iMem,
                      (void*)pF->pFunc, P4_FUNCDEF);
    sqlite3VdbeChangeP5(v, nArg);
    sqlite3ReleaseTempRange(pParse, regAgg, nArg);
    sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg);
    if( addrNext ){
      sqlite3VdbeResolveLabel(v, addrNext);
    }
  }
  for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
    sqlite3ExprCode(pParse, pC->pExpr, pC->iMem);
  }
  pAggInfo->directMode = 0;
}

/*
** Generate code for the given SELECT statement.
**
** The results are distributed in various ways depending on the
** contents of the SelectDest structure pointed to by argument pDest
** as follows:
**
**     pDest->eDest    Result
**     ------------    -------------------------------------------
**     SRT_Callback    Invoke the callback for each row of the result.
**
**     SRT_Mem         Store first result in memory cell pDest->iParm
**
**     SRT_Set         Store results as keys of table pDest->iParm. 
**                     Apply the affinity pDest->affinity before storing them.
**
**     SRT_Union       Store results as a key in a temporary table pDest->iParm.
**
**     SRT_Except      Remove results from the temporary table pDest->iParm.
**
**     SRT_Table       Store results in temporary table pDest->iParm
**
**     SRT_EphemTab    Create an temporary table pDest->iParm and store
**                     the result there. The cursor is left open after
**                     returning.
**
**     SRT_Coroutine   Invoke a co-routine to compute a single row of 
**                     the result
**
**     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
**                     set is not empty.
**
**     SRT_Discard     Throw the results away.
**
** See the selectInnerLoop() function for a canonical listing of the 
** allowed values of eDest and their meanings.
**
** This routine returns the number of errors.  If any errors are
** encountered, then an appropriate error message is left in
** pParse->zErrMsg.
**
** This routine does NOT free the Select structure passed in.  The
** calling function needs to do that.
**
** The pParent, parentTab, and *pParentAgg fields are filled in if this
** SELECT is a subquery.  This routine may try to combine this SELECT
** with its parent to form a single flat query.  In so doing, it might
** change the parent query from a non-aggregate to an aggregate query.
** For that reason, the pParentAgg flag is passed as a pointer, so it
** can be changed.
**
** Example 1:   The meaning of the pParent parameter.
**
**    SELECT * FROM t1 JOIN (SELECT x, count(*) FROM t2) JOIN t3;
**    \                      \_______ subquery _______/        /
**     \                                                      /
**      \____________________ outer query ___________________/
**
** This routine is called for the outer query first.   For that call,
** pParent will be NULL.  During the processing of the outer query, this 
** routine is called recursively to handle the subquery.  For the recursive
** call, pParent will point to the outer query.  Because the subquery is
** the second element in a three-way join, the parentTab parameter will
** be 1 (the 2nd value of a 0-indexed array.)
*/
int sqlite3Select(
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  SelectDest *pDest,     /* What to do with the query results */
  Select *pParent,       /* Another SELECT for which this is a sub-query */
  int parentTab,         /* Index in pParent->pSrc of this query */
  int *pParentAgg        /* True if pParent uses aggregate functions */
){
  int i, j;              /* Loop counters */
  WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
  Vdbe *v;               /* The virtual machine under construction */
  int isAgg;             /* True for select lists like "count(*)" */
  ExprList *pEList;      /* List of columns to extract. */
  SrcList *pTabList;     /* List of tables to select from */
  Expr *pWhere;          /* The WHERE clause.  May be NULL */
  ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
  ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
  Expr *pHaving;         /* The HAVING clause.  May be NULL */
  int isDistinct;        /* True if the DISTINCT keyword is present */
  int distinct;          /* Table to use for the distinct set */
  int rc = 1;            /* Value to return from this function */
  int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
  AggInfo sAggInfo;      /* Information used by aggregate queries */
  int iEnd;              /* Address of the end of the query */
  sqlite3 *db;           /* The database connection */

  db = pParse->db;
  if( p==0 || db->mallocFailed || pParse->nErr ){
    return 1;
  }
  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
  memset(&sAggInfo, 0, sizeof(sAggInfo));

  pOrderBy = p->pOrderBy;
  if( IgnorableOrderby(pDest) ){
    p->pOrderBy = 0;

    /* In these cases the DISTINCT operator makes no difference to the
    ** results, so remove it if it were specified.
    */
    assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || 
           pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard);
    p->isDistinct = 0;
  }
  if( sqlite3SelectResolve(pParse, p, 0) ){
    goto select_end;
  }
  p->pOrderBy = pOrderBy;


