diff -r 000000000000 -r 08ec8eefde2f persistentstorage/sql/SQLite364/insert.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/persistentstorage/sql/SQLite364/insert.c Fri Jan 22 11:06:30 2010 +0200 @@ -0,0 +1,1738 @@ +/* +** 2001 September 15 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains C code routines that are called by the parser +** to handle INSERT statements in SQLite. +** +** $Id: insert.c,v 1.249 2008/08/20 16:35:10 drh Exp $ +*/ +#include "sqliteInt.h" + +/* +** Set P4 of the most recently inserted opcode to a column affinity +** string for index pIdx. A column affinity string has one character +** for each column in the table, according to the affinity of the column: +** +** Character Column affinity +** ------------------------------ +** 'a' TEXT +** 'b' NONE +** 'c' NUMERIC +** 'd' INTEGER +** 'e' REAL +** +** An extra 'b' is appended to the end of the string to cover the +** rowid that appears as the last column in every index. +*/ +void sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ + if( !pIdx->zColAff ){ + /* The first time a column affinity string for a particular index is + ** required, it is allocated and populated here. It is then stored as + ** a member of the Index structure for subsequent use. + ** + ** The column affinity string will eventually be deleted by + ** sqliteDeleteIndex() when the Index structure itself is cleaned + ** up. + */ + int n; + Table *pTab = pIdx->pTable; + sqlite3 *db = sqlite3VdbeDb(v); + pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2); + if( !pIdx->zColAff ){ + db->mallocFailed = 1; + return; + } + for(n=0; nnColumn; n++){ + pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; + } + pIdx->zColAff[n++] = SQLITE_AFF_NONE; + pIdx->zColAff[n] = 0; + } + + sqlite3VdbeChangeP4(v, -1, pIdx->zColAff, 0); +} + +/* +** Set P4 of the most recently inserted opcode to a column affinity +** string for table pTab. A column affinity string has one character +** for each column indexed by the index, according to the affinity of the +** column: +** +** Character Column affinity +** ------------------------------ +** 'a' TEXT +** 'b' NONE +** 'c' NUMERIC +** 'd' INTEGER +** 'e' REAL +*/ +void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ + /* The first time a column affinity string for a particular table + ** is required, it is allocated and populated here. It is then + ** stored as a member of the Table structure for subsequent use. + ** + ** The column affinity string will eventually be deleted by + ** sqlite3DeleteTable() when the Table structure itself is cleaned up. + */ + if( !pTab->zColAff ){ + char *zColAff; + int i; + sqlite3 *db = sqlite3VdbeDb(v); + + zColAff = (char *)sqlite3Malloc(pTab->nCol+1); + if( !zColAff ){ + db->mallocFailed = 1; + return; + } + + for(i=0; inCol; i++){ + zColAff[i] = pTab->aCol[i].affinity; + } + zColAff[pTab->nCol] = '\0'; + + pTab->zColAff = zColAff; + } + + sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0); +} + +/* +** Return non-zero if the table pTab in database iDb or any of its indices +** have been opened at any point in the VDBE program beginning at location +** iStartAddr throught the end of the program. This is used to see if +** a statement of the form "INSERT INTO SELECT ..." can +** run without using temporary table for the results of the SELECT. +*/ +static int readsTable(Vdbe *v, int iStartAddr, int iDb, Table *pTab){ + int i; + int iEnd = sqlite3VdbeCurrentAddr(v); + for(i=iStartAddr; iopcode==OP_OpenRead && pOp->p3==iDb ){ + Index *pIndex; + int tnum = pOp->p2; + if( tnum==pTab->tnum ){ + return 1; + } + for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ + if( tnum==pIndex->tnum ){ + return 1; + } + } + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pTab->pVtab ){ + assert( pOp->p4.pVtab!=0 ); + assert( pOp->p4type==P4_VTAB ); + return 1; + } +#endif + } + return 0; +} + +#ifndef SQLITE_OMIT_AUTOINCREMENT +/* +** Write out code to initialize the autoincrement logic. This code +** looks up the current autoincrement value in the sqlite_sequence +** table and stores that value in a register. Code generated by +** autoIncStep() will keep that register holding the largest +** rowid value. Code generated by autoIncEnd() will write the new +** largest value of the counter back into the sqlite_sequence table. +** +** This routine returns the index of the mem[] cell that contains +** the maximum rowid counter. +** +** Three consecutive registers are allocated by this routine. The +** first two hold the name of the target table and the maximum rowid +** inserted into the target table, respectively. +** The third holds the rowid in sqlite_sequence where we will +** write back the revised maximum rowid. This routine returns the +** index of the second of these three registers. +*/ +static int autoIncBegin( + Parse *pParse, /* Parsing context */ + int iDb, /* Index of the database holding pTab */ + Table *pTab /* The table we are writing to */ +){ + int memId = 0; /* Register holding maximum rowid */ + if( pTab->tabFlags & TF_Autoincrement ){ + Vdbe *v = pParse->pVdbe; + Db *pDb = &pParse->db->aDb[iDb]; + int iCur = pParse->nTab; + int addr; /* Address of the top of the loop */ + assert( v ); + pParse->nMem++; /* Holds name of table */ + memId = ++pParse->nMem; + pParse->nMem++; + sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenRead); + addr = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, pTab->zName, 0); + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addr+9); + sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, memId); + sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); + sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); + sqlite3VdbeAddOp2(v, OP_Rowid, iCur, memId+1); + sqlite3VdbeAddOp3(v, OP_Column, iCur, 1, memId); + sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); + sqlite3VdbeAddOp2(v, OP_Next, iCur, addr+2); + sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); + sqlite3VdbeAddOp2(v, OP_Close, iCur, 0); + } + return memId; +} + +/* +** Update the maximum rowid for an autoincrement calculation. +** +** This routine should be called when the top of the stack holds a +** new rowid that is about to be inserted. If that new rowid is +** larger than the maximum rowid in the memId memory cell, then the +** memory cell is updated. The stack is unchanged. +*/ +static void autoIncStep(Parse *pParse, int memId, int regRowid){ + if( memId>0 ){ + sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); + } +} + +/* +** After doing one or more inserts, the maximum rowid is stored +** in reg[memId]. Generate code to write this value back into the +** the sqlite_sequence table. +*/ +static void autoIncEnd( + Parse *pParse, /* The parsing context */ + int iDb, /* Index of the database holding pTab */ + Table *pTab, /* Table we are inserting into */ + int memId /* Memory cell holding the maximum rowid */ +){ + if( pTab->tabFlags & TF_Autoincrement ){ + int iCur = pParse->nTab; + Vdbe *v = pParse->pVdbe; + Db *pDb = &pParse->db->aDb[iDb]; + int