author | Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com> |
Sat, 20 Feb 2010 00:36:18 +0200 | |
branch | RCL_3 |
changeset 43 | 9b5a3a9fddf8 |
parent 17 | cd501b96611d |
permissions | -rw-r--r-- |
17 | 1 |
/* |
2 |
* Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
3 |
* All rights reserved. |
|
4 |
* This component and the accompanying materials are made available |
|
5 |
* under the terms of the License "Eclipse Public License v1.0" |
|
6 |
* which accompanies this distribution, and is available |
|
7 |
* at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
8 |
* |
|
9 |
* Initial Contributors: |
|
10 |
* Nokia Corporation - initial contribution. |
|
11 |
* |
|
12 |
* Contributors: |
|
13 |
* |
|
14 |
* Description: |
|
15 |
* DSA Keypair implementation |
|
16 |
* DSA keypair generation implementation |
|
17 |
* |
|
18 |
*/ |
|
19 |
||
20 |
||
21 |
/** |
|
22 |
@file |
|
23 |
*/ |
|
24 |
||
25 |
#include "dsakeypairgenimpl.h" |
|
26 |
#include "pluginconfig.h" |
|
27 |
#include "keypair.h" |
|
28 |
#include "common/inlines.h" // For TClassSwap |
|
29 |
#include "mont.h" |
|
30 |
#include "sha1impl.h" |
|
31 |
#include <random.h> |
|
43
9b5a3a9fddf8
Revision: 201007
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
17
diff
changeset
|
32 |
#include <securityerr.h> |
17 | 33 |
|
34 |
||
35 |
const TUint KShaSize = 20; |
|
36 |
const TUint KMinPrimeLength = 512; |
|
37 |
const TUint KMaxPrimeLength = 1024; |
|
38 |
const TUint KPrimeLengthMultiple = 64; |
|
39 |
||
40 |
using namespace SoftwareCrypto; |
|
41 |
||
42 |
||
43 |
/* CDSAPrimeCertificate */ |
|
44 |
||
45 |
CDSAPrimeCertificate* CDSAPrimeCertificate::NewL(const TDesC8& aSeed, TUint aCounter) |
|
46 |
{ |
|
47 |
CDSAPrimeCertificate* self = NewLC(aSeed, aCounter); |
|
48 |
CleanupStack::Pop(); |
|
49 |
return self; |
|
50 |
} |
|
51 |
||
52 |
CDSAPrimeCertificate* CDSAPrimeCertificate::NewLC(const TDesC8& aSeed, TUint aCounter) |
|
53 |
{ |
|
54 |
CDSAPrimeCertificate* self = new(ELeave) CDSAPrimeCertificate(aCounter); |
|
55 |
CleanupStack::PushL(self); |
|
56 |
self->ConstructL(aSeed); |
|
57 |
return self; |
|
58 |
} |
|
59 |
||
60 |
const TDesC8& CDSAPrimeCertificate::Seed() const |
|
61 |
{ |
|
62 |
return *iSeed; |
|
63 |
} |
|
64 |
||
65 |
TUint CDSAPrimeCertificate::Counter() const |
|
66 |
{ |
|
67 |
return iCounter; |
|
68 |
} |
|
69 |
||
70 |
CDSAPrimeCertificate::~CDSAPrimeCertificate() |
|
71 |
{ |
|
72 |
delete const_cast<HBufC8*>(iSeed); |
|
73 |
} |
|
74 |
||
75 |
void CDSAPrimeCertificate::ConstructL(const TDesC8& aSeed) |
|
76 |
{ |
|
77 |
iSeed = aSeed.AllocL(); |
|
78 |
} |
|
79 |
||
80 |
CDSAPrimeCertificate::CDSAPrimeCertificate(TUint aCounter) |
|
81 |
: iCounter(aCounter) |
|
82 |
{ |
|
83 |
} |
|
84 |
||
85 |
CDSAPrimeCertificate::CDSAPrimeCertificate() |
|
86 |
{ |
|
87 |
} |
|
88 |
||
89 |