  /* Make local copies of the parameters for this query.
  */
  pTabList = p->pSrc;
  isAgg = p->isAgg;
  pEList = p->pEList;
  if( pEList==0 ) goto select_end;

  /* 
  ** Do not even attempt to generate any code if we have already seen
  ** errors before this routine starts.
  */
  if( pParse->nErr>0 ) goto select_end;

  /* ORDER BY is ignored for some destinations.
  */
  if( IgnorableOrderby(pDest) ){
    pOrderBy = 0;
  }

  /* Begin generating code.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto select_end;

  /* Generate code for all sub-queries in the FROM clause
  */
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
  for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
    struct SrcList_item *pItem = &pTabList->a[i];
    SelectDest dest;
    Select *pSub = pItem->pSelect;
    int isAggSub;
    char *zName = pItem->zName;

    if( pSub==0 || pItem->isPopulated ) continue;
    if( zName!=0 ){   /* An sql view */
      const char *zSavedAuthContext = pParse->zAuthContext;
      pParse->zAuthContext = zName;
      rc = sqlite3SelectResolve(pParse, pSub, 0);
      pParse->zAuthContext = zSavedAuthContext;
      if( rc ){
        goto select_end;
      }
    }

    /* Increment Parse.nHeight by the height of the largest expression
    ** tree refered to by this, the parent select. The child select
    ** may contain expression trees of at most
    ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
    ** more conservative than necessary, but much easier than enforcing
    ** an exact limit.
    */
    pParse->nHeight += sqlite3SelectExprHeight(p);

    /* Check to see if the subquery can be absorbed into the parent. */
    isAggSub = pSub->isAgg;
    if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){
      if( isAggSub ){
        p->isAgg = isAgg = 1;
      }
      i = -1;
    }else{
      sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
      sqlite3Select(pParse, pSub, &dest, p, i, &isAgg);
    }
    if( pParse->nErr || db->mallocFailed ){
      goto select_end;
    }
    pParse->nHeight -= sqlite3SelectExprHeight(p);
    pTabList = p->pSrc;
    if( !IgnorableOrderby(pDest) ){
      pOrderBy = p->pOrderBy;
    }
  }
  pEList = p->pEList;
#endif
  pWhere = p->pWhere;
  pGroupBy = p->pGroupBy;
  pHaving = p->pHaving;
  isDistinct = p->isDistinct;

#ifndef SQLITE_OMIT_COMPOUND_SELECT
  /* If there is are a sequence of queries, do the earlier ones first.
  */
  if( p->pPrior ){
    if( p->pRightmost==0 ){
      Select *pLoop, *pRight = 0;
      int cnt = 0;
      int mxSelect;
      for(pLoop=p; pLoop; pLoop=pLoop->pPrior, cnt++){
        pLoop->pRightmost = p;
        pLoop->pNext = pRight;
        pRight = pLoop;
      }
      mxSelect = db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
      if( mxSelect && cnt>mxSelect ){
        sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
        return 1;
      }
    }
    return multiSelect(pParse, p, pDest);
  }
#endif

  /* If writing to memory or generating a set
  ** only a single column may be output.
  */
#ifndef SQLITE_OMIT_SUBQUERY
  if( checkForMultiColumnSelectError(pParse, pDest, pEList->nExpr) ){
    goto select_end;
  }
#endif

  /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
  ** GROUP BY may use an index, DISTINCT never does.
  */
  if( p->isDistinct && !p->isAgg && !p->pGroupBy ){
    p->pGroupBy = sqlite3ExprListDup(db, p->pEList);
    pGroupBy = p->pGroupBy;
    p->isDistinct = 0;
    isDistinct = 0;
  }

  /* If there is an ORDER BY clause, then this sorting
  ** index might end up being unused if the data can be 
  ** extracted in pre-sorted order.  If that is the case, then the
  ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
  ** we figure out that the sorting index is not needed.  The addrSortIndex
  ** variable is used to facilitate that change.
  */
  if( pOrderBy ){
    KeyInfo *pKeyInfo;
    pKeyInfo = keyInfoFromExprList(pParse, pOrderBy);
    pOrderBy->iECursor = pParse->nTab++;
    p->addrOpenEphm[2] = addrSortIndex =
      sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
                           pOrderBy->iECursor, pOrderBy->nExpr+2, 0,
                           (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
  }else{
    addrSortIndex = -1;
  }

