author | andy simpson <andrews@symbian.org> |
Mon, 25 Oct 2010 16:13:35 +0100 | |
branch | RCL_3 |
changeset 107 | c3d26e45acc2 |
parent 79 | a5e05e7296f9 |
permissions | -rw-r--r-- |
17 | 1 |
/* |
79
a5e05e7296f9
Revision: 201025
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
43
diff
changeset
|
2 |
* Copyright (c) 2003-2010 Nokia Corporation and/or its subsidiary(-ies). |
17 | 3 |
* All rights reserved. |
4 |
* This component and the accompanying materials are made available |
|
5 |
* under the terms of the License "Eclipse Public License v1.0" |
|
6 |
* which accompanies this distribution, and is available |
|
7 |
* at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
8 |
* |
|
9 |
* Initial Contributors: |
|
10 |
* Nokia Corporation - initial contribution. |
|
11 |
* |
|
12 |
* Contributors: |
|
13 |
* |
|
14 |
* Description: |
|
15 |
* |
|
16 |
*/ |
|
17 |
||
18 |
||
19 |
#include <random.h> |
|
20 |
#include <bigint.h> |
|
21 |
#include <e32std.h> |
|
22 |
#include <euserext.h> |
|
23 |
#include <securityerr.h> |
|
24 |
#include "words.h" |
|
25 |
#include "algorithms.h" |
|
26 |
#include "windowslider.h" |
|
27 |
#include "stackinteger.h" |
|
28 |
#include "mont.h" |
|
29 |
||
30 |
||
31 |
/** |
|
32 |
* Creates a new buffer containing the big-endian binary representation of this |
|
33 |
* integer. |
|
34 |
* |
|
35 |
* Note that it does not support the exporting of negative integers. |
|
36 |
* |
|
37 |
* @return The new buffer. |
|
38 |
* |
|
39 |
* @leave KErrNegativeExportNotSupported If this instance is a negative integer. |
|
40 |
* |
|
41 |
*/ |
|
42 |
EXPORT_C HBufC8* TInteger::BufferLC() const |
|
43 |
{ |
|
44 |
if(IsNegative()) |
|
45 |
{ |
|
46 |
User::Leave(KErrNegativeExportNotSupported); |
|
47 |
} |
|
48 |
TUint bytes = ByteCount(); |
|
49 |
HBufC8* buf = HBufC8::NewMaxLC(bytes); |
|
50 |
TUint8* bufPtr = (TUint8*)(buf->Ptr()); |
|
51 |
TUint8* regPtr = (TUint8*)Ptr(); |
|
52 |
||
53 |
// we internally store the number little endian, as a string we want it big |
|
54 |
// endian |
|
55 |
for(TUint i=0,j=bytes-1; i<bytes; ) |
|
56 |
{ |
|
57 |
bufPtr[i++] = regPtr[j--]; |
|
58 |
} |
|
59 |
return buf; |
|
60 |
} |
|
61 |
||
62 |
EXPORT_C HBufC8* TInteger::BufferWithNoTruncationLC() const |
|
63 |
{ |
|
64 |
if(IsNegative()) |
|
65 |
{ |
|
66 |
User::Leave(KErrNegativeExportNotSupported); |
|
67 |
} |
|
68 |
||
69 |
TUint wordCount = Size(); |
|
70 |
TUint bytes = (wordCount)*WORD_SIZE; |
|
71 |
||
72 |
HBufC8* buf = HBufC8::NewMaxLC(bytes); |
|
73 |
TUint8* bufPtr = (TUint8*)(buf->Ptr()); |
|
74 |
TUint8* regPtr = (TUint8*)Ptr(); |
|
75 |
for(TUint i=0,j=bytes-1; i<bytes; ) |
|
76 |
{ |
|
77 |
bufPtr[i++] = regPtr[j--]; |
|
78 |
} |
|
79 |
||
80 |
return buf; |
|
81 |
} |
|
82 |
||
83 |
/** |
|
84 |
* Gets the number of words required to represent this RInteger. |
|
85 |
* |
|
86 |
* @return The size of the integer in words. |
|
87 |
* |
|
88 |
*/ |
|
89 |
EXPORT_C TUint TInteger::WordCount() const |
|
90 |
{ |
|
91 |
return CountWords(Ptr(), Size()); |
|
92 |
} |
|
93 |
||
94 |
/** |
|
95 |
* Gets the number of bytes required to represent this RInteger. |
|
96 |
* |
|
97 |
* @return The size of the integer in bytes. |
|
98 |
* |
|
99 |
*/ |
|
100 |
EXPORT_C TUint TInteger::ByteCount() const |
|
101 |
{ |
|
102 |
TUint wordCount = WordCount(); |
|
103 |
if(wordCount) |
|
104 |
{ |
|
105 |
return (wordCount-1)*WORD_SIZE + BytePrecision((Ptr())[wordCount-1]); |
|
106 |
} |
|
107 |
else |
|
108 |
{ |
|
109 |
return 0; |
|
110 |
} |
|
111 |
} |
|
112 |
||
113 |
/** |
|
114 |
* Get the number of bits required to represent this RInteger. |
|
115 |
* |
|
116 |
* @return The size of the integer in bits. |
|
117 |
* |
|
118 |
*/ |
|
119 |
EXPORT_C TUint TInteger::BitCount() const |
|