||
90 |
/* CDSAKeyPairGenImpl */ |
|
91 |
CDSAKeyPairGenImpl::CDSAKeyPairGenImpl() |
|
92 |
{ |
|
93 |
} |
|
94 |
||
95 |
CDSAKeyPairGenImpl::~CDSAKeyPairGenImpl() |
|
96 |
{ |
|
97 |
delete iPrimeCertificate; |
|
98 |
} |
|
99 |
||
100 |
CDSAKeyPairGenImpl* CDSAKeyPairGenImpl::NewL() |
|
101 |
{ |
|
102 |
CDSAKeyPairGenImpl* self = CDSAKeyPairGenImpl::NewLC(); |
|
103 |
CleanupStack::Pop(self); |
|
104 |
return self; |
|
105 |
} |
|
106 |
||
107 |
CDSAKeyPairGenImpl* CDSAKeyPairGenImpl::NewLC() |
|
108 |
{ |
|
109 |
CDSAKeyPairGenImpl* self = new(ELeave) CDSAKeyPairGenImpl(); |
|
110 |
CleanupStack::PushL(self); |
|
111 |
self->ConstructL(); |
|
112 |
return self; |
|
113 |
} |
|
114 |
||
115 |
void CDSAKeyPairGenImpl::ConstructL(void) |
|
116 |
{ |
|
117 |
CKeyPairGenImpl::ConstructL(); |
|
118 |
} |
|
119 |
||
120 |
CExtendedCharacteristics* CDSAKeyPairGenImpl::CreateExtendedCharacteristicsL() |
|
121 |
{ |
|
122 |
// All Symbian software plug-ins have unlimited concurrency, cannot be reserved |
|
123 |
// for exclusive use and are not CERTIFIED to be standards compliant. |
|
124 |
return CExtendedCharacteristics::NewL(KMaxTInt, EFalse); |
|
125 |
} |
|
126 |
||
127 |
const CExtendedCharacteristics* CDSAKeyPairGenImpl::GetExtendedCharacteristicsL() |
|
128 |
{ |
|
129 |
return CDSAKeyPairGenImpl::CreateExtendedCharacteristicsL(); |
|
130 |
} |
|
131 |
||
132 |
TUid CDSAKeyPairGenImpl::ImplementationUid() const |
|
133 |
{ |
|
134 |
return KCryptoPluginDsaKeyPairGenUid; |
|
135 |
} |
|
136 |
||
137 |
void CDSAKeyPairGenImpl::Reset() |
|
138 |
{ |
|
139 |
// does nothing in this plugin |
|
140 |
} |
|
141 |
||
142 |
TBool CDSAKeyPairGenImpl::ValidPrimeLength(TUint aPrimeBits) |
|
143 |
{ |
|
144 |
return (aPrimeBits >= KMinPrimeLength && |
|
145 |
aPrimeBits <= KMaxPrimeLength && |
|
146 |
aPrimeBits % KPrimeLengthMultiple == 0); |
|
147 |
} |
|
148 |
||
149 |
TBool CDSAKeyPairGenImpl::GeneratePrimesL(const TDesC8& aSeed, |
|
150 |
TUint& aCounter, |
|
151 |
RInteger& aP, |
|
152 |
TUint aL, |
|
153 |
RInteger& aQ, |
|
154 |
TBool aUseInputCounter) |
|
155 |
{ |
|
156 |
//This follows the steps in FIPS 186-2 |
|
157 |
//See DSS Appendix 2.2 |
|
158 |
//Note. Step 1 is performed prior to calling GeneratePrimesL, so that this |
|
159 |
//routine can be used for both generation and validation. |
|
160 |
//Step 1. Choose an arbitrary sequence of at least 160 bits and call it |
|
161 |
//SEED. Let g be the length of SEED in bits. |
|
162 |
||
163 |
if(!ValidPrimeLength(aL)) |
|
164 |
{ |
|
165 |
User::Leave(KErrNotSupported); |
|
166 |
} |
|
167 |
||
168 |
CSHA1Impl* sha1 = CSHA1Impl::NewL(); |
|
169 |
CleanupStack::PushL(sha1); |
|
170 |
||
171 |
HBufC8* seedBuf = aSeed.AllocLC(); |
|
172 |
TPtr8 seed = seedBuf->Des(); |
|
173 |
TUint gBytes = aSeed.Size(); |
|
174 |
||
175 |