  /* If the output is destined for a temporary table, open that table.
  */
  if( pDest->eDest==SRT_EphemTab ){
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
  }

  /* Set the limiter.
  */
  iEnd = sqlite3VdbeMakeLabel(v);
  computeLimitRegisters(pParse, p, iEnd);

  /* Open a virtual index to use for the distinct set.
  */
  if( isDistinct ){
    KeyInfo *pKeyInfo;
    assert( isAgg || pGroupBy );
    distinct = pParse->nTab++;
    pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
    sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
                        (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
  }else{
    distinct = -1;
  }

  /* Aggregate and non-aggregate queries are handled differently */
  if( !isAgg && pGroupBy==0 ){
    /* This case is for non-aggregate queries
    ** Begin the database scan
    */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
    if( pWInfo==0 ) goto select_end;

    /* If sorting index that was created by a prior OP_OpenEphemeral 
    ** instruction ended up not being needed, then change the OP_OpenEphemeral
    ** into an OP_Noop.
    */
    if( addrSortIndex>=0 && pOrderBy==0 ){
      sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
      p->addrOpenEphm[2] = -1;
    }

    /* Use the standard inner loop
    */
    assert(!isDistinct);
    selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
                    pWInfo->iContinue, pWInfo->iBreak);

    /* End the database scan loop.
    */
    sqlite3WhereEnd(pWInfo);
  }else{
    /* This is the processing for aggregate queries */
    NameContext sNC;    /* Name context for processing aggregate information */
    int iAMem;          /* First Mem address for storing current GROUP BY */
    int iBMem;          /* First Mem address for previous GROUP BY */
    int iUseFlag;       /* Mem address holding flag indicating that at least
                        ** one row of the input to the aggregator has been
                        ** processed */
    int iAbortFlag;     /* Mem address which causes query abort if positive */
    int groupBySort;    /* Rows come from source in GROUP BY order */


    /* The following variables hold addresses or labels for parts of the
    ** virtual machine program we are putting together */
    int addrOutputRow;      /* Start of subroutine that outputs a result row */
    int regOutputRow;       /* Return address register for output subroutine */
    int addrSetAbort;       /* Set the abort flag and return */
    int addrInitializeLoop; /* Start of code that initializes the input loop */
    int addrTopOfLoop;      /* Top of the input loop */
    int addrEnd;            /* End of all processing */
    int addrSortingIdx;     /* The OP_OpenEphemeral for the sorting index */
    int addrReset;          /* Subroutine for resetting the accumulator */
    int regReset;           /* Return address register for reset subroutine */

    addrEnd = sqlite3VdbeMakeLabel(v);

    /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
    ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
    ** SELECT statement.
    */
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    sNC.pSrcList = pTabList;
    sNC.pAggInfo = &sAggInfo;
    sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
    sAggInfo.pGroupBy = pGroupBy;
    sqlite3ExprAnalyzeAggList(&sNC, pEList);
    sqlite3ExprAnalyzeAggList(&sNC, pOrderBy);
    if( pHaving ){
      sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
    }
    sAggInfo.nAccumulator = sAggInfo.nColumn;
    for(i=0; i<sAggInfo.nFunc; i++){
      sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList);
    }
    if( db->mallocFailed ) goto select_end;

    /* Processing for aggregates with GROUP BY is very different and
    ** much more complex than aggregates without a GROUP BY.
    */
    if( pGroupBy ){
      KeyInfo *pKeyInfo;  /* Keying information for the group by clause */
      int j1;

      /* Create labels that we will be needing
      */
      addrInitializeLoop = sqlite3VdbeMakeLabel(v);

      /* If there is a GROUP BY clause we might need a sorting index to
      ** implement it.  Allocate that sorting index now.  If it turns out
      ** that we do not need it after all, the OpenEphemeral instruction
      ** will be converted into a Noop.  
      */
      sAggInfo.sortingIdx = pParse->nTab++;
      pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
      addrSortingIdx = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, 
          sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 
          0, (char*)pKeyInfo, P4_KEYINFO_HANDOFF);

      /* Initialize memory locations used by GROUP BY aggregate processing
      */
      iUseFlag = ++pParse->nMem;
      iAbortFlag = ++pParse->nMem;
      iAMem = pParse->nMem + 1;
      pParse->nMem += pGroupBy->nExpr;
      iBMem = pParse->nMem + 1;
      pParse->nMem += pGroupBy->nExpr;
      sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
      VdbeComment((v, "clear abort flag"));
      sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
      VdbeComment((v, "indicate accumulator empty"));
      sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInitializeLoop);