120 |
{ |
|
121 |
TUint wordCount = WordCount(); |
|
122 |
if(wordCount) |
|
123 |
{ |
|
124 |
return (wordCount-1)*WORD_BITS + BitPrecision(Ptr()[wordCount-1]); |
|
125 |
} |
|
126 |
else |
|
127 |
{ |
|
128 |
return 0; |
|
129 |
} |
|
130 |
} |
|
131 |
||
132 |
||
133 |
//These 3 declarations instantiate a constant 0, 1, 2 for ease of use and |
|
134 |
//quick construction elsewhere in the code. Note that the functions |
|
135 |
//returning references to this static data return const references as you can't |
|
136 |
//modify the ROM ;) |
|
137 |
//word 0: Size of storage in words |
|
138 |
//word 1: Pointer to storage |
|
139 |
//word 2: LSW of storage |
|
140 |
//word 3: MSW of storage |
|
141 |
//Note that the flag bits in word 1 (Ptr()) are zero in the case of a positive |
|
142 |
//stack based integer (SignBit == 0, IsHeapBasedBit == 0) |
|
143 |
const TUint KBigintZero[4] = {2, (TUint)(KBigintZero+2), 0, 0}; |
|
144 |
const TUint KBigintOne[4] = {2, (TUint)(KBigintOne+2), 1, 0}; |
|
145 |
const TUint KBigintTwo[4] = {2, (TUint)(KBigintTwo+2), 2, 0}; |
|
146 |
||
147 |
/** |
|
148 |
* Gets the TInteger that represents zero |
|
149 |
* |
|
150 |
* @return The TInteger representing zero |
|
151 |
*/ |
|
152 |
EXPORT_C const TInteger& TInteger::Zero(void) |
|
153 |
{ |
|
154 |
return *reinterpret_cast<const TStackInteger64*>(KBigintZero); |
|
155 |
} |
|
156 |
||
157 |
/** |
|
158 |
* Gets the TInteger that represents one |
|
159 |
* |
|
160 |
* @return The TInteger representing one |
|
161 |
*/ |
|
162 |
EXPORT_C const TInteger& TInteger::One(void) |
|
163 |
{ |
|
164 |
return *reinterpret_cast<const TStackInteger64*>(KBigintOne); |
|
165 |
} |
|
166 |
||
167 |
/** |
|
168 |
* Gets the TInteger that represents two |
|
169 |
* |
|
170 |
* @return The TInteger representing two |
|
171 |
*/ |
|
172 |
EXPORT_C const TInteger& TInteger::Two(void) |
|
173 |
{ |
|
174 |
return *reinterpret_cast<const TStackInteger64*>(KBigintTwo); |
|
175 |
} |
|
176 |
||
177 |
EXPORT_C RInteger TInteger::PlusL(const TInteger& aOperand) const |
|
178 |
{ |
|
179 |
RInteger sum; |
|
180 |
if (NotNegative()) |
|
181 |
{ |
|
182 |
if (aOperand.NotNegative()) |
|
183 |
sum = PositiveAddL(*this, aOperand); |
|
184 |
else |
|
185 |
sum = PositiveSubtractL(*this, aOperand); |
|
186 |
} |
|
187 |
else |
|
188 |
{ |
|
189 |
if (aOperand.NotNegative()) |
|
190 |
sum = PositiveSubtractL(aOperand, *this); |
|
191 |
else |
|
192 |
{ |
|
193 |
sum = PositiveAddL(*this, aOperand); |
|
194 |
sum.SetSign(TInteger::ENegative); |
|
195 |
} |
|
196 |
} |
|
197 |
return sum; |
|
198 |
} |
|
199 |
||
200 |
EXPORT_C RInteger TInteger::MinusL(const TInteger& aOperand) const |
|
201 |
{ |
|
202 |
RInteger diff; |
|
203 |
if (NotNegative()) |
|
204 |
{ |
|
205 |
if (aOperand.NotNegative()) |
|
206 |
diff = PositiveSubtractL(*this, aOperand); |
|
207 |
else |
|
208 |
diff = PositiveAddL(*this, aOperand); |
|
209 |
} |
|
210 |
else |
|
211 |
{ |
|
212 |
if (aOperand.NotNegative()) |
|
213 |
{ |
|
214 |
diff = PositiveAddL(*this, aOperand); |
|
215 |
diff.SetSign(TInteger::ENegative); |
|
216 |
} |
|
217 |
else |
|
218 |
diff = PositiveSubtractL(aOperand, *this); |
|
219 |
} |
|
220 |
return diff; |
|
221 |
} |
|
222 |
||
223 |
EXPORT_C RInteger TInteger::TimesL(const TInteger& aOperand) const |
|
224 |
{ |
|
225 |
RInteger product = PositiveMultiplyL(*this, aOperand); |
|
226 |
||
227 |
if (NotNegative() != aOperand.NotNegative()) |
|
228 |
{ |
|
229 |
product.Negate(); |
|
230 |
} |
|
231 |
return product; |
|
232 |
} |
|
233 |
||
234 |
EXPORT_C RInteger TInteger::DividedByL(const TInteger& aOperand) const |
|
235 |
{ |
|
236 |
RInteger quotient; |
|
237 |
RInteger remainder; |
|
238 |
DivideL(remainder, quotient, *this, aOperand); |
|
239 |
remainder.Close(); |