j1; + int iRec = ++pParse->nMem; /* Memory cell used for record */ + + assert( v ); + sqlite3OpenTable(pParse, iCur, iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); + sqlite3VdbeAddOp2(v, OP_NewRowid, iCur, memId+1); + sqlite3VdbeJumpHere(v, j1); + sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); + sqlite3VdbeAddOp3(v, OP_Insert, iCur, iRec, memId+1); + sqlite3VdbeChangeP5(v, OPFLAG_APPEND); + sqlite3VdbeAddOp1(v, OP_Close, iCur); + } +} +#else +/* +** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines +** above are all no-ops +*/ +# define autoIncBegin(A,B,C) (0) +# define autoIncStep(A,B,C) +# define autoIncEnd(A,B,C,D) +#endif /* SQLITE_OMIT_AUTOINCREMENT */ + + +/* Forward declaration */ +static int xferOptimization( + Parse *pParse, /* Parser context */ + Table *pDest, /* The table we are inserting into */ + Select *pSelect, /* A SELECT statement to use as the data source */ + int onError, /* How to handle constraint errors */ + int iDbDest /* The database of pDest */ +); + +/* +** This routine is call to handle SQL of the following forms: +** +** insert into TABLE (IDLIST) values(EXPRLIST) +** insert into TABLE (IDLIST) select +** +** The IDLIST following the table name is always optional. If omitted, +** then a list of all columns for the table is substituted. The IDLIST +** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. +** +** The pList parameter holds EXPRLIST in the first form of the INSERT +** statement above, and pSelect is NULL. For the second form, pList is +** NULL and pSelect is a pointer to the select statement used to generate +** data for the insert. +** +** The code generated follows one of four templates. For a simple +** select with data coming from a VALUES clause, the code executes +** once straight down through. Pseudo-code follows (we call this +** the "1st template"): +** +** open write cursor to and its indices +** puts VALUES clause expressions onto the stack +** write the resulting record into
+** cleanup +** +** The three remaining templates assume the statement is of the form +** +** INSERT INTO
SELECT ... +** +** If the SELECT clause is of the restricted form "SELECT * FROM " - +** in other words if the SELECT pulls all columns from a single table +** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and +** if and are distinct tables but have identical +** schemas, including all the same indices, then a special optimization +** is invoked that copies raw records from over to . +** See the xferOptimization() function for the implementation of this +** template. This is the 2nd template. +** +** open a write cursor to
+** open read cursor on +** transfer all records in over to
+** close cursors +** foreach index on
+** open a write cursor on the
index +** open a read cursor on the corresponding index +** transfer all records from the read to the write cursors +** close cursors +** end foreach +** +** The 3rd template is for when the second template does not apply +** and the SELECT clause does not read from
at any time. +** The generated code follows this template: +** +** EOF <- 0 +** X <- A +** goto B +** A: setup for the SELECT +** loop over the rows in the SELECT +** load values into registers R..R+n +** yield X +** end loop +** cleanup after the SELECT +** EOF <- 1 +** yield X +** goto A +** B: open write cursor to
and its indices +** C: yield X +** if EOF goto D +** insert the select result into
from R..R+n +** goto C +** D: cleanup +** +** The 4th template is used if the insert statement takes its +** values from a SELECT but the data is being inserted into a table +** that is also read as part of the SELECT. In the third form, +** we have to use a intermediate table to store the results of +** the select. The template is like this: +** +** EOF <- 0 +** X <- A +** goto B +** A: setup for the SELECT +** loop over the tables in the SELECT +** load value into register R..R+n +** yield X +** end loop +** cleanup after the SELECT +** EOF <- 1 +** yield X +** halt-error +** B: open temp table +** L: yield X +** if EOF goto M +** insert row from R..R+n into temp table +** goto L +** M: open write cursor to
and its indices +** rewind temp table +** C: loop over rows of intermediate table +** transfer values form intermediate table into
+** end loop +** D: cleanup +*/ +void sqlite3Insert( + Parse *pParse, /* Parser context */ + SrcList *pTabList, /* Name of table into which we are inserting */ + ExprList *pList, /* List of values to be inserted */ + Select *pSelect, /* A SELECT statement to use as the data source */ + IdList *pColumn, /* Column names corresponding to IDLIST. */ + int onError /* How to handle constraint errors */ +){ + sqlite3 *db; /* The main database structure */ + Table *pTab; /* The table to insert into. aka TABLE */ + char *zTab; /* Name of the table into which we are inserting */ + const char *zDb; /* Name of the database holding this table */ + int i, j, idx; /* Loop counters */ + Vdbe *v; /* Generate code into this virtual machine */ + Index *pIdx; /* For looping over indices of the table */ + int nColumn; /* Number of columns in the data */ + int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ + int baseCur = 0; /* VDBE Cursor number for pTab */ + int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ + int endOfLoop; /* Label for the end of the insertion loop */ + int useTempTable = 0; /* Store SELECT results in intermediate table */ + int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ + int addrInsTop = 0; /* Jump to label "D" */ + int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ + int addrSelect = 0; /* Address of coroutine that implements the SELECT */ + SelectDest dest; /* Destination for SELECT on rhs of INSERT */ + int newIdx = -1; /* Cursor for the NEW pseudo-table */ + int iDb; /* Index of database holding TABLE */ + Db *pDb; /* The database containing table being inserted into */ + int appendFlag = 0; /* True if the insert is likely to be an append */ + + /* Register allocations */ + int regFromSelect; /* Base register for data coming from SELECT */ + int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ + int regRowCount = 0; /* Memory cell used for the row counter */ + int regIns; /* Block of regs holding rowid+data being inserted */ + int regRowid; /* registers holding insert rowid */ + int regData; /* register holding first column to insert */ + int regRecord; /* Holds the assemblied row record */ + int regEof; /* Register recording end of SELECT data */ + int *aRegIdx = 0; /* One register allocated to each index */ + + +#ifndef SQLITE_OMIT_TRIGGER + int isView; /* True if attempting to insert into a view */ + int triggers_exist = 0; /* True if there are FOR EACH ROW triggers */ +#endif + + db = pParse->db; + if( pParse->nErr || db->mallocFailed ){ + goto insert_cleanup; + } + + /* Locate the table into which we will be inserting new information. + */ + assert( pTabList->nSrc==1 ); + zTab = pTabList->a[0].zName; + if( zTab==0 ) goto insert_cleanup; + pTab = sqlite3SrcListLookup(pParse, pTabList); + if( pTab==0 ){ + goto insert_cleanup; + } + iDb = sqlite3SchemaToIndex(db, pTab->pSchema); + assert( iDbnDb ); + pDb = &db->aDb[iDb]; + zDb = pDb->zName; + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ + goto insert_cleanup; + } + + /* Figure out if we have any triggers and if the table being + ** inserted into is a view + */ +#ifndef SQLITE_OMIT_TRIGGER + triggers_exist = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0); + isView = pTab->pSelect!