      /* Generate a subroutine that outputs a single row of the result
      ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
      ** is less than or equal to zero, the subroutine is a no-op.  If
      ** the processing calls for the query to abort, this subroutine
      ** increments the iAbortFlag memory location before returning in
      ** order to signal the caller to abort.
      */
      addrSetAbort = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
      VdbeComment((v, "set abort flag"));
      regOutputRow = ++pParse->nMem;
      sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
      addrOutputRow = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
      VdbeComment((v, "Groupby result generator entry point"));
      sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
      finalizeAggFunctions(pParse, &sAggInfo);
      if( pHaving ){
        sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
      }
      selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
                      distinct, pDest,
                      addrOutputRow+1, addrSetAbort);
      sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
      VdbeComment((v, "end groupby result generator"));

      /* Generate a subroutine that will reset the group-by accumulator
      */
      addrReset = sqlite3VdbeCurrentAddr(v);
      regReset = ++pParse->nMem;
      resetAccumulator(pParse, &sAggInfo);
      sqlite3VdbeAddOp1(v, OP_Return, regReset);

      /* Begin a loop that will extract all source rows in GROUP BY order.
      ** This might involve two separate loops with an OP_Sort in between, or
      ** it might be a single loop that uses an index to extract information
      ** in the right order to begin with.
      */
      sqlite3VdbeResolveLabel(v, addrInitializeLoop);
      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
      if( pWInfo==0 ) goto select_end;
      if( pGroupBy==0 ){
        /* The optimizer is able to deliver rows in group by order so
        ** we do not have to sort.  The OP_OpenEphemeral table will be
        ** cancelled later because we still need to use the pKeyInfo
        */
        pGroupBy = p->pGroupBy;
        groupBySort = 0;
      }else{
        /* Rows are coming out in undetermined order.  We have to push
        ** each row into a sorting index, terminate the first loop,
        ** then loop over the sorting index in order to get the output
        ** in sorted order
        */
        int regBase;
        int regRecord;
        int nCol;
        int nGroupBy;

        groupBySort = 1;
        nGroupBy = pGroupBy->nExpr;
        nCol = nGroupBy + 1;
        j = nGroupBy+1;
        for(i=0; i<sAggInfo.nColumn; i++){
          if( sAggInfo.aCol[i].iSorterColumn>=j ){
            nCol++;
            j++;
          }
        }
        regBase = sqlite3GetTempRange(pParse, nCol);
        sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0);
        sqlite3VdbeAddOp2(v, OP_Sequence, sAggInfo.sortingIdx,regBase+nGroupBy);
        j = nGroupBy+1;
        for(i=0; i<sAggInfo.nColumn; i++){
          struct AggInfo_col *pCol = &sAggInfo.aCol[i];
          if( pCol->iSorterColumn>=j ){
            int r1 = j + regBase;
#ifndef NDEBUG
            int r2 = 
#endif
                     sqlite3ExprCodeGetColumn(pParse, 
                               pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
            j++;

            /* sAggInfo.aCol[] only contains one entry per column.  So
            ** The reference to pCol->iColumn,pCol->iTable must have been
            ** the first reference to that column.  Hence, 
            ** sqliteExprCodeGetColumn is guaranteed to put the result in
            ** the column requested. 
            */
            assert( r1==r2 );
          }
        }
        regRecord = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
        sqlite3VdbeAddOp2(v, OP_IdxInsert, sAggInfo.sortingIdx, regRecord);
        sqlite3ReleaseTempReg(pParse, regRecord);
        sqlite3ReleaseTempRange(pParse, regBase, nCol);
        sqlite3WhereEnd(pWInfo);
        sqlite3VdbeAddOp2(v, OP_Sort, sAggInfo.sortingIdx, addrEnd);
        VdbeComment((v, "GROUP BY sort"));
        sAggInfo.useSortingIdx = 1;
      }

      /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
      ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
      ** Then compare the current GROUP BY terms against the GROUP BY terms
      ** from the previous row currently stored in a0, a1, a2...
      */
      addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
      for(j=0; j<pGroupBy->nExpr; j++){
        if( groupBySort ){
          sqlite3VdbeAddOp3(v, OP_Column, sAggInfo.sortingIdx, j, iBMem+j);
        }else{
          sAggInfo.directMode = 1;
          sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
        }
      }
      sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
                          (char*)pKeyInfo, P4_KEYINFO);
      j1 = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp3(v, OP_Jump, j1+1, 0, j1+1);