//Note that the DSS's g = BytesToBits(gBytes) ie. the number of random bits |
|
176 |
//in the seed. |
|
177 |
//This function has made the assumption (for ease of computation) that g%8 |
|
178 |
//is 0. Ie the seed is a whole number of random bytes. |
|
179 |
TBuf8<KShaSize> U; |
|
180 |
TBuf8<KShaSize> temp; |
|
181 |
const TUint n = (aL-1)/160; |
|
182 |
const TUint b = (aL-1)%160; |
|
183 |
HBufC8* Wbuf = HBufC8::NewMaxLC((n+1) * KShaSize); |
|
184 |
TUint8* W = const_cast<TUint8*>(Wbuf->Ptr()); |
|
185 |
||
186 |
U.Copy(sha1->Final(seed)); |
|
187 |
||
188 |
//Step 2. U = SHA-1[SEED] XOR SHA-1[(SEED+1) mod 2^g] |
|
189 |
for(TInt i=gBytes - 1, carry=ETrue; i>=0 && carry; i--) |
|
190 |
{ |
|
191 |
//!++(TUint) adds one to the current word which if it overflows to zero |
|
192 |
//sets carry to 1 thus letting the loop continue. It's a poor man's |
|
193 |
//multi-word addition. Swift eh? |
|
194 |
carry = !++(seed[i]); |
|
195 |
} |
|
196 |
||
197 |
temp.Copy(sha1->Final(seed)); |
|
198 |
XorBuf(const_cast<TUint8*>(U.Ptr()), temp.Ptr(), KShaSize); |
|
199 |
||
200 |
//Step 3. Form q from U by setting the most significant bit (2^159) |
|
201 |
//and the least significant bit to 1. |
|
202 |
U[0] |= 0x80; |
|
203 |
U[KShaSize-1] |= 1; |
|
204 |
||
205 |
aQ = RInteger::NewL(U); |
|
206 |
CleanupStack::PushL(aQ); |
|
207 |
||
208 |
//Step 4. Use a robust primality testing algo to test if q is prime |
|
209 |
//The robust part is the calling codes problem. This will use whatever |
|
210 |
//random number generator you set for the thread. To attempt FIPS 186-2 |
|
211 |
//compliance, set a FIPS 186-2 compliant RNG. |
|
212 |
if( !aQ.IsPrimeL() ) |
|
213 |
{ |
|
214 |
//Step 5. If not exit and get a new seed |
|
215 |
CleanupStack::PopAndDestroy(4, sha1); |
|
216 |
return EFalse; |
|
217 |
} |
|
218 |
||
219 |
TUint counterEnd = aUseInputCounter ? aCounter+1 : 4096; |
|
220 |
||
221 |
//Step 6. Let counter = 0 and offset = 2 |
|
222 |
//Note 1. that the DSS speaks of SEED + offset + k because they always |
|
223 |
//refer to a constant SEED. We update our seed as we go so the offset |
|
224 |
//variable has already been added to seed in the previous iterations. |
|
225 |
//Note 2. We've already added 1 to our seed, so the first time through this |
|
226 |
//the offset in DSS speak will be 2. |
|
227 |
for(TUint counter=0; counter < counterEnd; counter++) |
|
228 |
{ |
|
229 |
//Step 7. For k=0, ..., n let |
|
230 |
// Vk = SHA-1[(SEED + offset + k) mod 2^g] |
|
231 |
//I'm storing the Vk's inside of a big W buffer. |
|
232 |
for(TUint k=0; k<=n; k++) |
|
233 |
{ |
|
234 |
for(TInt i=gBytes-1, carry=ETrue; i>=0 && carry; i--) |
|
235 |
{ |
|
236 |
carry = !++(seed[i]); |
|
237 |
} |
|
238 |
if(!aUseInputCounter || counter == aCounter) |
|
239 |
{ |
|
240 |
TPtr8 Wptr(W+(n-k)*KShaSize, gBytes); |
|
241 |
Wptr.Copy(sha1->Final(seed)); |
|
242 |
} |
|
243 |
} |
|
244 |
if(!aUseInputCounter || counter == aCounter) |
|
245 |
{ |
|
246 |
//Step 8. Let W be the integer... and let X = W + 2^(L-1) |
|
247 |
const_cast<TUint8&>((*Wbuf)[KShaSize - 1 - b/8]) |= 0x80; |
|
248 |
TPtr8 Wptr(W + KShaSize - 1 - b/8, aL/8, aL/8); |
|
249 |
RInteger X = RInteger::NewL(Wptr); |
|
250 |
CleanupStack::PushL(X); |
|
251 |
//Step 9. Let c = X mod 2q and set p = X - (c-1) |
|
252 |
RInteger twoQ = aQ.TimesL(TInteger::Two()); |
|
253 |
CleanupStack::PushL(twoQ); |
|
254 |
RInteger c = X.ModuloL(twoQ); |
|
255 |
CleanupStack::PushL(c); |
|
256 |
--c; |
|
257 |
aP = X.MinusL(c); |
|
258 |
CleanupStack::PopAndDestroy(3, &X); //twoQ, c, X |
|
259 |
CleanupStack::PushL(aP); |
|
260 |
||
261 |
//Step 10 and 11: if p >= 2^(L-1) and p is prime |
|
262 |
if( aP.Bit(aL-1) && aP.IsPrimeL() ) |
|
263 |
{ |
|
264 |
aCounter = counter; |
|
265 |
CleanupStack::Pop(2, &aQ); |
|
266 |
CleanupStack::PopAndDestroy(3, sha1); |
|
267 |
return ETrue; |
|
268 |
} |
|
269 |
CleanupStack::PopAndDestroy(&aP); |
|
270 |
} |
|
271 |
} |
|
272 |
CleanupStack::PopAndDestroy(4, &sha1); |
|
273 |
return EFalse; |
|
274 |
} |
|
275 |
||
276 |
void CDSAKeyPairGenImpl::GenerateKeyPairL(TInt aKeySize, |
|
277 |
const CCryptoParams& aKeyParameters, |
|
278 |
CKeyPair*& aKeyPair) |
|
279 |
{ |
|
280 |
//This is the first step of DSA prime generation. The remaining steps are |
|
281 |
//performed in CDSAParameters::GeneratePrimesL |
|
282 |
//Step 1. Choose an arbitrary sequence of at least 160 bits and call it |
|
283 |
//SEED. Let g be the length of SEED in bits. |
|
284 |
TBuf8<KShaSize> seed(KShaSize); |
|
285 |
TUint c; |
|
286 |
RInteger p; |
|
287 |
RInteger q; |
|
288 |
||
289 |
do |
|
290 |
{ |
|
43
9b5a3a9fddf8
Revision: 201007
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
17
diff
changeset
|
291 |
TRAPD(err, GenerateRandomBytesL(seed)); |
9b5a3a9fddf8
Revision: 201007
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
17
diff
changeset
|
292 |
if((err != KErrNone) && (err != KErrNotSecure)) |
9b5a3a9fddf8
Revision: 201007
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
17
diff
changeset
|
293 |
User::Leave(err); |
17 | 294 |
} |
295 |
while(!GeneratePrimesL(seed, c, p, aKeySize, q)); |
|
296 |
||
297 |
//Double PushL will not fail as GeneratePrimesL uses the CleanupStack |
|
298 |
//(at least one push and pop ;) |
|
299 |
CleanupStack::PushL(p); |
|
300 |
CleanupStack::PushL(q); |
|
301 |
||
302 |
iPrimeCertificate = CDSAPrimeCertificate::NewL(seed, c); |
|
303 |
||
304 |
// aKeyParameters isn't const here anymore |
|
305 |
CCryptoParams& paramRef=const_cast<CCryptoParams&>(aKeyParameters); |
|
306 |
paramRef.AddL(c, KDsaKeyGenerationCounterUid); |
|
307 |
paramRef.AddL(seed, KDsaKeyGenerationSeedUid); |
|
308 |
||
309 |