=0; +#else +# define triggers_exist 0 +# define isView 0 +#endif +#ifdef SQLITE_OMIT_VIEW +# undef isView +# define isView 0 +#endif + + /* Ensure that: + * (a) the table is not read-only, + * (b) that if it is a view then ON INSERT triggers exist + */ + if( sqlite3IsReadOnly(pParse, pTab, triggers_exist) ){ + goto insert_cleanup; + } + assert( pTab!=0 ); + + /* If pTab is really a view, make sure it has been initialized. + ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual + ** module table). + */ + if( sqlite3ViewGetColumnNames(pParse, pTab) ){ + goto insert_cleanup; + } + + /* Allocate a VDBE + */ + v = sqlite3GetVdbe(pParse); + if( v==0 ) goto insert_cleanup; + if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); + sqlite3BeginWriteOperation(pParse, pSelect || triggers_exist, iDb); + + /* if there are row triggers, allocate a temp table for new.* references. */ + if( triggers_exist ){ + newIdx = pParse->nTab++; + } + +#ifndef SQLITE_OMIT_XFER_OPT + /* If the statement is of the form + ** + ** INSERT INTO SELECT * FROM ; + ** + ** Then special optimizations can be applied that make the transfer + ** very fast and which reduce fragmentation of indices. + ** + ** This is the 2nd template. + */ + if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ + assert( !triggers_exist ); + assert( pList==0 ); + goto insert_cleanup; + } +#endif /* SQLITE_OMIT_XFER_OPT */ + + /* If this is an AUTOINCREMENT table, look up the sequence number in the + ** sqlite_sequence table and store it in memory cell regAutoinc. + */ + regAutoinc = autoIncBegin(pParse, iDb, pTab); + + /* Figure out how many columns of data are supplied. If the data + ** is coming from a SELECT statement, then generate a co-routine that + ** produces a single row of the SELECT on each invocation. The + ** co-routine is the common header to the 3rd and 4th templates. + */ + if( pSelect ){ + /* Data is coming from a SELECT. Generate code to implement that SELECT + ** as a co-routine. The code is common to both the 3rd and 4th + ** templates: + ** + ** EOF <- 0 + ** X <- A + ** goto B + ** A: setup for the SELECT + ** loop over the tables in the SELECT + ** load value into register R..R+n + ** yield X + ** end loop + ** cleanup after the SELECT + ** EOF <- 1 + ** yield X + ** halt-error + ** + ** On each invocation of the co-routine, it puts a single row of the + ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1. + ** (These output registers are allocated by sqlite3Select().) When + ** the SELECT completes, it sets the EOF flag stored in regEof. + */ + int rc, j1; + + regEof = ++pParse->nMem; + sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */ + VdbeComment((v, "SELECT eof flag")); + sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem); + addrSelect = sqlite3VdbeCurrentAddr(v)+2; + sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm); + j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); + VdbeComment((v, "Jump over SELECT coroutine")); + + /* Resolve the expressions in the SELECT statement and execute it. */ + rc = sqlite3Select(pParse, pSelect, &dest); + if( rc || pParse->nErr || db->mallocFailed ){ + goto insert_cleanup; + } + sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */ + sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */ + sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort); + VdbeComment((v, "End of SELECT coroutine")); + sqlite3VdbeJumpHere(v, j1); /* label B: */ + + regFromSelect = dest.iMem; + assert( pSelect->pEList ); + nColumn = pSelect->pEList->nExpr; + assert( dest.nMem==nColumn ); + + /* Set useTempTable to TRUE if the result of the SELECT statement + ** should be written into a temporary table (template 4). Set to + ** FALSE if each* row of the SELECT can be written directly into + ** the destination table (template 3). + ** + ** A temp table must be used if the table being updated is also one + ** of the tables being read by the SELECT statement. Also use a + ** temp table in the case of row triggers. + */ + if( triggers_exist || readsTable(v, addrSelect, iDb, pTab) ){ + useTempTable = 1; + } + + if( useTempTable ){ + /* Invoke the coroutine to extract information from the SELECT + ** and add it to a transient table srcTab. The code generated + ** here is from the 4th template: + ** + ** B: open temp table + ** L: yield X + ** if EOF goto M + ** insert row from R..R+n into temp table + ** goto L + ** M: ... + */ + int regRec; /* Register to hold packed record */ + int regRowid; /* Register to hold temp table ROWID */ + int addrTop; /* Label "L" */ + int addrIf; /* Address of jump to M */ + + srcTab = pParse->nTab++; + regRec = sqlite3GetTempReg(pParse); + regRowid = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); + addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); + addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); + sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regRowid); + sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regRowid); + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); + sqlite3VdbeJumpHere(v, addrIf); + sqlite3ReleaseTempReg(pParse, regRec); + sqlite3ReleaseTempReg(pParse, regRowid); + } + }else{ + /* This is the case if the data for the INSERT is coming from a VALUES + ** clause + */ + NameContext sNC; + memset(&sNC, 0, sizeof(sNC)); + sNC.pParse = pParse; + srcTab = -1; + assert( useTempTable==0 ); + nColumn = pList ? pList->nExpr : 0; + for(i=0; ia[i].pExpr) ){ + goto insert_cleanup; + } + } + } + + /* Make sure the number of columns in the source data matches the number + ** of columns to be inserted into the table. + */ + if( IsVirtual(pTab) ){ + for(i=0; inCol; i++){ + nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); + } + } + if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ + sqlite3ErrorMsg(pParse, + "table %S has %d columns but %d values were supplied", + pTabList, 0, pTab->nCol, nColumn); + goto insert_cleanup; + } + if( pColumn!=0 && nColumn!