      /* Generate code that runs whenever the GROUP BY changes.
      ** Changes in the GROUP BY are detected by the previous code
      ** block.  If there were no changes, this block is skipped.
      **
      ** This code copies current group by terms in b0,b1,b2,...
      ** over to a0,a1,a2.  It then calls the output subroutine
      ** and resets the aggregate accumulator registers in preparation
      ** for the next GROUP BY batch.
      */
      sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
      sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
      VdbeComment((v, "output one row"));
      sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd);
      VdbeComment((v, "check abort flag"));
      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
      VdbeComment((v, "reset accumulator"));

      /* Update the aggregate accumulators based on the content of
      ** the current row
      */
      sqlite3VdbeJumpHere(v, j1);
      updateAccumulator(pParse, &sAggInfo);
      sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
      VdbeComment((v, "indicate data in accumulator"));

      /* End of the loop
      */
      if( groupBySort ){
        sqlite3VdbeAddOp2(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
      }else{
        sqlite3WhereEnd(pWInfo);
        sqlite3VdbeChangeToNoop(v, addrSortingIdx, 1);
      }

      /* Output the final row of result
      */
      sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
      VdbeComment((v, "output final row"));
      
    } /* endif pGroupBy */
    else {
      ExprList *pMinMax = 0;
      ExprList *pDel = 0;
      u8 flag;

      /* Check if the query is of one of the following forms:
      **
      **   SELECT min(x) FROM ...
      **   SELECT max(x) FROM ...
      **
      ** If it is, then ask the code in where.c to attempt to sort results
      ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. 
      ** If where.c is able to produce results sorted in this order, then
      ** add vdbe code to break out of the processing loop after the 
      ** first iteration (since the first iteration of the loop is 
      ** guaranteed to operate on the row with the minimum or maximum 
      ** value of x, the only row required).
      **
      ** A special flag must be passed to sqlite3WhereBegin() to slightly
      ** modify behaviour as follows:
      **
      **   + If the query is a "SELECT min(x)", then the loop coded by
      **     where.c should not iterate over any values with a NULL value
      **     for x.
      **
      **   + The optimizer code in where.c (the thing that decides which
      **     index or indices to use) should place a different priority on 
      **     satisfying the 'ORDER BY' clause than it does in other cases.
      **     Refer to code and comments in where.c for details.
      */
      flag = minMaxQuery(pParse, p);
      if( flag ){
        pDel = pMinMax = sqlite3ExprListDup(db, p->pEList->a[0].pExpr->pList);
        if( pMinMax && !db->mallocFailed ){
          pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN;
          pMinMax->a[0].pExpr->op = TK_COLUMN;
        }
      }

      /* This case runs if the aggregate has no GROUP BY clause.  The
      ** processing is much simpler since there is only a single row
      ** of output.
      */
      resetAccumulator(pParse, &sAggInfo);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
      if( pWInfo==0 ){
        sqlite3ExprListDelete(db, pDel);
        goto select_end;
      }
      updateAccumulator(pParse, &sAggInfo);
      if( !pMinMax && flag ){
        sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
        VdbeComment((v, "%s() by index",(flag==WHERE_ORDERBY_MIN?"min":"max")));
      }
      sqlite3WhereEnd(pWInfo);
      finalizeAggFunctions(pParse, &sAggInfo);
      pOrderBy = 0;
      if( pHaving ){
        sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
      }
      selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 
                      pDest, addrEnd, addrEnd);

      sqlite3ExprListDelete(db, pDel);
    }
    sqlite3VdbeResolveLabel(v, addrEnd);
    
  } /* endif aggregate query */

  /* If there is an ORDER BY clause, then we need to sort the results
  ** and send them to the callback one by one.
  */
  if( pOrderBy ){
    generateSortTail(pParse, p, v, pEList->nExpr, pDest);
  }

#ifndef SQLITE_OMIT_SUBQUERY
  /* If this was a subquery, we have now converted the subquery into a
  ** temporary table.  So set the SrcList_item.isPopulated flag to prevent
  ** this subquery from being evaluated again and to force the use of
  ** the temporary table.
  */
  if( pParent ){
    assert( pParent->pSrc->nSrc>parentTab );
    assert( pParent->pSrc->a[parentTab].pSelect==p );
    pParent->pSrc->a[parentTab].isPopulated = 1;
  }
#endif