|
240 |
return quotient; |
|
241 |
} |
|
242 |
||
243 |
EXPORT_C RInteger TInteger::ModuloL(const TInteger& aOperand) const |
|
244 |
{ |
|
245 |
RInteger remainder; |
|
246 |
RInteger quotient; |
|
247 |
DivideL(remainder, quotient, *this, aOperand); |
|
248 |
quotient.Close(); |
|
249 |
return remainder; |
|
250 |
} |
|
251 |
||
252 |
EXPORT_C TUint TInteger::ModuloL(TUint aOperand) const |
|
253 |
{ |
|
254 |
if(!aOperand) |
|
255 |
{ |
|
256 |
User::Leave(KErrDivideByZero); |
|
257 |
} |
|
258 |
return Modulo(*this, aOperand); |
|
259 |
} |
|
260 |
||
261 |
EXPORT_C RInteger TInteger::ModularMultiplyL(const TInteger& aA, const TInteger& aB, |
|
262 |
const TInteger& aMod) |
|
263 |
{ |
|
264 |
RInteger product = aA.TimesL(aB); |
|
265 |
CleanupStack::PushL(product); |
|
266 |
RInteger reduced = product.ModuloL(aMod); |
|
267 |
CleanupStack::PopAndDestroy(&product); |
|
268 |
return reduced; |
|
269 |
} |
|
270 |
||
271 |
EXPORT_C RInteger TInteger::ModularExponentiateL(const TInteger& aBase, |
|
272 |
const TInteger& aExp, const TInteger& aMod) |
|
273 |
{ |
|
274 |
CMontgomeryStructure* mont = CMontgomeryStructure::NewLC(aMod); |
|
275 |
RInteger result = RInteger::NewL(mont->ExponentiateL(aBase, aExp)); |
|
276 |
CleanupStack::PopAndDestroy(mont); |
|
277 |
return result; |
|
278 |
} |
|
279 |
||
280 |
EXPORT_C RInteger TInteger::GCDL(const TInteger& aOperand) const |
|
281 |
{ |
|
282 |
//Binary GCD algorithm -- see HAC 14.4.1 |
|
283 |
//with a slight variation -- our g counts shifts rather than actually |
|
284 |
//shifting. We then do one shift at the end. |
|
285 |
assert(NotNegative()); |
|
286 |
assert(aOperand.NotNegative()); |
|
287 |
||
288 |
RInteger x = RInteger::NewL(*this); |
|
289 |
CleanupStack::PushL(x); |
|
290 |
RInteger y = RInteger::NewL(aOperand); |
|
291 |
CleanupStack::PushL(y); |
|
292 |
||
293 |
// 1 Ensure x >= y |
|
294 |
if( x < y ) |
|
295 |
{ |
|
296 |
TClassSwap(x, y); |
|
297 |
} |
|
298 |
||
299 |
TUint g = 0; |
|
300 |
// 2 while x and y even x <- x/2, y <- y/2 |
|
301 |
while( x.IsEven() && y.IsEven() ) |
|
302 |
{ |
|
303 |
x >>= 1; |
|
304 |
y >>= 1; |
|
305 |
++g; |
|
306 |
} |
|
307 |
// 3 while x != 0 |
|
308 |
while( x.NotZero() ) |
|
309 |
{ |
|
310 |
// 3.1 while x even x <- x/2 |
|
311 |
while( x.IsEven() ) |
|
312 |
{ |
|
313 |
x >>= 1; |
|
314 |
} |
|
315 |
// 3.2 while y even y <- y/2 |
|
316 |
while( y.IsEven() ) |
|
317 |
{ |
|
318 |
y >>= 1; |
|
319 |
} |
|
320 |
// 3.3 t <- abs(x-y)/2 |
|
321 |
RInteger t = x.MinusL(y); |
|
322 |
t >>= 1; |
|
323 |
t.SetSign(TInteger::EPositive); |
|
324 |
||
325 |
// 3.4 If x>=y then x <- t else y <- t |
|
326 |
if( x >= y ) |
|
327 |
{ |
|
328 |
x.Set(t); |
|
329 |
} |
|
330 |
else |
|
331 |
{ |
|
332 |
y.Set(t); |
|
333 |
} |
|
334 |
} |
|
335 |
||
336 |
// 4 Return (g*y) (equiv to y<<=g as our g was counting shifts not actually |
|
337 |
//shifting) |
|
338 |
y <<= g; |
|
339 |
CleanupStack::Pop(&y); |
|
340 |
CleanupStack::PopAndDestroy(&x); |
|
341 |
return y; |
|
342 |
} |
|
343 |
||
344 |
EXPORT_C RInteger TInteger::InverseModL(const TInteger& aMod) const |
|
345 |
{ |
|
346 |
assert(aMod.NotNegative()); |
|
347 |
||
348 |
RInteger result; |
|
349 |
if(IsNegative() || *this>=aMod) |
|
350 |
{ |
|
351 |
RInteger temp = ModuloL(aMod); |
|
352 |
CleanupClosePushL(temp); |
|
353 |
result = temp.InverseModL(aMod); |
|
354 |
CleanupStack::PopAndDestroy(&temp); |
|
355 |
return result; |
|
356 |
} |
|
357 |
||
358 |
if(aMod.IsEven()) |
|
359 |
{ |
|
360 |
if( !aMod || IsEven() ) |
|
361 |
{ |
|
362 |
return RInteger::NewL(Zero()); |
|
363 |
} |
|
364 |
if( *this == One() ) |
|
365 |
{ |
|
366 |
return RInteger::NewL(One()); |
|
367 |
} |
|
368 |
RInteger u = aMod.InverseModL(*this); |
|
369 |
CleanupClosePushL(u); |
|
370 |
if(!u) |
|
371 |
{ |
|
372 |
result = RInteger::NewL(Zero()); |
|
373 |
} |
|
374 |
else |
|
375 |
{ |
|
376 |
//calculates (aMod*(*this-u)+1)/(*this) |
|
377 |
result = MinusL(u); |
|
378 |
CleanupClosePushL(result); |
|
379 |
result *= aMod; |
|
380 |
++result; |
|
381 |
result /= *this; |
|
382 |
CleanupStack::Pop(&result); |
|
383 |
} |
|
384 |
CleanupStack::PopAndDestroy(&u); |
|
385 |
return result; |
|
386 |
} |
|
387 |
||
388 |
result = RInteger::NewEmptyL(aMod.Size()); |
|
389 |
CleanupClosePushL(result); |
|
390 |
RInteger workspace = RInteger::NewEmptyL(aMod.Size() * 4); |
|
391 |
TUint k = AlmostInverse(result.Ptr(), workspace.Ptr(), Ptr(), Size(), |
|
392 |
aMod.Ptr(), aMod.Size()); |
|
393 |
DivideByPower2Mod(result.Ptr(), result.Ptr(), k, aMod.Ptr(), aMod.Size()); |
|
394 |
workspace.Close(); |
|
395 |
CleanupStack::Pop(&result); |
|
396 |
||
397 |
return result; |
|
398 |
} |
|
399 |
||
400 |
EXPORT_C TInteger& TInteger::operator+=(const TInteger& aOperand) |
|
401 |
{ |
|
402 |
this->Set(PlusL(aOperand)); |
|
403 |
return *this; |
|
404 |
} |
|
405 |
||
406 |
EXPORT_C TInteger& TInteger::operator-=(const TInteger& aOperand) |
|
407 |
{ |
|
408 |
this->Set(MinusL(aOperand)); |
|
409 |
return *this; |
|
410 |
} |
|
411 |
||
412 |
EXPORT_C TInteger& TInteger::operator*=(const TInteger& aOperand) |
|
413 |
{ |
|
414 |
this->Set(TimesL(aOperand)); |
|
415 |
return *this; |
|
416 |
} |
|
417 |
||
418 |
EXPORT_C TInteger& TInteger::operator/=(const TInteger& aOperand) |
|
419 |
{ |
|
420 |
this->Set(DividedByL(aOperand)); |
|
421 |
return *this; |
|
422 |
} |
|
423 |
||
424 |
EXPORT_C TInteger& TInteger::operator%=(const TInteger& aOperand) |
|
425 |
{ |
|
426 |
this->Set(ModuloL(aOperand)); |
|
427 |
return *this; |
|
428 |
} |
|
429 |
||
430 |
EXPORT_C TInteger& TInteger::operator+=(TInt aOperand) |
|
431 |
{ |
|
432 |
TStackInteger64 operand(aOperand); |
|
433 |
*this += operand; |
|
434 |
return *this; |
|
435 |
} |
|
436 |
||
437 |
EXPORT_C TInteger& TInteger::operator-=(TInt aOperand) |
|
438 |
{ |
|
439 |
TStackInteger64 operand(aOperand); |
|
440 |
*this -= operand; |
|
441 |
return *this; |
|
442 |
} |
|
443 |
||
444 |
EXPORT_C TInteger& TInteger::operator*=(TInt aOperand) |
|
445 |
{ |
|
446 |
TStackInteger64 operand(aOperand); |
|
447 |
*this *= operand; |
|
448 |
return *this; |
|
449 |
} |
|
450 |
||
451 |
EXPORT_C TInteger& TInteger::operator--() |
|
452 |
{ |
|
453 |
if (IsNegative()) |
|
454 |
{ |
|
455 |
if (Increment(Ptr(), Size())) |
|
456 |
{ |
|
457 |
CleanGrowL(2*Size()); |
|
458 |
(Ptr())[Size()/2]=1; |
|
459 |
} |
|
460 |
} |
|
461 |
else |
|
462 |
{ |
|
463 |
if (Decrement(Ptr(), Size())) |
|
464 |
{ |
|
465 |
this->CopyL(-1); |
|
466 |
} |
|
467 |
} |
|
468 |
return *this; |
|
469 |
} |
|
470 |
||
471 |
EXPORT_C TInteger& TInteger::operator++() |
|
472 |
{ |
|
473 |
if(NotNegative()) |
|
474 |
{ |
|
475 |
if(Increment(Ptr(), Size())) |
|
476 |
{ |
|
477 |
CleanGrowL(2*Size()); |
|
478 |
(Ptr())[Size()/2]=1; |
|
479 |
} |
|
480 |
} |
|
481 |
else |
|
482 |
{ |
|
483 |
DecrementNoCarry(Ptr(), Size()); |
|
484 |
if(WordCount()==0) |
|
485 |
{ |
|
486 |
this->CopyL(Zero()); |
|
487 |
} |
|
488 |
} |
|
489 |
return *this; |
|
490 |
} |
|
491 |
||
492 |
EXPORT_C TInteger& TInteger::operator <<=(TUint aBits) |
|
493 |
{ |
|
494 |
const TUint wordCount = WordCount(); |
|
495 |
const TUint shiftWords = aBits / WORD_BITS; |
|
496 |
const TUint shiftBits = aBits % WORD_BITS; |
|
497 |
||
498 |
CleanGrowL(wordCount+BitsToWords(aBits)); |
|
499 |
ShiftWordsLeftByWords(Ptr(), wordCount + shiftWords, shiftWords); |
|
500 |
ShiftWordsLeftByBits(Ptr()+shiftWords, wordCount + BitsToWords(shiftBits), |
|
501 |
shiftBits); |
|
502 |
return *this; |
|
503 |
} |
|
504 |
||
505 |
EXPORT_C TInteger& TInteger::operator >>=(TUint aBits) |
|
506 |
{ |
|
507 |
const TUint wordCount = WordCount(); |
|
508 |
const TUint shiftWords = aBits / WORD_BITS; |
|
509 |
const TUint shiftBits = aBits % WORD_BITS; |
|
510 |
||
511 |
ShiftWordsRightByWords(Ptr(), wordCount, shiftWords); |
|
512 |
if(wordCount > shiftWords) |
|
513 |
{ |
|
514 |
ShiftWordsRightByBits(Ptr(), wordCount - shiftWords, shiftBits); |
|
515 |
} |
|
516 |
if(IsNegative() && WordCount()==0) // avoid negative 0 |
|
517 |
{ |
|
518 |
SetSign(EPositive); |
|
519 |
} |
|
520 |
return *this; |
|
521 |
} |
|
522 |
||
523 |
EXPORT_C TInt TInteger::UnsignedCompare(const TInteger& aThat) const |
|
524 |
{ |
|
525 |
TUint size = WordCount(); |
|
526 |
TUint thatSize = aThat.WordCount(); |
|
527 |
||
528 |
if( size == thatSize ) |
|
529 |
return Compare(Ptr(), aThat.Ptr(), size); |
|
530 |
else |
|
531 |
return size > thatSize ? 1 : -1; |
|
532 |
} |
|
533 |
||
534 |
EXPORT_C TInt TInteger::SignedCompare(const TInteger& aThat) const |
|
535 |
{ |
|
536 |
if (NotNegative()) |
|
537 |
{ |
|
538 |
if (aThat.NotNegative()) |
|
539 |
return UnsignedCompare(aThat); |
|
540 |
else |
|
541 |
return 1; |
|
542 |
} |
|
543 |
else |
|
544 |
{ |
|
545 |
if (aThat.NotNegative()) |
|
546 |
return -1; |
|
547 |
else |
|
548 |
return -UnsignedCompare(aThat); |
|
549 |
} |
|
550 |
} |
|
551 |
||
552 |
EXPORT_C TBool TInteger::operator!() const |
|
553 |
{ |
|
554 |
//Ptr()[0] is just a quick way of weeding out non-zero numbers without |
|
555 |
//doing a full WordCount() == 0. Very good odds that a non-zero number |
|
556 |
//will have a bit set in the least significant word |
|
557 |
return IsNegative() ? EFalse : (Ptr()[0]==0 && WordCount()==0); |
|
558 |
} |
|
559 |
||
560 |
EXPORT_C TInt TInteger::SignedCompare(TInt aInteger) const |
|
561 |
{ |
|
562 |
TStackInteger64 temp(aInteger); |
|
563 |
return SignedCompare(temp); |
|
564 |
} |
|
565 |
||
566 |
/* TBool IsPrimeL(void) const |
|
567 |
* and all primality related functions are implemented in primes.cpp */ |
|
568 |
||
569 |
EXPORT_C TBool TInteger::Bit(TUint aBitPos) const |
|
570 |
{ |
|
571 |
if( aBitPos/WORD_BITS >= Size() ) |
|
572 |
{ |
|
573 |
return 0; |
|
574 |
} |
|
575 |
else |
|
576 |
{ |
|
577 |
return (((Ptr())[aBitPos/WORD_BITS] >> (aBitPos % WORD_BITS)) & 1); |
|
578 |
} |
|
579 |
} |
|
580 |
||
581 |
EXPORT_C void TInteger::SetBit(TUint aBitPos) |
|
582 |
{ |
|
583 |
if( aBitPos/WORD_BITS < Size() ) |
|
584 |
{ |
|
585 |
ArraySetBit(Ptr(), aBitPos); |
|
586 |
} |
|
587 |
} |
|
588 |
||
589 |
EXPORT_C void TInteger::Negate() |
|
590 |
{ |
|
591 |
if(!!(*this)) //don't flip sign if *this==0 |
|
592 |
{ |
|
593 |
SetSign(TSign((~Sign())&KSignMask)); |
|
594 |
} |
|
595 |
} |
|
596 |
||
597 |
EXPORT_C void TInteger::CopyL(const TInteger& aInteger, TBool aAllowShrink) |
|
598 |
{ |
|
599 |
if(aAllowShrink) |
|
600 |
{ |
|
601 |
CleanResizeL(aInteger.Size()); |
|
602 |
} |
|
603 |
else |
|
604 |
{ |
|
605 |
CleanGrowL(aInteger.Size()); |
|
606 |
} |
|
607 |
Construct(aInteger); |
|
608 |
} |
|
609 |
||
610 |
EXPORT_C void TInteger::CopyL(TInt aInteger, TBool aAllowShrink) |
|
611 |
{ |
|
612 |
if(aAllowShrink) |
|
613 |
{ |
|
614 |
CleanResizeL(2); |
|
615 |
} |
|
616 |
else |
|
617 |
{ |
|
618 |
CleanGrowL(2); |
|
619 |
} |
|
620 |
Construct(aInteger); |
|
621 |
} |
|
622 |
||
623 |
EXPORT_C void TInteger::Set(const RInteger& aInteger) |
|
624 |
{ |
|
625 |
assert(IsHeapBased()); |
|
626 |
Mem::FillZ(Ptr(), WordsToBytes(Size())); |
|
627 |
User::Free(Ptr()); |
|
628 |
iPtr = aInteger.iPtr; |
|
629 |
iSize = aInteger.iSize; |
|
630 |
} |
|
631 |
||
632 |
RInteger TInteger::PositiveAddL(const TInteger &aA, const TInteger& aB) const |
|
633 |
{ |
|
634 |
RInteger sum = RInteger::NewEmptyL(CryptoMax(aA.Size(), aB.Size())); |
|
635 |
const word aSize = aA.Size(); |
|
636 |
const word bSize = aB.Size(); |
|
637 |
const word* const aReg = aA.Ptr(); |
|
638 |
const word* const bReg = aB.Ptr(); |
|
639 |
word* const sumReg = sum.Ptr(); |
|
640 |
||
641 |
word carry; |
|
642 |
if (aSize == bSize) |
|
643 |
carry = Add(sumReg, aReg, bReg, aSize); |
|
644 |
else if (aSize > bSize) |
|
645 |
{ |
|
646 |
carry = Add(sumReg, aReg, bReg, bSize); |
|
647 |
CopyWords(sumReg+bSize, aReg+bSize, aSize-bSize); |
|
648 |
carry = Increment(sumReg+bSize, aSize-bSize, carry); |
|
649 |
} |
|
650 |
else |
|
651 |
{ |
|
652 |
carry = Add(sumReg, aReg, bReg, aSize); |
|
653 |
CopyWords(sumReg+aSize, bReg+aSize, bSize-aSize); |
|
654 |
carry = Increment(sumReg+aSize, bSize-aSize, carry); |
|
655 |
} |
|
656 |
||
657 |
if (carry) |
|
658 |
{ |
|
659 |
CleanupStack::PushL(sum); |
|
660 |
sum.CleanGrowL(2*sum.Size()); |
|
661 |
CleanupStack::Pop(&sum); |
|
662 |
sum.Ptr()[sum.Size()/2] = 1; |
|
663 |
} |
|
664 |
sum.SetSign(TInteger::EPositive); |
|
665 |
return sum; |
|
666 |
} |
|
667 |
||
668 |
RInteger TInteger::PositiveSubtractL(const TInteger &aA, const TInteger& aB) const |
|
669 |
{ |
|
670 |
RInteger diff = RInteger::NewEmptyL(CryptoMax(aA.Size(), aB.Size())); |
|
671 |
unsigned aSize = aA.WordCount(); |
|
672 |
aSize += aSize%2; |
|
673 |
unsigned bSize = aB.WordCount(); |
|
674 |
bSize += bSize%2; |
|
675 |
const word* const aReg = aA.Ptr(); |
|
676 |
const word* const bReg = aB.Ptr(); |
|
677 |
word* const diffReg = diff.Ptr(); |
|
678 |
||
679 |
if (aSize == bSize) |
|
680 |
{ |
|
681 |
if (Compare(aReg, bReg, aSize) >= 0) |
|
682 |
{ |
|
683 |
Subtract(diffReg, aReg, bReg, aSize); |
|
684 |
diff.SetSign(TInteger::EPositive); |
|
685 |
} |
|
686 |
else |
|
687 |
{ |
|
688 |
Subtract(diffReg, bReg, aReg, aSize); |
|
689 |
diff.SetSign(TInteger::ENegative); |
|
690 |
} |
|
691 |
} |
|
692 |
else if (aSize > bSize) |
|
693 |
{ |
|
694 |
word borrow = Subtract(diffReg, aReg, bReg, bSize); |
|
695 |
CopyWords(diffReg+bSize, aReg+bSize, aSize-bSize); |
|
696 |
borrow = Decrement(diffReg+bSize, aSize-bSize, borrow); |
|
697 |
assert(!borrow); |
|
698 |
diff.SetSign(TInteger::EPositive); |
|
699 |
} |
|
700 |
else |
|
701 |
{ |
|
702 |
word borrow = Subtract(diffReg, bReg, aReg, aSize); |
|
703 |
CopyWords(diffReg+aSize, bReg+aSize, bSize-aSize); |
|
704 |
borrow = Decrement(diffReg+aSize, bSize-aSize, borrow); |
|
705 |
assert(!borrow); |
|
706 |
diff.SetSign(TInteger::ENegative); |
|
707 |
} |
|
708 |
return diff; |
|
709 |
} |
|
710 |
||
711 |
RInteger TInteger::PositiveMultiplyL(const TInteger &aA, const TInteger &aB) const |
|
712 |
{ |
|
713 |
unsigned aSize = RoundupSize(aA.WordCount()); |
|
714 |
unsigned bSize = RoundupSize(aB.WordCount()); |
|
715 |
||
716 |
RInteger product = RInteger::NewEmptyL(aSize+bSize); |
|
717 |
CleanupClosePushL(product); |
|
718 |
||
719 |
RInteger workspace = RInteger::NewEmptyL(aSize + bSize); |
|
720 |
AsymmetricMultiply(product.Ptr(), workspace.Ptr(), aA.Ptr(), aSize, aB.Ptr(), |
|
721 |
bSize); |
|
722 |
workspace.Close(); |
|
723 |
CleanupStack::Pop(&product); |
|
724 |
return product; |
|
725 |
} |
|
726 |
||
727 |
TUint TInteger::Modulo(const TInteger& aDividend, TUint aDivisor) const |
|
728 |
{ |
|
729 |
assert(aDivisor); |
|
730 |
TUint i = aDividend.WordCount(); |
|
731 |
TUint remainder = 0; |
|
732 |
while(i--) |
|
733 |
{ |
|
734 |
remainder = TUint(MAKE_DWORD(aDividend.Ptr()[i], remainder) % aDivisor); |
|
735 |
} |
|
736 |
return remainder; |
|
737 |
} |
|
738 |
||
739 |
void TInteger::PositiveDivideL(RInteger &aRemainder, RInteger &aQuotient, |
|
740 |
const TInteger &aDividend, const TInteger &aDivisor) const |
|
741 |
{ |
|
742 |
unsigned dividendSize = aDividend.WordCount(); |
|
743 |
unsigned divisorSize = aDivisor.WordCount(); |
|
744 |
||
745 |
if (!divisorSize) |
|
746 |
{ |
|
747 |
User::Leave(KErrDivideByZero); |
|
748 |
} |
|
749 |
||
750 |
if (aDividend.UnsignedCompare(aDivisor) == -1) |
|
751 |
{ |
|
752 |
aRemainder.CreateNewL(aDividend.Size()); |
|
753 |
CleanupStack::PushL(aRemainder); |
|
754 |
aRemainder.CopyL(aDividend); //set remainder to a |
|
755 |
aRemainder.SetSign(TInteger::EPositive); |
|
756 |
aQuotient.CleanNewL(2); //Set quotient to zero |
|
757 |
CleanupStack::Pop(&aRemainder); |
|
758 |
return; |
|
759 |
} |
|
760 |
||
761 |
dividendSize += dividendSize%2; // round up to next even number |
|
762 |
divisorSize += divisorSize%2; |
|
763 |
||
764 |
aRemainder.CleanNewL(divisorSize); |
|
765 |
CleanupStack::PushL(aRemainder); |
|
766 |
aQuotient.CleanNewL(dividendSize-divisorSize+2); |
|
767 |
CleanupStack::PushL(aQuotient); |
|
768 |
||
769 |
RInteger T = RInteger::NewEmptyL(dividendSize+2*divisorSize+4); |
|
770 |
Divide(aRemainder.Ptr(), aQuotient.Ptr(), T.Ptr(), aDividend.Ptr(), |
|
771 |
dividendSize, aDivisor.Ptr(), divisorSize); |
|
772 |
T.Close(); |
|
773 |
CleanupStack::Pop(2, &aRemainder); //aQuotient, aRemainder |
|
774 |
} |
|
775 |
||
776 |
void TInteger::DivideL(RInteger& aRemainder, RInteger& aQuotient, |
|
777 |
const TInteger& aDividend, const TInteger& aDivisor) const |
|
778 |
{ |
|
779 |
PositiveDivideL(aRemainder, aQuotient, aDividend, aDivisor); |
|
780 |
||
781 |
if (aDividend.IsNegative()) |
|
782 |
{ |
|
783 |
aQuotient.Negate(); |
|
784 |
if (aRemainder.NotZero()) |
|
785 |
{ |
|
786 |
--aQuotient; |
|
787 |
assert(aRemainder.Size() <= aDivisor.Size()); |
|
788 |
Subtract(aRemainder.Ptr(), aDivisor.Ptr(), aRemainder.Ptr(), |
|
789 |
aRemainder.Size()); |
|
790 |
} |
|
791 |
} |
|
792 |
||
793 |
if (aDivisor.IsNegative()) |
|
794 |
aQuotient.Negate(); |
|
795 |
} |
|
796 |
||
797 |
void TInteger::RandomizeL(TUint aBits, TRandomAttribute aAttr) |
|
798 |
{ |
|
799 |
if(!aBits) |
|
800 |
{ |
|
801 |
return; |
|
802 |
} |
|
803 |
const TUint bytes = BitsToBytes(aBits); |
|
804 |
const TUint words = BitsToWords(aBits); |
|
805 |
CleanGrowL(words); |
|
806 |
TPtr8 buf((TUint8*)(Ptr()), bytes, WordsToBytes(Size())); |
|
807 |
TUint bitpos = aBits % BYTE_BITS; |
|
43
9b5a3a9fddf8
Revision: 201007
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
17
diff
changeset
|
808 |
TRAPD(err, GenerateRandomBytesL(buf)); |
9b5a3a9fddf8
Revision: 201007
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
17
diff
changeset
|
809 |
if((err != KErrNone) && (err != KErrNotSecure)) |
9b5a3a9fddf8
Revision: 201007
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
17
diff
changeset
|
810 |
User::Leave(err); |
17 | 811 |
//mask with 0 all bits above the num requested in the most significant byte |
812 |
if(bitpos) |
|
813 |
{ |
|
814 |
buf[bytes-1] = TUint8( buf[bytes-1] & ((1L << bitpos) - 1) ); |
|
815 |
} |
|
816 |
//set most significant (top) bit |
|
817 |
if(aAttr == ETopBitSet || aAttr == ETop2BitsSet) |
|
818 |
{ |
|
819 |
SetBit(aBits-1); //Set bit counts from 0 |
|
820 |
assert(BitCount() == aBits); |
|
821 |
assert(Bit(aBits-1)); |
|
822 |
} |
|
823 |
//set 2nd bit from top |
|
824 |
if(aAttr == ETop2BitsSet) |
|
825 |
{ |
|
826 |
SetBit(aBits-2); //Set bit counts from 0 |
|
827 |
assert(BitCount() == aBits); |
|
828 |
assert(Bit(aBits-1)); |
|
829 |
assert(Bit(aBits-2)); |
|
830 |
} |
|
831 |
} |
|
832 |
||
833 |
void TInteger::RandomizeL(const TInteger& aMin, const TInteger& aMax) |
|
834 |
{ |
|
835 |
assert(aMax > aMin); |
|
836 |
assert(aMin.NotNegative()); |
|
837 |
RInteger range = RInteger::NewL(aMax); |
|
838 |
CleanupStack::PushL(range); |
|
839 |
range -= aMin; |
|
840 |
const TUint bits = range.BitCount(); |
|
841 |
||
842 |