=pColumn->nId ){ + sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); + goto insert_cleanup; + } + + /* If the INSERT statement included an IDLIST term, then make sure + ** all elements of the IDLIST really are columns of the table and + ** remember the column indices. + ** + ** If the table has an INTEGER PRIMARY KEY column and that column + ** is named in the IDLIST, then record in the keyColumn variable + ** the index into IDLIST of the primary key column. keyColumn is + ** the index of the primary key as it appears in IDLIST, not as + ** is appears in the original table. (The index of the primary + ** key in the original table is pTab->iPKey.) + */ + if( pColumn ){ + for(i=0; inId; i++){ + pColumn->a[i].idx = -1; + } + for(i=0; inId; i++){ + for(j=0; jnCol; j++){ + if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ + pColumn->a[i].idx = j; + if( j==pTab->iPKey ){ + keyColumn = i; + } + break; + } + } + if( j>=pTab->nCol ){ + if( sqlite3IsRowid(pColumn->a[i].zName) ){ + keyColumn = i; + }else{ + sqlite3ErrorMsg(pParse, "table %S has no column named %s", + pTabList, 0, pColumn->a[i].zName); + pParse->nErr++; + goto insert_cleanup; + } + } + } + } + + /* If there is no IDLIST term but the table has an integer primary + ** key, the set the keyColumn variable to the primary key column index + ** in the original table definition. + */ + if( pColumn==0 && nColumn>0 ){ + keyColumn = pTab->iPKey; + } + + /* Open the temp table for FOR EACH ROW triggers + */ + if( triggers_exist ){ + sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pTab->nCol); + sqlite3VdbeAddOp2(v, OP_OpenPseudo, newIdx, 0); + } + + /* Initialize the count of rows to be inserted + */ + if( db->flags & SQLITE_CountRows ){ + regRowCount = ++pParse->nMem; + sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); + } + + /* If this is not a view, open the table and and all indices */ + if( !isView ){ + int nIdx; + int i; + + baseCur = pParse->nTab; + nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite); + aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); + if( aRegIdx==0 ){ + goto insert_cleanup; + } + for(i=0; inMem; + } + } + + /* This is the top of the main insertion loop */ + if( useTempTable ){ + /* This block codes the top of loop only. The complete loop is the + ** following pseudocode (template 4): + ** + ** rewind temp table + ** C: loop over rows of intermediate table + ** transfer values form intermediate table into
+ ** end loop + ** D: ... + */ + addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); + addrCont = sqlite3VdbeCurrentAddr(v); + }else if( pSelect ){ + /* This block codes the top of loop only. The complete loop is the + ** following pseudocode (template 3): + ** + ** C: yield X + ** if EOF goto D + ** insert the select result into
from R..R+n + ** goto C + ** D: ... + */ + addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); + addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); + } + + /* Allocate registers for holding the rowid of the new row, + ** the content of the new row, and the assemblied row record. + */ + regRecord = ++pParse->nMem; + regRowid = regIns = pParse->nMem+1; + pParse->nMem += pTab->nCol + 1; + if( IsVirtual(pTab) ){ + regRowid++; + pParse->nMem++; + } + regData = regRowid+1; + + /* Run the BEFORE and INSTEAD OF triggers, if there are any + */ + endOfLoop = sqlite3VdbeMakeLabel(v); + if( triggers_exist & TRIGGER_BEFORE ){ + int regRowid; + int regCols; + int regRec; + + /* build the NEW.* reference row. Note that if there is an INTEGER + ** PRIMARY KEY into which a NULL is being inserted, that NULL will be + ** translated into a unique ID for the row. But on a BEFORE trigger, + ** we do not know what the unique ID will be (because the insert has + ** not happened yet) so we substitute a rowid of -1 + */ + regRowid = sqlite3GetTempReg(pParse); + if( keyColumn<0 ){ + sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); + }else if( useTempTable ){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); + }else{ + int j1; + assert( pSelect==0 ); /* Otherwise useTempTable is true */ + sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); + sqlite3VdbeAddOp2(v, OP_Integer, -1, regRowid); + sqlite3VdbeJumpHere(v, j1); + sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); + } + + /* Cannot have triggers on a virtual table. If it were possible, + ** this block would have to account for hidden column. + */ + assert(!IsVirtual(pTab)); + + /* Create the new column data + */ + regCols = sqlite3GetTempRange(pParse, pTab->nCol); + for(i=0; inCol; i++){ + if( pColumn==0 ){ + j = i; + }else{ + for(j=0; jnId; j++){ + if( pColumn->a[j].idx==i ) break; + } + } + if( pColumn && j>=pColumn->nId ){ + sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i); + }else if( useTempTable ){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i); + }else{ + assert( pSelect==0 ); /* Otherwise useTempTable is true */ + sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i); + } + } + regRec = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regCols, pTab->nCol, regRec); + + /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, + ** do not attempt any conversions before assembling the record. + ** If this is a real table, attempt conversions as required by the + ** table column affinities. + */ + if( !isView ){ + sqlite3TableAffinityStr(v, pTab); + } + sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid); + sqlite3ReleaseTempReg(pParse, regRec); + sqlite3ReleaseTempReg(pParse, regRowid); + sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol); + + /* Fire BEFORE or INSTEAD OF triggers */ + if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_BEFORE, pTab, + newIdx, -1, onError, endOfLoop, 0, 0) ){ + goto insert_cleanup; + } + } + + /* Push the record number for the new entry onto the stack. The + ** record number is a randomly generate integer created by NewRowid + ** except when the table has an INTEGER PRIMARY KEY column, in which + ** case the record number is the same as that column. + */ + if( !isView ){ + if( IsVirtual(pTab) ){ + /* The row that the VUpdate opcode will delete: none */ + sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); + } + if( keyColumn>=0 ){ + if( useTempTable ){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); + }else if( pSelect ){ + sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid); + }else{ + VdbeOp *pOp; + sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); + pOp = sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v) - 1); + if( pOp && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ + appendFlag = 1; + pOp->opcode = OP_NewRowid; + pOp->p1 = baseCur; + pOp->p2 = regRowid; + pOp->p3 = regAutoinc; + } + } + /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid + ** to generate a unique primary key value. + */ + if( !appendFlag ){ + int j1; + if( !IsVirtual(pTab) ){ + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); + sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); + sqlite3VdbeJumpHere(v, j1); + }else{ + j1 = sqlite3VdbeCurrentAddr(v); + sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); + } + sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); + } + }else if( IsVirtual(pTab) ){ + sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); + }else{ + sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); + appendFlag = 1; + } + autoIncStep(pParse, regAutoinc, regRowid); + + /* Push onto the stack, data for all columns of the new entry, beginning + ** with the first column. + */ + nHidden = 0; + for(i=0; inCol; i++){ + int iRegStore = regRowid+1+i; + if( i==pTab->iPKey ){ + /* The value of the INTEGER PRIMARY KEY column is always a NULL. + ** Whenever this column is read, the record number will be substituted + ** in its place. So will fill this column with a NULL to avoid + ** taking up data space with information that will never be used. */ + sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore); + continue; + } + if( pColumn==0 ){ + if( IsHiddenColumn(&pTab->aCol[i]) ){ + assert( IsVirtual(pTab) ); + j = -1; + nHidden++; + }else{ + j = i - nHidden; + } + }else{ + for(j=0; jnId; j++){ + if( pColumn->a[j].idx==i ) break; + } + } + if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ + sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore); + }else if( useTempTable ){ + sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); + }else if( pSelect ){ + sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); + }else{ + sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); + } + } + + /* Generate code to check constraints and generate index keys and + ** do the insertion. + */ +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( IsVirtual(pTab) ){ + sqlite3VtabMakeWritable(pParse, pTab); + sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, + (const char*)pTab->pVtab, P4_VTAB); + }else +#endif + { + sqlite3GenerateConstraintChecks( + pParse, + pTab, + baseCur, + regIns, + aRegIdx, + keyColumn>=0, + 0, + onError, + endOfLoop + ); + sqlite3CompleteInsertion( + pParse, + pTab, + baseCur, + regIns, + aRegIdx, + 0, + 0, + (triggers_exist & TRIGGER_AFTER)!=0 ? newIdx : -1, + appendFlag + ); + } + } + + /* Update the count of rows that are inserted + */ + if( (db->flags & SQLITE_CountRows)!=0 ){ + sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); + } + + if( triggers_exist ){ + /* Code AFTER triggers */ + if( sqlite3CodeRowTrigger(pParse, TK_INSERT, 0, TRIGGER_AFTER, pTab, + newIdx, -1, onError, endOfLoop, 0, 0) ){ + goto insert_cleanup; + } + } + + /* The bottom of the main insertion loop, if the data source + ** is a SELECT statement. + */ + sqlite3VdbeResolveLabel(v, endOfLoop); + if( useTempTable ){ + sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); + sqlite3VdbeJumpHere(v, addrInsTop); + sqlite3VdbeAddOp1(v, OP_Close, srcTab); + }else if( pSelect ){ + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); + sqlite3VdbeJumpHere(v, addrInsTop); + } + + if( !IsVirtual(pTab) && !isView ){ + /* Close all tables opened */ + sqlite3VdbeAddOp1(v, OP_Close, baseCur); + for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ + sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur); + } + } + + /* Update the sqlite_sequence table by storing the content of the + ** counter value in memory regAutoinc back into the sqlite_sequence + ** table. + */ + autoIncEnd(pParse, iDb, pTab, regAutoinc); + + /* + ** Return the number of rows inserted. If this routine is + ** generating code because of a call to sqlite3NestedParse(), do not + ** invoke the callback function. + */ + if( db->flags & SQLITE_CountRows && pParse->nested==0 && !pParse->trigStack ){ + sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); + sqlite3VdbeSetNumCols(v, 1); + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", P4_STATIC); + } + +insert_cleanup: + sqlite3SrcListDelete(db, pTabList); + sqlite3ExprListDelete(db, pList); + sqlite3SelectDelete(db, pSelect); + sqlite3IdListDelete(db, pColumn); + sqlite3DbFree(db, aRegIdx); +} + +/* +** Generate code to do constraint checks prior to an INSERT or an UPDATE. +** +** The input is a range of consecutive registers as follows: +** +** 1. The rowid of the row to be updated before the update. This +** value is omitted unless we are doing an UPDATE that involves a +** change to the record number or writing to a virtual table. +** +** 2. The rowid of the row after the update. +** +** 3. The data in the first column of the entry after the update. +** +** i. Data from middle columns... +** +** N. The data in the last column of the entry after the update. +** +** The regRowid parameter is the index of the register containing (2). +** +** The old rowid shown as entry (1) above is omitted unless both isUpdate +** and rowidChng are 1. isUpdate is true for UPDATEs and false for +** INSERTs. RowidChng means that the new rowid is explicitly specified by +** the update or insert statement. If rowidChng is false, it means that +** the rowid is computed automatically in an insert or that the rowid value +** is not modified by the update. +** +** The code generated by this routine store new index entries into +** registers identified by aRegIdx[]. No index entry is created for +** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is +** the same as the order of indices on the linked list of indices +** attached to the table. +** +** This routine also generates code to check constraints. NOT NULL, +** CHECK, and UNIQUE constraints are all checked. If a constraint fails, +** then the appropriate action is performed. There are five possible +** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. +** +** Constraint type Action What Happens +** --------------- ---------- ---------------------------------------- +** any ROLLBACK The current transaction is rolled back and +** sqlite3_exec() returns immediately with a +** return code of SQLITE_CONSTRAINT. +** +** any ABORT Back out changes from the current command +** only (do not do a complete rollback) then +** cause sqlite3_exec() to return immediately +** with SQLITE_CONSTRAINT. +** +** any FAIL Sqlite_exec() returns immediately with a +** return code of SQLITE_CONSTRAINT. The +** transaction is not rolled back and any +** prior changes are retained. +** +** any IGNORE The record number and data is popped from +** the stack and there is an immediate jump +** to label ignoreDest. +** +** NOT NULL REPLACE The NULL value is replace by the default +** value for that column. If the default value +** is NULL, the action is the same as ABORT. +** +** UNIQUE REPLACE The other row that conflicts with the row +** being inserted is removed. +** +** CHECK REPLACE Illegal. The results in an exception. +** +** Which action to take is determined by the overrideError parameter. +** Or if overrideError==OE_Default, then the pParse->onError parameter +** is used. Or if pParse->onError==OE_Default then the onError value +** for the constraint is used. +** +** The calling routine must open a read/write cursor for pTab with +** cursor number "baseCur". All indices of pTab must also have open +** read/write cursors with cursor number baseCur+i for the i-th cursor. +** Except, if there is no possibility of a REPLACE action then +** cursors do not need to be open for indices where aRegIdx[i]==0. +*/ +void sqlite3GenerateConstraintChecks( + Parse *pParse, /* The parser context */ + Table *pTab, /* the table into which we are inserting */ + int baseCur, /* Index of a read/write cursor pointing at pTab */ + int regRowid, /* Index of the range of input registers */ + int *aRegIdx, /* Register used by each index. 0 for unused indices */ + int rowidChng, /* True if the rowid might collide with existing entry */ + int isUpdate, /* True for UPDATE, False for INSERT */ + int overrideError, /* Override onError to this if not OE_Default */ + int ignoreDest /* Jump to this label on an OE_Ignore resolution */ +){ + int i; + Vdbe *v; + int nCol; + int onError; + int j1, j2, j3; /* Addresses of jump instructions */ + int regData; /* Register containing first data column */ + int iCur; + Index *pIdx; + int seenReplace = 0; + int hasTwoRowids = (isUpdate && rowidChng); + + v = sqlite3GetVdbe(pParse); + assert( v!=0 ); + assert( pTab->pSelect==0 ); /* This table is not a VIEW */ + nCol = pTab->nCol; + regData = regRowid + 1; + + + /* Test all NOT NULL constraints. + */ + for(i=0; iiPKey ){ + continue; + } + onError = pTab->aCol[i].notNull; + if( onError==OE_None ) continue; + if( overrideError!=OE_Default ){ + onError = overrideError; + }else if( onError==OE_Default ){ + onError = OE_Abort; + } + if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ + onError = OE_Abort; + } + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i); + assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail + || onError==OE_Ignore || onError==OE_Replace ); + switch( onError ){ + case OE_Rollback: + case OE_Abort: + case OE_Fail: { + char *zMsg; + sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError); + zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL", + pTab->zName, pTab->aCol[i].zName); + sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC); + break; + } + case OE_Ignore: { + sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); + break; + } + case OE_Replace: { + sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i); + break; + } + } + sqlite3VdbeJumpHere(v, j1); + } + + /* Test all CHECK constraints + */ +#ifndef SQLITE_OMIT_CHECK + if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ + int allOk = sqlite3VdbeMakeLabel(v); + pParse->ckBase = regData; + sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL); + onError = overrideError!=OE_Default ? overrideError : OE_Abort; + if( onError==OE_Ignore ){ + sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); + }else{ + sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_CONSTRAINT, onError); + } + sqlite3VdbeResolveLabel(v, allOk); + } +#endif /* !defined(SQLITE_OMIT_CHECK) */ + + /* If we have an INTEGER PRIMARY KEY, make sure the primary key + ** of the new record does not previously exist. Except, if this + ** is an UPDATE and the primary key is not changing, that is OK. + */ + if( rowidChng ){ + onError = pTab->keyConf; + if( overrideError!=OE_Default ){ + onError = overrideError; + }else if( onError==OE_Default ){ + onError = OE_Abort; + } + + if( onError!=OE_Replace || pTab->pIndex ){ + if( isUpdate ){ + j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, regRowid-1); + } + j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid); + switch( onError ){ + default: { + onError = OE_Abort; + /* Fall thru into the next case */ + } + case OE_Rollback: + case OE_Abort: + case OE_Fail: { + sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, + "PRIMARY KEY must be unique", P4_STATIC); + break; + } + case OE_Replace: { + sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0); + seenReplace = 1; + break; + } + case OE_Ignore: { + assert( seenReplace==0 ); + sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); + break; + } + } + sqlite3VdbeJumpHere(v, j3); + if( isUpdate ){ + sqlite3VdbeJumpHere(v, j2); + } + } + } + + /* Test all UNIQUE constraints by creating entries for each UNIQUE + ** index and making sure that duplicate entries do not already exist. + ** Add the new records to the indices as we go. + */ + for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ + int regIdx; + int regR; + + if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */ + + /* Create a key for accessing the index entry */ + regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1); + for(i=0; inColumn; i++){ + int idx = pIdx->aiColumn[i]; + if( idx==pTab->iPKey ){ + sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); + }else{ + sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); + } + } + sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); + sqlite3IndexAffinityStr(v, pIdx); + sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); + sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); + + /* Find out what action to take in case there is an indexing conflict */ + onError = pIdx->onError; + if( onError==OE_None ) continue; /* pIdx is not a UNIQUE index */ + if( overrideError!=OE_Default ){ + onError = overrideError; + }else if( onError==OE_Default ){ + onError = OE_Abort; + } + if( seenReplace ){ + if( onError==OE_Ignore ) onError = OE_Replace; + else if( onError==OE_Fail ) onError = OE_Abort; + } + + + /* Check to see if the new index entry will be unique */ + j2 = sqlite3VdbeAddOp3(v, OP_IsNull, regIdx, 0, pIdx->nColumn); + regR = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp2(v, OP_SCopy, regRowid-hasTwoRowids, regR); + j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0, + regR, SQLITE_INT_TO_PTR(aRegIdx[iCur]), + P4_INT32); + + /* Generate code that executes if the new index entry is not unique */ + assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail + || onError==OE_Ignore || onError==OE_Replace ); + switch( onError ){ + case OE_Rollback: + case OE_Abort: + case OE_Fail: { + int j, n1, n2; + char zErrMsg[200]; + sqlite3_snprintf(sizeof(zErrMsg), zErrMsg, + pIdx->nColumn>1 ? "columns " : "column "); + n1 = strlen(zErrMsg); + for(j=0; jnColumn && n1aCol[pIdx->aiColumn[j]].zName; + n2 = strlen(zCol); + if( j>0 ){ + sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], ", "); + n1 += 2; + } + if( n1+n2>sizeof(zErrMsg)-30 ){ + sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "..."); + n1 += 3; + break; + }else{ + sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], "%s", zCol); + n1 += n2; + } + } + sqlite3_snprintf(sizeof(zErrMsg)-n1, &zErrMsg[n1], + pIdx->nColumn>1 ? " are not unique" : " is not unique"); + sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, zErrMsg,0); + break; + } + case OE_Ignore: { + assert( seenReplace==0 ); + sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); + break; + } + case OE_Replace: { + sqlite3GenerateRowDelete(pParse, pTab, baseCur, regR, 0); + seenReplace = 1; + break; + } + } + sqlite3VdbeJumpHere(v, j2); + sqlite3VdbeJumpHere(v, j3); + sqlite3ReleaseTempReg(pParse, regR); + } +} + +/* +** This routine generates code to finish the INSERT or UPDATE operation +** that was started by a prior call to sqlite3GenerateConstraintChecks. +** A consecutive range of registers starting at regRowid contains the +** rowid and the content to be inserted. +** +** The arguments to this routine should be the same as the first six +** arguments to sqlite3GenerateConstraintChecks. +*/ +void sqlite3CompleteInsertion( + Parse *pParse, /* The parser context */ + Table *pTab, /* the table into which we are inserting */ + int baseCur, /* Index of a read/write cursor pointing at pTab */ + int regRowid, /* Range of content */ + int *aRegIdx, /* Register used by each index. 0 for unused indices */ + int rowidChng, /* True if the record number will change */ + int isUpdate, /* True for UPDATE, False for INSERT */ + int newIdx, /* Index of NEW table for triggers. -1 if none */ + int appendBias /* True if this is likely to be an append */ +){ + int i; + Vdbe *v; + int nIdx; + Index *pIdx; + int pik_flags; + int regData; + int regRec; + + v = sqlite3GetVdbe(pParse); + assert( v!=0 ); + assert( pTab->pSelect==0 ); /* This table is not a VIEW */ + for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} + for(i=nIdx-1; i>=0; i--){ + if( aRegIdx[i]==0 ) continue; + sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]); + } + regData = regRowid + 1; + regRec = sqlite3GetTempReg(pParse); + sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); + sqlite3TableAffinityStr(v, pTab); + sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); +#ifndef SQLITE_OMIT_TRIGGER + if( newIdx>=0 ){ + sqlite3VdbeAddOp3(v, OP_Insert, newIdx, regRec, regRowid); + } +#endif + if( pParse->nested ){ + pik_flags = 0; + }else{ + pik_flags = OPFLAG_NCHANGE; + pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); + } + if( appendBias ){ + pik_flags |= OPFLAG_APPEND; + } + sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid); + if( !pParse->nested ){ + sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC); + } + sqlite3VdbeChangeP5(v, pik_flags); +} + +/* +** Generate code that will open cursors for a table and for all +** indices of that table. The "baseCur" parameter is the cursor number used +** for the table. Indices are opened on subsequent cursors. +** +** Return the number of indices on the table. +*/ +int sqlite3OpenTableAndIndices( + Parse *pParse, /* Parsing context */ + Table *pTab, /* Table to be opened */ + int baseCur, /* Cursor number assigned to the table */ + int op /* OP_OpenRead or OP_OpenWrite */ +){ + int i; + int iDb; + Index *pIdx; + Vdbe *v; + + if( IsVirtual(pTab) ) return 0; + iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); + v = sqlite3GetVdbe(pParse); + assert( v!=0 ); + sqlite3OpenTable(pParse, baseCur, iDb, pTab, op); + for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ + KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); + assert( pIdx->pSchema==pTab->pSchema ); + sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb, + (char*)pKey, P4_KEYINFO_HANDOFF); + VdbeComment((v, "%s", pIdx->zName)); + } + if( pParse->nTab<=baseCur+i ){ + pParse->nTab = baseCur+i; + } + return i-1; +} + + +#ifdef SQLITE_TEST +/* +** The following global variable is incremented whenever the +** transfer optimization is used. This is used for testing +** purposes only - to make sure the transfer optimization really +** is happening when it is suppose to. +*/ +int sqlite3_xferopt_count; +#endif /* SQLITE_TEST */ + + +#ifndef SQLITE_OMIT_XFER_OPT +/* +** Check to collation names to see if they are compatible. +*/ +static int xferCompatibleCollation(const char *z1, const char *z2){ + if( z1==0 ){ + return z2==0; + } + if( z2==0 ){ + return 0; + } + return sqlite3StrICmp(z1, z2)==0; +} + + +/* +** Check to see if index pSrc is compatible as a source of data +** for index pDest in an insert transfer optimization. The rules +** for a compatible index: +** +** * The index is over the same set of columns +** * The same DESC and ASC markings occurs on all columns +** * The same onError processing (OE_Abort, OE_Ignore, etc) +** * The same collating sequence on each column +*/ +static int xferCompatibleIndex(Index *pDest, Index *pSrc){ + int i; + assert( pDest && pSrc ); + assert( pDest->pTable!=pSrc->pTable ); + if( pDest->nColumn!=pSrc->nColumn ){ + return 0; /* Different number of columns */ + } + if( pDest->onError!=pSrc->onError ){ + return 0; /* Different conflict resolution strategies */ + } + for(i=0; inColumn; i++){ + if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ + return 0; /* Different columns indexed */ + } + if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ + return 0; /* Different sort orders */ + } + if( pSrc->azColl[i]!=pDest->azColl[i] ){ + return 0; /* Different collating sequences */ + } + } + + /* If no test above fails then the indices must be compatible */ + return 1; +} + +/* +** Attempt the transfer optimization on INSERTs of the form +** +** INSERT INTO tab1 SELECT * FROM tab2; +** +** This optimization is only attempted if +** +** (1) tab1 and tab2 have identical schemas including all the +** same indices and constraints +** +** (2) tab1 and tab2 are different tables +** +** (3) There must be no triggers on tab1 +** +** (4) The result set of the SELECT statement is "*" +** +** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY, +** or LIMIT clause. +** +** (6) The SELECT statement is a simple (not a compound) select that +** contains only tab2 in its FROM clause +** +** This method for implementing the INSERT transfers raw records from +** tab2 over to tab1. The columns are not decoded. Raw records from +** the indices of tab2 are transfered to tab1 as well. In so doing, +** the resulting tab1 has much less fragmentation. +** +** This routine returns TRUE if the optimization is attempted. If any +** of the conditions above fail so that the optimization should not +** be attempted, then this routine returns FALSE. +*/ +static int xferOptimization( + Parse *pParse, /* Parser context */ + Table *pDest, /* The table we are inserting into */ + Select *pSelect, /* A SELECT statement to use as the data source */ + int onError, /* How to handle constraint errors */ + int iDbDest /* The database of pDest */ +){ + ExprList *pEList; /* The result set of the SELECT */ + Table *pSrc; /* The table in the FROM clause of SELECT */ + Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ + struct SrcList_item *pItem; /* An element of pSelect->pSrc */ + int i; /* Loop counter */ + int iDbSrc; /* The database of pSrc */ + int iSrc, iDest; /* Cursors from source and destination */ + int addr1, addr2; /* Loop addresses */ + int emptyDestTest; /* Address of test for empty pDest */ + int emptySrcTest; /* Address of test for empty pSrc */ + Vdbe *v; /* The VDBE we are building */ + KeyInfo *pKey; /* Key information for an index */ + int regAutoinc; /* Memory register used by AUTOINC */ + int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ + int regData, regRowid; /* Registers holding data and rowid */ + + if( pSelect==0 ){ + return 0; /* Must be of the form INSERT INTO ... SELECT ... */ + } + if( pDest->pTrigger ){ + return 0; /* tab1 must not have triggers */ + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( pDest->tabFlags & TF_Virtual ){ + return 0; /* tab1 must not be a virtual table */ + } +#endif + if( onError==OE_Default ){ + onError = OE_Abort; + } + if( onError!=OE_Abort && onError!=OE_Rollback ){ + return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */ + } + assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ + if( pSelect->pSrc->nSrc!=1 ){ + return 0; /* FROM clause must have exactly one term */ + } + if( pSelect->pSrc->a[0].pSelect ){ + return 0; /* FROM clause cannot contain a subquery */ + } + if( pSelect->pWhere ){ + return 0; /* SELECT may not have a WHERE clause */ + } + if( pSelect->pOrderBy ){ + return 0; /* SELECT may not have an ORDER BY clause */ + } + /* Do not need to test for a HAVING clause. If HAVING is present but + ** there is no ORDER BY, we will get an error. */ + if( pSelect->pGroupBy ){ + return 0; /* SELECT may not have a GROUP BY clause */ + } + if( pSelect->pLimit ){ + return 0; /* SELECT may not have a LIMIT clause */ + } + assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ + if( pSelect->pPrior ){ + return 0; /* SELECT may not be a compound query */ + } + if( pSelect->selFlags & SF_Distinct ){ + return 0; /* SELECT may not be DISTINCT */ + } + pEList = pSelect->pEList; + assert( pEList!=0 ); + if( pEList->nExpr!=1 ){ + return 0; /* The result set must have exactly one column */ + } + assert( pEList->a[0].pExpr ); + if( pEList->a[0].pExpr->op!=TK_ALL ){ + return 0; /* The result set must be the special operator "*" */ + } + + /* At this point we have established that the statement is of the + ** correct syntactic form to participate in this optimization. Now + ** we have to check the semantics. + */ + pItem = pSelect->pSrc->a; + pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); + if( pSrc==0 ){ + return 0; /* FROM clause does not contain a real table */ + } + if( pSrc==pDest ){ + return 0; /* tab1 and tab2 may not be the same table */ + } +#ifndef SQLITE_OMIT_VIRTUALTABLE + if( pSrc->tabFlags & TF_Virtual ){ + return 0; /* tab2 must not be a virtual table */ + } +#endif + if( pSrc->pSelect ){ + return 0; /* tab2 may not be a view */ + } + if( pDest->nCol!=pSrc->nCol ){ + return 0; /* Number of columns must be the same in tab1 and tab2 */ + } + if( pDest->iPKey!=pSrc->iPKey ){ + return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ + } + for(i=0; inCol; i++){ + if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ + return 0; /* Affinity must be the same on all columns */ + } + if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ + return 0; /* Collating sequence must be the same on all columns */ + } + if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ + return 0; /* tab2 must be NOT NULL if tab1 is */ + } + } + for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ + if( pDestIdx->onError!=OE_None ){ + destHasUniqueIdx = 1; + } + for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ + if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; + } + if( pSrcIdx==0 ){ + return 0; /* pDestIdx has no corresponding index in pSrc */ + } + } +#ifndef SQLITE_OMIT_CHECK + if( pDest->pCheck && !sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ + return 0; /* Tables have different CHECK constraints. Ticket #2252 */ + } +#endif + + /* If we get this far, it means either: + ** + ** * We can always do the transfer if the table contains an + ** an integer primary key + ** + ** * We can conditionally do the transfer if the destination + ** table is empty. + */ +#ifdef SQLITE_TEST + sqlite3_xferopt_count++; +#endif + iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); + v = sqlite3GetVdbe(pParse); + sqlite3CodeVerifySchema(pParse, iDbSrc); + iSrc = pParse->nTab++; + iDest = pParse->nTab++; + regAutoinc = autoIncBegin(pParse, iDbDest, pDest); + sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); + if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){ + /* If tables do not have an INTEGER PRIMARY KEY and there + ** are indices to be copied and the destination is not empty, + ** we have to disallow the transfer optimization because the + ** the rowids might change which will mess up indexing. + ** + ** Or if the destination has a UNIQUE index and is not empty, + ** we also disallow the transfer optimization because we cannot + ** insure that all entries in the union of DEST and SRC will be + ** unique. + */ + addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); + emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); + sqlite3VdbeJumpHere(v, addr1); + }else{ + emptyDestTest = 0; + } + sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); + emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); + regData = sqlite3GetTempReg(pParse); + regRowid = sqlite3GetTempReg(pParse); + if( pDest->iPKey>=0 ){ + addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); + addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); + sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, + "PRIMARY KEY must be unique", P4_STATIC); + sqlite3VdbeJumpHere(v, addr2); + autoIncStep(pParse, regAutoinc, regRowid); + }else if( pDest->pIndex==0 ){ + addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); + }else{ + addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); + assert( (pDest->tabFlags & TF_Autoincrement)==0 ); + } + sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); + sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); + sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); + sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); + sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); + autoIncEnd(pParse, iDbDest, pDest, regAutoinc); + for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ + for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ + if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; + } + assert( pSrcIdx ); + sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); + sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); + pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); + sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc, + (char*)pKey, P4_KEYINFO_HANDOFF); + VdbeComment((v, "%s", pSrcIdx->zName)); + pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); + sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest, + (char*)pKey, P4_KEYINFO_HANDOFF); + VdbeComment((v, "%s", pDestIdx->zName)); + addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); + sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); + sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); + sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); + sqlite3VdbeJumpHere(v, addr1); + } + sqlite3VdbeJumpHere(v, emptySrcTest); + sqlite3ReleaseTempReg(pParse, regRowid); + sqlite3ReleaseTempReg(pParse, regData); + sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); + sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); + if( emptyDestTest ){ + sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); + sqlite3VdbeJumpHere(v, emptyDestTest); + sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); + return 0; + }else{ + return 1; + } +} +#endif /* SQLITE_OMIT_XFER_OPT */ + +/* Make sure "isView" gets undefined in case this file becomes part of +** the amalgamation - so that subsequent files do not see isView as a +** macro. */ +#undef isView