  /* Jump here to skip this query
  */
  sqlite3VdbeResolveLabel(v, iEnd);

  /* The SELECT was successfully coded.   Set the return code to 0
  ** to indicate no errors.
  */
  rc = 0;

  /* Control jumps to here if an error is encountered above, or upon
  ** successful coding of the SELECT.
  */
select_end:

  /* Identify column names if we will be using them in a callback.  This
  ** step is skipped if the output is going to some other destination.
  */
  if( rc==SQLITE_OK && pDest->eDest==SRT_Callback ){
    generateColumnNames(pParse, pTabList, pEList);
  }

  sqlite3DbFree(db, sAggInfo.aCol);
  sqlite3DbFree(db, sAggInfo.aFunc);
  return rc;
}

#if defined(SQLITE_DEBUG)
/*
*******************************************************************************
** The following code is used for testing and debugging only.  The code
** that follows does not appear in normal builds.
**
** These routines are used to print out the content of all or part of a 
** parse structures such as Select or Expr.  Such printouts are useful
** for helping to understand what is happening inside the code generator
** during the execution of complex SELECT statements.
**
** These routine are not called anywhere from within the normal
** code base.  Then are intended to be called from within the debugger
** or from temporary "printf" statements inserted for debugging.
*/
void sqlite3PrintExpr(Expr *p){
  if( p->token.z && p->token.n>0 ){
    sqlite3DebugPrintf("(%.*s", p->token.n, p->token.z);
  }else{
    sqlite3DebugPrintf("(%d", p->op);
  }
  if( p->pLeft ){
    sqlite3DebugPrintf(" ");
    sqlite3PrintExpr(p->pLeft);
  }
  if( p->pRight ){
    sqlite3DebugPrintf(" ");
    sqlite3PrintExpr(p->pRight);
  }
  sqlite3DebugPrintf(")");
}
void sqlite3PrintExprList(ExprList *pList){
  int i;
  for(i=0; i<pList->nExpr; i++){
    sqlite3PrintExpr(pList->a[i].pExpr);
    if( i<pList->nExpr-1 ){
      sqlite3DebugPrintf(", ");
    }
  }
}
void sqlite3PrintSelect(Select *p, int indent){
  sqlite3DebugPrintf("%*sSELECT(%p) ", indent, "", p);
  sqlite3PrintExprList(p->pEList);
  sqlite3DebugPrintf("\n");
  if( p->pSrc ){
    char *zPrefix;
    int i;
    zPrefix = "FROM";
    for(i=0; i<p->pSrc->nSrc; i++){
      struct SrcList_item *pItem = &p->pSrc->a[i];
      sqlite3DebugPrintf("%*s ", indent+6, zPrefix);
      zPrefix = "";
      if( pItem->pSelect ){
        sqlite3DebugPrintf("(\n");
        sqlite3PrintSelect(pItem->pSelect, indent+10);
        sqlite3DebugPrintf("%*s)", indent+8, "");
      }else if( pItem->zName ){
        sqlite3DebugPrintf("%s", pItem->zName);
      }
      if( pItem->pTab ){
        sqlite3DebugPrintf("(table: %s)", pItem->pTab->zName);
      }
      if( pItem->zAlias ){
        sqlite3DebugPrintf(" AS %s", pItem->zAlias);
      }
      if( i<p->pSrc->nSrc-1 ){
        sqlite3DebugPrintf(",");
      }
      sqlite3DebugPrintf("\n");
    }
  }
  if( p->pWhere ){
    sqlite3DebugPrintf("%*s WHERE ", indent, "");
    sqlite3PrintExpr(p->pWhere);
    sqlite3DebugPrintf("\n");
  }
  if( p->pGroupBy ){
    sqlite3DebugPrintf("%*s GROUP BY ", indent, "");
    sqlite3PrintExprList(p->pGroupBy);
    sqlite3DebugPrintf("\n");
  }
  if( p->pHaving ){
    sqlite3DebugPrintf("%*s HAVING ", indent, "");
    sqlite3PrintExpr(p->pHaving);
    sqlite3DebugPrintf("\n");
  }
  if( p->pOrderBy ){
    sqlite3DebugPrintf("%*s ORDER BY ", indent, "");
    sqlite3PrintExprList(p->pOrderBy);
    sqlite3DebugPrintf("\n");
  }
}
/* End of the structure debug printing code
*****************************************************************************/
#endif /* defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */