Workaround for Bug 3854 - featuremgr bld.inf no longer exports features.dat for emulator
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle INSERT statements in SQLite.
**
** $Id: insert.c,v 1.249 2008/08/20 16:35:10 drh Exp $
*/
#include "sqliteInt.h"
/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for index pIdx. A column affinity string has one character
** for each column in the table, according to the affinity of the column:
**
** Character Column affinity
** ------------------------------
** 'a' TEXT
** 'b' NONE
** 'c' NUMERIC
** 'd' INTEGER
** 'e' REAL
**
** An extra 'b' is appended to the end of the string to cover the
** rowid that appears as the last column in every index.
*/
void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
if( !pIdx->zColAff ){
/* The first time a column affinity string for a particular index is
** required, it is allocated and populated here. It is then stored as
** a member of the Index structure for subsequent use.
**
** The column affinity string will eventually be deleted by
** sqliteDeleteIndex() when the Index structure itself is cleaned
** up.
*/
int n;
Table *pTab = pIdx->pTable;
sqlite3 *db = sqlite3VdbeDb(v);
pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2);
if( !pIdx->zColAff ){
db->mallocFailed = 1;
return;
}
for(n=0; n<pIdx->nColumn; n++){
pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
}
pIdx->zColAff[n++] = SQLITE_AFF_NONE;
pIdx->zColAff[n] = 0;
}
sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0);
}
/*
** Set P4 of the most recently inserted opcode to a column affinity
** string for table pTab. A column affinity string has one character
** for each column indexed by the index, according to the affinity of the
** column:
**
** Character Column affinity
** ------------------------------
** 'a' TEXT
** 'b' NONE
** 'c' NUMERIC
** 'd' INTEGER
** 'e' REAL
*/
void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
/* The first time a column affinity string for a particular table
** is required, it is allocated and populated here. It is then
** stored as a member of the Table structure for subsequent use.
**
** The column affinity string will eventually be deleted by
** sqlite3DeleteTable() when the Table structure itself is cleaned up.
*/
if( !pTab->zColAff ){
char *zColAff;
int i;
sqlite3 *db = sqlite3VdbeDb(v);
zColAff = (char *)sqlite3Malloc(pTab->nCol+1);
if( !zColAff ){
db->mallocFailed = 1;
return;
}
for(i=0; i<pTab->nCol; i++){
zColAff[i] = pTab->aCol[i].affinity;
}
zColAff[pTab->nCol] = '\0';
pTab->zColAff = zColAff;
}
sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0);
}
/*
** Return non-zero if the table pTab in database iDb or any of its indices
** have been opened at any point in the VDBE program beginning at location
** iStartAddr throught the end of the program. This is used to see if
** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
** run without using temporary table for the results of the SELECT.
*/
static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){
int i;
int iEnd = sqlite3VdbeCurrentAddr(v);
for(i=iStartAddr; i<iEnd; i++){
VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
assert( pOp!=0 );
if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
Index *pIndex;
int tnum = pOp->p2;
if( tnum==pTab->tnum ){
return 1;
}
for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
if( tnum==pIndex->tnum ){
return 1;
}
}
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){
assert( pOp->p4.pVtab!=0 );
assert( pOp->p4type==P4_VTAB );
return 1;
}
#endif
}
return 0;
}
#ifndef SQLITE_OMIT_AUTOINCREMENT
/*
** Write out code to initialize the autoincrement logic. This code
** looks up the current autoincrement value in the sqlite_sequence
** table and stores that value in a register. Code generated by
** autoIncStep() will keep that register holding the largest
** rowid value. Code generated by autoIncEnd() will write the new
** largest value of the counter back into the sqlite_sequence table.
**
** This routine returns the index of the mem[] cell that contains
** the maximum rowid counter.
**
** Three consecutive registers are allocated by this routine. The
** first two hold the name of the target table and the maximum rowid
** inserted into the target table, respectively.
** The third holds the rowid in sqlite_sequence where we will
** write back the revised maximum rowid. This routine returns the
** index of the second of these three registers.
*/
static int autoIncBegin(
Parse *pParse, /* Parsing context */
int iDb, /* Index of the database holding pTab */
Table *pTab /* The table we are writing to */
){
int memId = 0; /* Register holding maximum rowid */
if( pTab->tabFlags & TF_Autoincrement ){
Vdbe *v = pParse->pVdbe;
Db *pDb = &pParse->db->aDb[iDb];
int iCur = pParse->nTab;
int addr; /* Address of the top of the loop */
assert( v );
pParse->nMem++; /* Holds name of table */
memId = ++pParse->nMem;
pParse->nMem++;
sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
addr = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0);
sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+9);
sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId);
sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1);
sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId);
sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2);
sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
sqlite3VdbeAddOp2(v, OP_Close, iCur, 0);
}
return memId;
}
/*
** Update the maximum rowid for an autoincrement calculation.
**
** This routine should be called when the top of the stack holds a
** new rowid that is about to be inserted. If that new rowid is
** larger than the maximum rowid in the memId memory cell, then the
** memory cell is updated. The stack is unchanged.
*/
static void autoIncStep(Parse *pParse, int memId, int regRowid){
if( memId>0 ){
sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
}
}
/*
** After doing one or more inserts, the maximum rowid is stored
** in reg[memId]. Generate code to write this value back into the
** the sqlite_sequence table.
*/
static void autoIncEnd(
Parse *pParse, /* The parsing context */
int iDb, /* Index of the database holding pTab */
Table *pTab, /* Table we are inserting into */
int memId /* Memory cell holding the maximum rowid */
){
if( pTab->tabFlags & TF_Autoincrement ){
int iCur = pParse->nTab;
Vdbe *v = pParse->pVdbe;
Db *pDb = &pParse->db->aDb[iDb];
int j1;
int iRec = ++pParse->nMem; /* Memory cell used for record */
assert( v );
sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1);
sqlite3VdbeJumpHere(v, j1);
sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1);
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
sqlite3VdbeAddOp1(v, OP_Close, iCur);
}
}
#else
/*
** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
** above are all no-ops
*/
# define autoIncBegin(A,B,C) (0)
# define autoIncStep(A,B,C)
# define autoIncEnd(A,B,C,D)
#endif /* SQLITE_OMIT_AUTOINCREMENT */
/* Forward declaration */
static int xferOptimization(
Parse *pParse, /* Parser context */
Table *pDest, /* The table we are inserting into */
Select *pSelect, /* A SELECT statement to use as the data source */
int onError, /* How to handle constraint errors */
int iDbDest /* The database of pDest */
);
/*
** This routine is call to handle SQL of the following forms:
**
** insert into TABLE (IDLIST) values(EXPRLIST)
** insert into TABLE (IDLIST) select
**
** The IDLIST following the table name is always optional. If omitted,
** then a list of all columns for the table is substituted. The IDLIST
** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
**
** The pList parameter holds EXPRLIST in the first form of the INSERT
** statement above, and pSelect is NULL. For the second form, pList is
** NULL and pSelect is a pointer to the select statement used to generate
** data for the insert.
**
** The code generated follows one of four templates. For a simple
** select with data coming from a VALUES clause, the code executes
** once straight down through. Pseudo-code follows (we call this
** the "1st template"):
**
** open write cursor to <table> and its indices
** puts VALUES clause expressions onto the stack
** write the resulting record into <table>
** cleanup
**
** The three remaining templates assume the statement is of the form
**
** INSERT INTO <table> SELECT ...
**
** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
** in other words if the SELECT pulls all columns from a single table
** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
** if <table2> and <table1> are distinct tables but have identical
** schemas, including all the same indices, then a special optimization
** is invoked that copies raw records from <table2> over to <table1>.
** See the xferOptimization() function for the implementation of this
** template. This is the 2nd template.
**
** open a write cursor to <table>
** open read cursor on <table2>
** transfer all records in <table2> over to <table>
** close cursors
** foreach index on <table>
** open a write cursor on the <table> index
** open a read cursor on the corresponding <table2> index
** transfer all records from the read to the write cursors
** close cursors
** end foreach
**
** The 3rd template is for when the second template does not apply
** and the SELECT clause does not read from <table> at any time.
** The generated code follows this template:
**
** EOF <- 0
** X <- A
** goto B
** A: setup for the SELECT
** loop over the rows in the SELECT
** load values into registers R..R+n
** yield X
** end loop
** cleanup after the SELECT
** EOF <- 1
** yield X
** goto A
** B: open write cursor to <table> and its indices
** C: yield X
** if EOF goto D
** insert the select result into <table> from R..R+n
** goto C
** D: cleanup
**
** The 4th template is used if the insert statement takes its
** values from a SELECT but the data is being inserted into a table
** that is also read as part of the SELECT. In the third form,
** we have to use a intermediate table to store the results of
** the select. The template is like this:
**
** EOF <- 0
** X <- A
** goto B
** A: setup for the SELECT
** loop over the tables in the SELECT
** load value into register R..R+n
** yield X
** end loop
** cleanup after the SELECT
** EOF <- 1
** yield X
** halt-error
** B: open temp table
** L: yield X
** if EOF goto M
** insert row from R..R+n into temp table
** goto L
** M: open write cursor to <table> and its indices
** rewind temp table
** C: loop over rows of intermediate table
** transfer values form intermediate table into <table>
** end loop
** D: cleanup
*/
void sqlite3Insert(
Parse *pParse, /* Parser context */
SrcList *pTabList, /* Name of table into which we are inserting */
ExprList *pList, /* List of values to be inserted */
Select *pSelect, /* A SELECT statement to use as the data source */
IdList *pColumn, /* Column names corresponding to IDLIST. */
int onError /* How to handle constraint errors */
){
sqlite3 *db; /* The main database structure */
Table *pTab; /* The table to insert into. aka TABLE */
char *zTab; /* Name of the table into which we are inserting */
const char *zDb; /* Name of the database holding this table */
int i, j, idx; /* Loop counters */
Vdbe *v; /* Generate code into this virtual machine */
Index *pIdx; /* For looping over indices of the table */
int nColumn; /* Number of columns in the data */
int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
int baseCur = 0; /* VDBE Cursor number for pTab */
int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
int endOfLoop; /* Label for the end of the insertion loop */
int useTempTable = 0; /* Store SELECT results in intermediate table */
int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
int addrInsTop = 0; /* Jump to label "D" */
int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
int addrSelect = 0; /* Address of coroutine that implements the SELECT */
SelectDest dest; /* Destination for SELECT on rhs of INSERT */
int newIdx = -1; /* Cursor for the NEW pseudo-table */
int iDb; /* Index of database holding TABLE */
Db *pDb; /* The database containing table being inserted into */
int appendFlag = 0; /* True if the insert is likely to be an append */
/* Register allocations */
int regFromSelect; /* Base register for data coming from SELECT */
int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
int regRowCount = 0; /* Memory cell used for the row counter */
int regIns; /* Block of regs holding rowid+data being inserted */
int regRowid; /* registers holding insert rowid */
int regData; /* register holding first column to insert */
int regRecord; /* Holds the assemblied row record */
int regEof; /* Register recording end of SELECT data */
int *aRegIdx = 0; /* One register allocated to each index */
#ifndef SQLITE_OMIT_TRIGGER
int isView; /* True if attempting to insert into a view */
int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */
#endif
db = pParse->db;
if( pParse->nErr || db->mallocFailed ){
goto insert_cleanup;
}
/* Locate the table into which we will be inserting new information.
*/
assert( pTabList->nSrc==1 );
zTab = pTabList->a[0].zName;
if( zTab==0 ) goto insert_cleanup;
pTab = sqlite3SrcListLookup(pParse, pTabList);
if( pTab==0 ){
goto insert_cleanup;
}
iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
assert( iDb<db->nDb );
pDb = &db->aDb[iDb];
zDb = pDb->zName;
if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
goto insert_cleanup;
}
/* Figure out if we have any triggers and if the table being
** inserted into is a view
*/
#ifndef SQLITE_OMIT_TRIGGER
triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0);
isView = pTab->pSelect!=0;
#else
# define triggers_exist 0
# define isView 0
#endif
#ifdef SQLITE_OMIT_VIEW
# undef isView
# define isView 0
#endif
/* Ensure that:
* (a) the table is not read-only,
* (b) that if it is a view then ON INSERT triggers exist
*/
if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){
goto insert_cleanup;
}
assert( pTab!=0 );
/* If pTab is really a view, make sure it has been initialized.
** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
** module table).
*/
if( sqlite3ViewGetColumnNames(pParse, pTab) ){
goto insert_cleanup;
}
/* Allocate a VDBE
*/
v = sqlite3GetVdbe(pParse);
if( v==0 ) goto insert_cleanup;
if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb);
/* if there are row triggers, allocate a temp table for new.* references. */
if( triggers_exist ){
newIdx = pParse->nTab++;
}
#ifndef SQLITE_OMIT_XFER_OPT
/* If the statement is of the form
**
** INSERT INTO <table1> SELECT * FROM <table2>;
**
** Then special optimizations can be applied that make the transfer
** very fast and which reduce fragmentation of indices.
**
** This is the 2nd template.
*/
if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
assert( !triggers_exist );
assert( pList==0 );
goto insert_cleanup;
}
#endif /* SQLITE_OMIT_XFER_OPT */
/* If this is an AUTOINCREMENT table, look up the sequence number in the
** sqlite_sequence table and store it in memory cell regAutoinc.
*/
regAutoinc = autoIncBegin(pParse, iDb, pTab);
/* Figure out how many columns of data are supplied. If the data
** is coming from a SELECT statement, then generate a co-routine that
** produces a single row of the SELECT on each invocation. The
** co-routine is the common header to the 3rd and 4th templates.
*/
if( pSelect ){
/* Data is coming from a SELECT. Generate code to implement that SELECT
** as a co-routine. The code is common to both the 3rd and 4th
** templates:
**
** EOF <- 0
** X <- A
** goto B
** A: setup for the SELECT
** loop over the tables in the SELECT
** load value into register R..R+n
** yield X
** end loop
** cleanup after the SELECT
** EOF <- 1
** yield X
** halt-error
**
** On each invocation of the co-routine, it puts a single row of the
** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1.
** (These output registers are allocated by sqlite3Select().) When
** the SELECT completes, it sets the EOF flag stored in regEof.
*/
int rc, j1;
regEof = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */
VdbeComment((v, "SELECT eof flag"));
sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
addrSelect = sqlite3VdbeCurrentAddr(v)+2;
sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
VdbeComment((v, "Jump over SELECT coroutine"));
/* Resolve the expressions in the SELECT statement and execute it. */
rc = sqlite3Select(pParse, pSelect, &dest);
if( rc || pParse->nErr || db->mallocFailed ){
goto insert_cleanup;
}
sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */
sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
VdbeComment((v, "End of SELECT coroutine"));
sqlite3VdbeJumpHere(v, j1); /* label B: */
regFromSelect = dest.iMem;
assert( pSelect->pEList );
nColumn = pSelect->pEList->nExpr;
assert( dest.nMem==nColumn );
/* Set useTempTable to TRUE if the result of the SELECT statement
** should be written into a temporary table (template 4). Set to
** FALSE if each* row of the SELECT can be written directly into
** the destination table (template 3).
**
** A temp table must be used if the table being updated is also one
** of the tables being read by the SELECT statement. Also use a
** temp table in the case of row triggers.
*/
if( triggers_exist || readsTable(v, addrSelect, iDb, pTab) ){
useTempTable = 1;
}
if( useTempTable ){
/* Invoke the coroutine to extract information from the SELECT
** and add it to a transient table srcTab. The code generated
** here is from the 4th template:
**
** B: open temp table
** L: yield X
** if EOF goto M
** insert row from R..R+n into temp table
** goto L
** M: ...
*/
int regRec; /* Register to hold packed record */
int regRowid; /* Register to hold temp table ROWID */
int addrTop; /* Label "L" */
int addrIf; /* Address of jump to M */
srcTab = pParse->nTab++;
regRec = sqlite3GetTempReg(pParse);
regRowid = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid);
sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid);
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
sqlite3VdbeJumpHere(v, addrIf);
sqlite3ReleaseTempReg(pParse, regRec);
sqlite3ReleaseTempReg(pParse, regRowid);
}
}else{
/* This is the case if the data for the INSERT is coming from a VALUES
** clause
*/
NameContext sNC;
memset(&sNC, 0, sizeof(sNC));
sNC.pParse = pParse;
srcTab = -1;
assert( useTempTable==0 );
nColumn = pList ? pList->nExpr : 0;
for(i=0; i<nColumn; i++){
if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
goto insert_cleanup;
}
}
}
/* Make sure the number of columns in the source data matches the number
** of columns to be inserted into the table.
*/
if( IsVirtual(pTab) ){
for(i=0; i<pTab->nCol; i++){
nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
}
}
if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
sqlite3ErrorMsg(pParse,
"table %S has %d columns but %d values were supplied",
pTabList, 0, pTab->nCol, nColumn);
goto insert_cleanup;
}
if( pColumn!=0 && nColumn!=pColumn->nId ){
sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
goto insert_cleanup;
}
/* If the INSERT statement included an IDLIST term, then make sure
** all elements of the IDLIST really are columns of the table and
** remember the column indices.
**
** If the table has an INTEGER PRIMARY KEY column and that column
** is named in the IDLIST, then record in the keyColumn variable
** the index into IDLIST of the primary key column. keyColumn is
** the index of the primary key as it appears in IDLIST, not as
** is appears in the original table. (The index of the primary
** key in the original table is pTab->iPKey.)
*/
if( pColumn ){
for(i=0; i<pColumn->nId; i++){
pColumn->a[i].idx = -1;
}
for(i=0; i<pColumn->nId; i++){
for(j=0; j<pTab->nCol; j++){
if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
pColumn->a[i].idx = j;
if( j==pTab->iPKey ){
keyColumn = i;
}
break;
}
}
if( j>=pTab->nCol ){
if( sqlite3IsRowid(pColumn->a[i].zName) ){
keyColumn = i;
}else{
sqlite3ErrorMsg(pParse, "table %S has no column named %s",
pTabList, 0, pColumn->a[i].zName);
pParse->nErr++;
goto insert_cleanup;
}
}
}
}
/* If there is no IDLIST term but the table has an integer primary
** key, the set the keyColumn variable to the primary key column index
** in the original table definition.
*/
if( pColumn==0 && nColumn>0 ){
keyColumn = pTab->iPKey;
}
/* Open the temp table for FOR EACH ROW triggers
*/
if( triggers_exist ){
sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol);
sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0);
}
/* Initialize the count of rows to be inserted
*/
if( db->flags & SQLITE_CountRows ){
regRowCount = ++pParse->nMem;
sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
}
/* If this is not a view, open the table and and all indices */
if( !isView ){
int nIdx;
int i;
baseCur = pParse->nTab;
nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
if( aRegIdx==0 ){
goto insert_cleanup;
}
for(i=0; i<nIdx; i++){
aRegIdx[i] = ++pParse->nMem;
}
}
/* This is the top of the main insertion loop */
if( useTempTable ){
/* This block codes the top of loop only. The complete loop is the
** following pseudocode (template 4):
**
** rewind temp table
** C: loop over rows of intermediate table
** transfer values form intermediate table into <table>
** end loop
** D: ...
*/
addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
addrCont = sqlite3VdbeCurrentAddr(v);
}else if( pSelect ){
/* This block codes the top of loop only. The complete loop is the
** following pseudocode (template 3):
**
** C: yield X
** if EOF goto D
** insert the select result into <table> from R..R+n
** goto C
** D: ...
*/
addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
}
/* Allocate registers for holding the rowid of the new row,
** the content of the new row, and the assemblied row record.
*/
regRecord = ++pParse->nMem;
regRowid = regIns = pParse->nMem+1;
pParse->nMem += pTab->nCol + 1;
if( IsVirtual(pTab) ){
regRowid++;
pParse->nMem++;
}
regData = regRowid+1;
/* Run the BEFORE and INSTEAD OF triggers, if there are any
*/
endOfLoop = sqlite3VdbeMakeLabel(v);
if( triggers_exist & TRIGGER_BEFORE ){
int regRowid;
int regCols;
int regRec;
/* build the NEW.* reference row. Note that if there is an INTEGER
** PRIMARY KEY into which a NULL is being inserted, that NULL will be
** translated into a unique ID for the row. But on a BEFORE trigger,
** we do not know what the unique ID will be (because the insert has
** not happened yet) so we substitute a rowid of -1
*/
regRowid = sqlite3GetTempReg(pParse);
if( keyColumn<0 ){
sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
}else if( useTempTable ){
sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
}else{
int j1;
assert( pSelect==0 ); /* Otherwise useTempTable is true */
sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid);
sqlite3VdbeJumpHere(v, j1);
sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
}
/* Cannot have triggers on a virtual table. If it were possible,
** this block would have to account for hidden column.
*/
assert(!IsVirtual(pTab));
/* Create the new column data
*/
regCols = sqlite3GetTempRange(pParse, pTab->nCol);
for(i=0; i<pTab->nCol; i++){
if( pColumn==0 ){
j = i;
}else{
for(j=0; j<pColumn->nId; j++){
if( pColumn->a[j].idx==i ) break;
}
}
if( pColumn && j>=pColumn->nId ){
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i);
}else if( useTempTable ){
sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i);
}else{
assert( pSelect==0 ); /* Otherwise useTempTable is true */
sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i);
}
}
regRec = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec);
/* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
** do not attempt any conversions before assembling the record.
** If this is a real table, attempt conversions as required by the
** table column affinities.
*/
if( !isView ){
sqlite3TableAffinityStr(v, pTab);
}
sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
sqlite3ReleaseTempReg(pParse, regRec);
sqlite3ReleaseTempReg(pParse, regRowid);
sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol);
/* Fire BEFORE or INSTEAD OF triggers */
if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab,
newIdx, -1, onError, endOfLoop, 0, 0) ){
goto insert_cleanup;
}
}
/* Push the record number for the new entry onto the stack. The
** record number is a randomly generate integer created by NewRowid
** except when the table has an INTEGER PRIMARY KEY column, in which
** case the record number is the same as that column.
*/
if( !isView ){
if( IsVirtual(pTab) ){
/* The row that the VUpdate opcode will delete: none */
sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
}
if( keyColumn>=0 ){
if( useTempTable ){
sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
}else if( pSelect ){
sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
}else{
VdbeOp *pOp;
sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1);
if( pOp && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
appendFlag = 1;
pOp->opcode = OP_NewRowid;
pOp->p1 = baseCur;
pOp->p2 = regRowid;
pOp->p3 = regAutoinc;
}
}
/* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
** to generate a unique primary key value.
*/
if( !appendFlag ){
int j1;
if( !IsVirtual(pTab) ){
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
sqlite3VdbeJumpHere(v, j1);
}else{
j1 = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
}
sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
}
}else if( IsVirtual(pTab) ){
sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
}else{
sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
appendFlag = 1;
}
autoIncStep(pParse, regAutoinc, regRowid);
/* Push onto the stack, data for all columns of the new entry, beginning
** with the first column.
*/
nHidden = 0;
for(i=0; i<pTab->nCol; i++){
int iRegStore = regRowid+1+i;
if( i==pTab->iPKey ){
/* The value of the INTEGER PRIMARY KEY column is always a NULL.
** Whenever this column is read, the record number will be substituted
** in its place. So will fill this column with a NULL to avoid
** taking up data space with information that will never be used. */
sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
continue;
}
if( pColumn==0 ){
if( IsHiddenColumn(&pTab->aCol[i]) ){
assert( IsVirtual(pTab) );
j = -1;
nHidden++;
}else{
j = i - nHidden;
}
}else{
for(j=0; j<pColumn->nId; j++){
if( pColumn->a[j].idx==i ) break;
}
}
if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
}else if( useTempTable ){
sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
}else if( pSelect ){
sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
}else{
sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
}
}
/* Generate code to check constraints and generate index keys and
** do the insertion.
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( IsVirtual(pTab) ){
sqlite3VtabMakeWritable(pParse, pTab);
sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns,
(const char*)pTab->pVtab, P4_VTAB);
}else
#endif
{
sqlite3GenerateConstraintChecks(
pParse,
pTab,
baseCur,
regIns,
aRegIdx,
keyColumn>=0,
0,
onError,
endOfLoop
);
sqlite3CompleteInsertion(
pParse,
pTab,
baseCur,
regIns,
aRegIdx,
0,
0,
(triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1,
appendFlag
);
}
}
/* Update the count of rows that are inserted
*/
if( (db->flags & SQLITE_CountRows)!=0 ){
sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
}
if( triggers_exist ){
/* Code AFTER triggers */
if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab,
newIdx, -1, onError, endOfLoop, 0, 0) ){
goto insert_cleanup;
}
}
/* The bottom of the main insertion loop, if the data source
** is a SELECT statement.
*/
sqlite3VdbeResolveLabel(v, endOfLoop);
if( useTempTable ){
sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
sqlite3VdbeJumpHere(v, addrInsTop);
sqlite3VdbeAddOp1(v, OP_Close, srcTab);
}else if( pSelect ){
sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
sqlite3VdbeJumpHere(v, addrInsTop);
}
if( !IsVirtual(pTab) && !isView ){
/* Close all tables opened */
sqlite3VdbeAddOp1(v, OP_Close, baseCur);
for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur);
}
}
/* Update the sqlite_sequence table by storing the content of the
** counter value in memory regAutoinc back into the sqlite_sequence
** table.
*/
autoIncEnd(pParse, iDb, pTab, regAutoinc);
/*
** Return the number of rows inserted. If this routine is
** generating code because of a call to sqlite3NestedParse(), do not
** invoke the callback function.
*/
if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){
sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
sqlite3VdbeSetNumCols(v, 1);
sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC);
}
insert_cleanup:
sqlite3SrcListDelete(db, pTabList);
sqlite3ExprListDelete(db, pList);
sqlite3SelectDelete(db, pSelect);
sqlite3IdListDelete(db, pColumn);
sqlite3DbFree(db, aRegIdx);
}
/*
** Generate code to do constraint checks prior to an INSERT or an UPDATE.
**
** The input is a range of consecutive registers as follows:
**
** 1. The rowid of the row to be updated before the update. This
** value is omitted unless we are doing an UPDATE that involves a
** change to the record number or writing to a virtual table.
**
** 2. The rowid of the row after the update.
**
** 3. The data in the first column of the entry after the update.
**
** i. Data from middle columns...
**
** N. The data in the last column of the entry after the update.
**
** The regRowid parameter is the index of the register containing (2).
**
** The old rowid shown as entry (1) above is omitted unless both isUpdate
** and rowidChng are 1. isUpdate is true for UPDATEs and false for
** INSERTs. RowidChng means that the new rowid is explicitly specified by
** the update or insert statement. If rowidChng is false, it means that
** the rowid is computed automatically in an insert or that the rowid value
** is not modified by the update.
**
** The code generated by this routine store new index entries into
** registers identified by aRegIdx[]. No index entry is created for
** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
** the same as the order of indices on the linked list of indices
** attached to the table.
**
** This routine also generates code to check constraints. NOT NULL,
** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
** then the appropriate action is performed. There are five possible
** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
**
** Constraint type Action What Happens
** --------------- ---------- ----------------------------------------
** any ROLLBACK The current transaction is rolled back and
** sqlite3_exec() returns immediately with a
** return code of SQLITE_CONSTRAINT.
**
** any ABORT Back out changes from the current command
** only (do not do a complete rollback) then
** cause sqlite3_exec() to return immediately
** with SQLITE_CONSTRAINT.
**
** any FAIL Sqlite_exec() returns immediately with a
** return code of SQLITE_CONSTRAINT. The
** transaction is not rolled back and any
** prior changes are retained.
**
** any IGNORE The record number and data is popped from
** the stack and there is an immediate jump
** to label ignoreDest.
**
** NOT NULL REPLACE The NULL value is replace by the default
** value for that column. If the default value
** is NULL, the action is the same as ABORT.
**
** UNIQUE REPLACE The other row that conflicts with the row
** being inserted is removed.
**
** CHECK REPLACE Illegal. The results in an exception.
**
** Which action to take is determined by the overrideError parameter.
** Or if overrideError==OE_Default, then the pParse->onError parameter
** is used. Or if pParse->onError==OE_Default then the onError value
** for the constraint is used.
**
** The calling routine must open a read/write cursor for pTab with
** cursor number "baseCur". All indices of pTab must also have open
** read/write cursors with cursor number baseCur+i for the i-th cursor.
** Except, if there is no possibility of a REPLACE action then
** cursors do not need to be open for indices where aRegIdx[i]==0.
*/
void sqlite3GenerateConstraintChecks(
Parse *pParse, /* The parser context */
Table *pTab, /* the table into which we are inserting */
int baseCur, /* Index of a read/write cursor pointing at pTab */
int regRowid, /* Index of the range of input registers */
int *aRegIdx, /* Register used by each index. 0 for unused indices */
int rowidChng, /* True if the rowid might collide with existing entry */
int isUpdate, /* True for UPDATE, False for INSERT */
int overrideError, /* Override onError to this if not OE_Default */
int ignoreDest /* Jump to this label on an OE_Ignore resolution */
){
int i;
Vdbe *v;
int nCol;
int onError;
int j1, j2, j3; /* Addresses of jump instructions */
int regData; /* Register containing first data column */
int iCur;
Index *pIdx;
int seenReplace = 0;
int hasTwoRowids = (isUpdate && rowidChng);
v = sqlite3GetVdbe(pParse);
assert( v!=0 );
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
nCol = pTab->nCol;
regData = regRowid + 1;
/* Test all NOT NULL constraints.
*/
for(i=0; i<nCol; i++){
if( i==pTab->iPKey ){
continue;
}
onError = pTab->aCol[i].notNull;
if( onError==OE_None ) continue;
if( overrideError!=OE_Default ){
onError = overrideError;
}else if( onError==OE_Default ){
onError = OE_Abort;
}
if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
onError = OE_Abort;
}
j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|| onError==OE_Ignore || onError==OE_Replace );
switch( onError ){
case OE_Rollback:
case OE_Abort:
case OE_Fail: {
char *zMsg;
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL",
pTab->zName, pTab->aCol[i].zName);
sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
break;
}
case OE_Ignore: {
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
break;
}
case OE_Replace: {
sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
break;
}
}
sqlite3VdbeJumpHere(v, j1);
}
/* Test all CHECK constraints
*/
#ifndef SQLITE_OMIT_CHECK
if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
int allOk = sqlite3VdbeMakeLabel(v);
pParse->ckBase = regData;
sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
onError = overrideError!=OE_Default ? overrideError : OE_Abort;
if( onError==OE_Ignore ){
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
}else{
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError);
}
sqlite3VdbeResolveLabel(v, allOk);
}
#endif /* !defined(SQLITE_OMIT_CHECK) */
/* If we have an INTEGER PRIMARY KEY, make sure the primary key
** of the new record does not previously exist. Except, if this
** is an UPDATE and the primary key is not changing, that is OK.
*/
if( rowidChng ){
onError = pTab->keyConf;
if( overrideError!=OE_Default ){
onError = overrideError;
}else if( onError==OE_Default ){
onError = OE_Abort;
}
if( onError!=OE_Replace || pTab->pIndex ){
if( isUpdate ){
j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1);
}
j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
switch( onError ){
default: {
onError = OE_Abort;
/* Fall thru into the next case */
}
case OE_Rollback:
case OE_Abort:
case OE_Fail: {
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
"PRIMARY KEY must be unique", P4_STATIC);
break;
}
case OE_Replace: {
sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
seenReplace = 1;
break;
}
case OE_Ignore: {
assert( seenReplace==0 );
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
break;
}
}
sqlite3VdbeJumpHere(v, j3);
if( isUpdate ){
sqlite3VdbeJumpHere(v, j2);
}
}
}
/* Test all UNIQUE constraints by creating entries for each UNIQUE
** index and making sure that duplicate entries do not already exist.
** Add the new records to the indices as we go.
*/
for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
int regIdx;
int regR;
if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */
/* Create a key for accessing the index entry */
regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
for(i=0; i<pIdx->nColumn; i++){
int idx = pIdx->aiColumn[i];
if( idx==pTab->iPKey ){
sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
}else{
sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
}
}
sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
sqlite3IndexAffinityStr(v, pIdx);
sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
/* Find out what action to take in case there is an indexing conflict */
onError = pIdx->onError;
if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */
if( overrideError!=OE_Default ){
onError = overrideError;
}else if( onError==OE_Default ){
onError = OE_Abort;
}
if( seenReplace ){
if( onError==OE_Ignore ) onError = OE_Replace;
else if( onError==OE_Fail ) onError = OE_Abort;
}
/* Check to see if the new index entry will be unique */
j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn);
regR = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR);
j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
regR, SQLITE_INT_TO_PTR(aRegIdx[iCur]),
P4_INT32);
/* Generate code that executes if the new index entry is not unique */
assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|| onError==OE_Ignore || onError==OE_Replace );
switch( onError ){
case OE_Rollback:
case OE_Abort:
case OE_Fail: {
int j, n1, n2;
char zErrMsg[200];
sqlite3_snprintf(sizeof(zErrMsg), zErrMsg,
pIdx->nColumn>1 ? "columns " : "column ");
n1 = strlen(zErrMsg);
for(j=0; j<pIdx->nColumn && n1<sizeof(zErrMsg)-30; j++){
char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
n2 = strlen(zCol);
if( j>0 ){
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", ");
n1 += 2;
}
if( n1+n2>sizeof(zErrMsg)-30 ){
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "...");
n1 += 3;
break;
}else{
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol);
n1 += n2;
}
}
sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1],
pIdx->nColumn>1 ? " are not unique" : " is not unique");
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0);
break;
}
case OE_Ignore: {
assert( seenReplace==0 );
sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
break;
}
case OE_Replace: {
sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0);
seenReplace = 1;
break;
}
}
sqlite3VdbeJumpHere(v, j2);
sqlite3VdbeJumpHere(v, j3);
sqlite3ReleaseTempReg(pParse, regR);
}
}
/*
** This routine generates code to finish the INSERT or UPDATE operation
** that was started by a prior call to sqlite3GenerateConstraintChecks.
** A consecutive range of registers starting at regRowid contains the
** rowid and the content to be inserted.
**
** The arguments to this routine should be the same as the first six
** arguments to sqlite3GenerateConstraintChecks.
*/
void sqlite3CompleteInsertion(
Parse *pParse, /* The parser context */
Table *pTab, /* the table into which we are inserting */
int baseCur, /* Index of a read/write cursor pointing at pTab */
int regRowid, /* Range of content */
int *aRegIdx, /* Register used by each index. 0 for unused indices */
int rowidChng, /* True if the record number will change */
int isUpdate, /* True for UPDATE, False for INSERT */
int newIdx, /* Index of NEW table for triggers. -1 if none */
int appendBias /* True if this is likely to be an append */
){
int i;
Vdbe *v;
int nIdx;
Index *pIdx;
int pik_flags;
int regData;
int regRec;
v = sqlite3GetVdbe(pParse);
assert( v!=0 );
assert( pTab->pSelect==0 ); /* This table is not a VIEW */
for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
for(i=nIdx-1; i>=0; i--){
if( aRegIdx[i]==0 ) continue;
sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
}
regData = regRowid + 1;
regRec = sqlite3GetTempReg(pParse);
sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
sqlite3TableAffinityStr(v, pTab);
sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
#ifndef SQLITE_OMIT_TRIGGER
if( newIdx>=0 ){
sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid);
}
#endif
if( pParse->nested ){
pik_flags = 0;
}else{
pik_flags = OPFLAG_NCHANGE;
pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
}
if( appendBias ){
pik_flags |= OPFLAG_APPEND;
}
sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
if( !pParse->nested ){
sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC);
}
sqlite3VdbeChangeP5(v, pik_flags);
}
/*
** Generate code that will open cursors for a table and for all
** indices of that table. The "baseCur" parameter is the cursor number used
** for the table. Indices are opened on subsequent cursors.
**
** Return the number of indices on the table.
*/
int sqlite3OpenTableAndIndices(
Parse *pParse, /* Parsing context */
Table *pTab, /* Table to be opened */
int baseCur, /* Cursor number assigned to the table */
int op /* OP_OpenRead or OP_OpenWrite */
){
int i;
int iDb;
Index *pIdx;
Vdbe *v;
if( IsVirtual(pTab) ) return 0;
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
v = sqlite3GetVdbe(pParse);
assert( v!=0 );
sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
assert( pIdx->pSchema==pTab->pSchema );
sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
(char*)pKey, P4_KEYINFO_HANDOFF);
VdbeComment((v, "%s", pIdx->zName));
}
if( pParse->nTab<=baseCur+i ){
pParse->nTab = baseCur+i;
}
return i-1;
}
#ifdef SQLITE_TEST
/*
** The following global variable is incremented whenever the
** transfer optimization is used. This is used for testing
** purposes only - to make sure the transfer optimization really
** is happening when it is suppose to.
*/
int sqlite3_xferopt_count;
#endif /* SQLITE_TEST */
#ifndef SQLITE_OMIT_XFER_OPT
/*
** Check to collation names to see if they are compatible.
*/
static int xferCompatibleCollation(const char *z1, const char *z2){
if( z1==0 ){
return z2==0;
}
if( z2==0 ){
return 0;
}
return sqlite3StrICmp(z1, z2)==0;
}
/*
** Check to see if index pSrc is compatible as a source of data
** for index pDest in an insert transfer optimization. The rules
** for a compatible index:
**
** * The index is over the same set of columns
** * The same DESC and ASC markings occurs on all columns
** * The same onError processing (OE_Abort, OE_Ignore, etc)
** * The same collating sequence on each column
*/
static int xferCompatibleIndex(Index *pDest, Index *pSrc){
int i;
assert( pDest && pSrc );
assert( pDest->pTable!=pSrc->pTable );
if( pDest->nColumn!=pSrc->nColumn ){
return 0; /* Different number of columns */
}
if( pDest->onError!=pSrc->onError ){
return 0; /* Different conflict resolution strategies */
}
for(i=0; i<pSrc->nColumn; i++){
if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
return 0; /* Different columns indexed */
}
if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
return 0; /* Different sort orders */
}
if( pSrc->azColl[i]!=pDest->azColl[i] ){
return 0; /* Different collating sequences */
}
}
/* If no test above fails then the indices must be compatible */
return 1;
}
/*
** Attempt the transfer optimization on INSERTs of the form
**
** INSERT INTO tab1 SELECT * FROM tab2;
**
** This optimization is only attempted if
**
** (1) tab1 and tab2 have identical schemas including all the
** same indices and constraints
**
** (2) tab1 and tab2 are different tables
**
** (3) There must be no triggers on tab1
**
** (4) The result set of the SELECT statement is "*"
**
** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
** or LIMIT clause.
**
** (6) The SELECT statement is a simple (not a compound) select that
** contains only tab2 in its FROM clause
**
** This method for implementing the INSERT transfers raw records from
** tab2 over to tab1. The columns are not decoded. Raw records from
** the indices of tab2 are transfered to tab1 as well. In so doing,
** the resulting tab1 has much less fragmentation.
**
** This routine returns TRUE if the optimization is attempted. If any
** of the conditions above fail so that the optimization should not
** be attempted, then this routine returns FALSE.
*/
static int xferOptimization(
Parse *pParse, /* Parser context */
Table *pDest, /* The table we are inserting into */
Select *pSelect, /* A SELECT statement to use as the data source */
int onError, /* How to handle constraint errors */
int iDbDest /* The database of pDest */
){
ExprList *pEList; /* The result set of the SELECT */
Table *pSrc; /* The table in the FROM clause of SELECT */
Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
struct SrcList_item *pItem; /* An element of pSelect->pSrc */
int i; /* Loop counter */
int iDbSrc; /* The database of pSrc */
int iSrc, iDest; /* Cursors from source and destination */
int addr1, addr2; /* Loop addresses */
int emptyDestTest; /* Address of test for empty pDest */
int emptySrcTest; /* Address of test for empty pSrc */
Vdbe *v; /* The VDBE we are building */
KeyInfo *pKey; /* Key information for an index */
int regAutoinc; /* Memory register used by AUTOINC */
int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
int regData, regRowid; /* Registers holding data and rowid */
if( pSelect==0 ){
return 0; /* Must be of the form INSERT INTO ... SELECT ... */
}
if( pDest->pTrigger ){
return 0; /* tab1 must not have triggers */
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( pDest->tabFlags & TF_Virtual ){
return 0; /* tab1 must not be a virtual table */
}
#endif
if( onError==OE_Default ){
onError = OE_Abort;
}
if( onError!=OE_Abort && onError!=OE_Rollback ){
return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
}
assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
if( pSelect->pSrc->nSrc!=1 ){
return 0; /* FROM clause must have exactly one term */
}
if( pSelect->pSrc->a[0].pSelect ){
return 0; /* FROM clause cannot contain a subquery */
}
if( pSelect->pWhere ){
return 0; /* SELECT may not have a WHERE clause */
}
if( pSelect->pOrderBy ){
return 0; /* SELECT may not have an ORDER BY clause */
}
/* Do not need to test for a HAVING clause. If HAVING is present but
** there is no ORDER BY, we will get an error. */
if( pSelect->pGroupBy ){
return 0; /* SELECT may not have a GROUP BY clause */
}
if( pSelect->pLimit ){
return 0; /* SELECT may not have a LIMIT clause */
}
assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */
if( pSelect->pPrior ){
return 0; /* SELECT may not be a compound query */
}
if( pSelect->selFlags & SF_Distinct ){
return 0; /* SELECT may not be DISTINCT */
}
pEList = pSelect->pEList;
assert( pEList!=0 );
if( pEList->nExpr!=1 ){
return 0; /* The result set must have exactly one column */
}
assert( pEList->a[0].pExpr );
if( pEList->a[0].pExpr->op!=TK_ALL ){
return 0; /* The result set must be the special operator "*" */
}
/* At this point we have established that the statement is of the
** correct syntactic form to participate in this optimization. Now
** we have to check the semantics.
*/
pItem = pSelect->pSrc->a;
pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
if( pSrc==0 ){
return 0; /* FROM clause does not contain a real table */
}
if( pSrc==pDest ){
return 0; /* tab1 and tab2 may not be the same table */
}
#ifndef SQLITE_OMIT_VIRTUALTABLE
if( pSrc->tabFlags & TF_Virtual ){
return 0; /* tab2 must not be a virtual table */
}
#endif
if( pSrc->pSelect ){
return 0; /* tab2 may not be a view */
}
if( pDest->nCol!=pSrc->nCol ){
return 0; /* Number of columns must be the same in tab1 and tab2 */
}
if( pDest->iPKey!=pSrc->iPKey ){
return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
}
for(i=0; i<pDest->nCol; i++){
if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
return 0; /* Affinity must be the same on all columns */
}
if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
return 0; /* Collating sequence must be the same on all columns */
}
if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
return 0; /* tab2 must be NOT NULL if tab1 is */
}
}
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
if( pDestIdx->onError!=OE_None ){
destHasUniqueIdx = 1;
}
for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
}
if( pSrcIdx==0 ){
return 0; /* pDestIdx has no corresponding index in pSrc */
}
}
#ifndef SQLITE_OMIT_CHECK
if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
return 0; /* Tables have different CHECK constraints. Ticket #2252 */
}
#endif
/* If we get this far, it means either:
**
** * We can always do the transfer if the table contains an
** an integer primary key
**
** * We can conditionally do the transfer if the destination
** table is empty.
*/
#ifdef SQLITE_TEST
sqlite3_xferopt_count++;
#endif
iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
v = sqlite3GetVdbe(pParse);
sqlite3CodeVerifySchema(pParse, iDbSrc);
iSrc = pParse->nTab++;
iDest = pParse->nTab++;
regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
/* If tables do not have an INTEGER PRIMARY KEY and there
** are indices to be copied and the destination is not empty,
** we have to disallow the transfer optimization because the
** the rowids might change which will mess up indexing.
**
** Or if the destination has a UNIQUE index and is not empty,
** we also disallow the transfer optimization because we cannot
** insure that all entries in the union of DEST and SRC will be
** unique.
*/
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
sqlite3VdbeJumpHere(v, addr1);
}else{
emptyDestTest = 0;
}
sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
regData = sqlite3GetTempReg(pParse);
regRowid = sqlite3GetTempReg(pParse);
if( pDest->iPKey>=0 ){
addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0,
"PRIMARY KEY must be unique", P4_STATIC);
sqlite3VdbeJumpHere(v, addr2);
autoIncStep(pParse, regAutoinc, regRowid);
}else if( pDest->pIndex==0 ){
addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
}else{
addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
assert( (pDest->tabFlags & TF_Autoincrement)==0 );
}
sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
autoIncEnd(pParse, iDbDest, pDest, regAutoinc);
for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
}
assert( pSrcIdx );
sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
(char*)pKey, P4_KEYINFO_HANDOFF);
VdbeComment((v, "%s", pSrcIdx->zName));
pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
(char*)pKey, P4_KEYINFO_HANDOFF);
VdbeComment((v, "%s", pDestIdx->zName));
addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
sqlite3VdbeJumpHere(v, addr1);
}
sqlite3VdbeJumpHere(v, emptySrcTest);
sqlite3ReleaseTempReg(pParse, regRowid);
sqlite3ReleaseTempReg(pParse, regData);
sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
if( emptyDestTest ){
sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
sqlite3VdbeJumpHere(v, emptyDestTest);
sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
return 0;
}else{
return 1;
}
}
#endif /* SQLITE_OMIT_XFER_OPT */
/* Make sure "isView" gets undefined in case this file becomes part of
** the amalgamation - so that subsequent files do not see isView as a
** macro. */
#undef isView