CMontgomeryStructure* montP = CMontgomeryStructure::NewLC(p); |
|
310 |
||
311 |
--p; |
|
312 |
||
313 |
// e = (p-1)/q |
|
314 |
RInteger e = p.DividedByL(q); |
|
315 |
CleanupStack::PushL(e); |
|
316 |
||
317 |
--p; //now it's p-2 :) |
|
318 |
||
319 |
RInteger h; |
|
320 |
const TInteger* g = 0; |
|
321 |
do |
|
322 |
{ |
|
323 |
// find a random h | 1 < h < p-1 |
|
324 |
h = RInteger::NewRandomL(TInteger::Two(), p); |
|
325 |
CleanupStack::PushL(h); |
|
326 |
// g = h^e mod p |
|
327 |
g = &(montP->ExponentiateL(h, e)); |
|
328 |
CleanupStack::PopAndDestroy(&h); |
|
329 |
} |
|
330 |
while( *g <= TInteger::One() ); |
|
331 |
CleanupStack::PopAndDestroy(&e); |
|
332 |
||
333 |
++p; //reincrement p to original value |
|
334 |
++p; |
|
335 |
||
336 |
||
337 |
RInteger g1 = RInteger::NewL(*g); //take a copy of montP's g |
|
338 |
CleanupStack::PushL(g1); |
|
339 |
--q; |
|
340 |
// select random x | 0 < x < q |
|
341 |
RInteger x = RInteger::NewRandomL(TInteger::One(), q); |
|
342 |
CleanupStack::PushL(x); |
|
343 |
++q; |
|
344 |
||
345 |
// |
|
346 |
// create the keys parameters |
|
347 |
CCryptoParams* privateKeyParameters = CCryptoParams::NewLC(); |
|
348 |
privateKeyParameters->AddL(p, KDsaKeyParameterPUid); |
|
349 |
privateKeyParameters->AddL(q, KDsaKeyParameterQUid); |
|
350 |
privateKeyParameters->AddL(g1, KDsaKeyParameterGUid); |
|
351 |
privateKeyParameters->AddL(x, KDsaKeyParameterXUid); |
|
352 |
TKeyProperty privateKeyProperties = {KDSAKeyPairGeneratorUid, |
|
353 |
KCryptoPluginDsaKeyPairGenUid, |
|
354 |
KDsaPrivateKeyUid, |
|
355 |
KNonEmbeddedKeyUid}; |
|
356 |
||
357 |
CCryptoParams* publicKeyParameters = CCryptoParams::NewLC(); |
|
358 |
publicKeyParameters->AddL(p, KDsaKeyParameterPUid); |
|
359 |
publicKeyParameters->AddL(q, KDsaKeyParameterQUid); |
|
360 |
publicKeyParameters->AddL(g1, KDsaKeyParameterGUid); |
|
361 |
RInteger y = RInteger::NewL(montP->ExponentiateL(*g, x)); |
|
362 |
CleanupStack::PushL(y); |
|
363 |
publicKeyParameters->AddL(y, KDsaKeyParameterYUid); |
|
364 |
TKeyProperty publicKeyProperties = {KDSAKeyPairGeneratorUid, |
|
365 |
KCryptoPluginDsaKeyPairGenUid, |
|
366 |
KDsaPublicKeyUid, |
|
367 |
KNonEmbeddedKeyUid}; |
|
368 |
||
369 |
// |
|
370 |
// create the private key |
|
371 |
// |
|
372 |
CKey* privateKey = CKey::NewL(privateKeyProperties, *privateKeyParameters); |
|
373 |
CleanupStack::PushL(privateKey); |
|
374 |
||
375 |
// |
|
376 |
// create the public key |
|
377 |
// |
|
378 |
CKey* publicKey = CKey::NewL(publicKeyProperties, *publicKeyParameters); |
|
379 |
CleanupStack::PushL(publicKey); |
|
380 |
||
381 |
aKeyPair = CKeyPair::NewL(publicKey, privateKey); |
|
382 |
||
383 |
//publicKey, publicKeyParameters, y, privateKey, privateKeyParameters, x, g1, montP, q, p |
|
384 |
CleanupStack::Pop(2, privateKey); |
|
385 |
CleanupStack::PopAndDestroy(8, &p); |
|
386 |
} |