//if we find a number < range then aMin+range < aMax |
|
843 |
do |
|
844 |
{ |
|
845 |
RandomizeL(bits, EAllBitsRandom); |
|
846 |
} |
|
847 |
while(*this > range); |
|
848 |
||
849 |
*this += aMin; |
|
850 |
CleanupStack::PopAndDestroy(&range); |
|
851 |
} |
|
852 |
||
853 |
/* void PrimeRandomizeL(TUint aBits, TRandomAttribute aAttr) |
|
854 |
* and all primality related functions are implemented in primes.cpp */ |
|
855 |
||
856 |
void TInteger::CreateNewL(TUint aNewSize) |
|
857 |
{ |
|
858 |
//should only be called on construction |
|
859 |
assert(!iPtr); |
|
860 |
||
861 |
TUint newSize = RoundupSize(aNewSize); |
|
862 |
SetPtr((TUint*)User::AllocL(WordsToBytes(newSize))); |
|
863 |
SetSize(newSize); |
|
864 |
SetHeapBased(); |
|
865 |
} |
|
866 |
||
867 |
void TInteger::CleanNewL(TUint aNewSize) |
|
868 |
{ |
|
869 |
CreateNewL(aNewSize); |
|
870 |
Mem::FillZ(Ptr(), WordsToBytes(Size())); //clear integer storage |
|
871 |
} |
|
872 |
||
873 |
void TInteger::CleanGrowL(TUint aNewSize) |
|
874 |
{ |
|
875 |
assert(IsHeapBased()); |
|
876 |
TUint newSize = RoundupSize(aNewSize); |
|
877 |
TUint oldSize = Size(); |
|
878 |
if(newSize > oldSize) |
|
879 |
{ |
|
880 |
TUint* oldPtr = Ptr(); |
|
881 |
//1) allocate new memory and set ptr and size |
|
882 |
SetPtr((TUint*)User::AllocL(WordsToBytes(newSize))); |
|
883 |
SetSize(newSize); |
|
884 |
//2) copy old mem to new mem |
|
885 |
Mem::Copy(Ptr(), oldPtr, WordsToBytes(oldSize)); |
|
886 |
//3) zero all old memory |
|
887 |
Mem::FillZ(oldPtr, WordsToBytes(oldSize)); |
|
888 |
//4) give back old memory |
|
889 |
User::Free(oldPtr); |
|
890 |
//5) zero new memory from end of copy to end of growth |
|
891 |
Mem::FillZ(Ptr() + oldSize, WordsToBytes(newSize-oldSize)); |
|
892 |
} |
|
893 |
} |
|
894 |
||
895 |
void TInteger::CleanResizeL(TUint aNewSize) |
|
896 |
{ |
|
897 |
assert(IsHeapBased()); |
|
898 |
TUint newSize = RoundupSize(aNewSize); |
|
899 |
TUint oldSize = Size(); |
|
900 |
if(newSize > oldSize) |
|
901 |
{ |
|
902 |
CleanGrowL(aNewSize); |
|
903 |
} |
|
904 |
else if(newSize < oldSize) |
|
905 |
{ |
|
906 |
TUint* oldPtr = Ptr(); |
|
907 |
//1) zero memory above newsize |
|
908 |
Mem::FillZ(oldPtr+WordsToBytes(aNewSize),WordsToBytes(oldSize-newSize)); |
|
909 |
//2) ReAlloc cell. Since our newsize is less than oldsize, it is |
|
910 |
//guarenteed not to move. Thus this is just freeing part of our old |
|
911 |
//cell to the heap for other uses. |
|
912 |
SetPtr((TUint*)User::ReAllocL(Ptr(), WordsToBytes(newSize))); |
|
913 |
SetSize(newSize); |
|
914 |
} |
|
915 |
} |
|
916 |
||
917 |
EXPORT_C TInteger::TInteger() : iSize(0), iPtr(0) |
|
918 |
{ |
|
919 |
} |
|
920 |
||
921 |
void TInteger::Construct(const TDesC8& aValue) |
|
922 |
{ |
|
923 |
assert(Size() >= BytesToWords(aValue.Size())); |
|
924 |
if(aValue.Size() > 0) |
|
925 |
{ |
|
926 |
//People write numbers with the most significant digits first (big |
|
927 |
//endian) but we store our numbers in little endian. Hence we need to |
|
928 |
//reverse the string by bytes. |
|
929 |
||
930 |
TUint bytes = aValue.Size(); |
|
931 |
TUint8* i = (TUint8*)Ptr(); |
|
932 |
TUint8* j = (TUint8*)aValue.Ptr() + bytes; |
|
933 |
||
934 |
//Swap the endianess of the number itself |
|
935 |
// (msb) 01 02 03 04 05 06 (lsb) becomes -> |
|
936 |
// (lsb) 06 05 04 03 02 01 (msb) |
|
937 |
while( j != (TUint8*)aValue.Ptr() ) |
|
938 |
{ |
|
939 |
*i++ = *--j; |
|
940 |
} |
|
941 |
Mem::FillZ((TUint8*)Ptr() + bytes, WordsToBytes(Size()) - bytes); |
|
942 |
} |
|
943 |
else |
|
944 |
{ |
|
945 |
//if size is zero, we zero the whole register |
|
946 |
Mem::FillZ((TUint8*)Ptr(), WordsToBytes(Size())); |
|
947 |
} |
|
948 |
SetSign(EPositive); |
|
949 |
} |
|
950 |
||
951 |
void TInteger::Construct(const TInteger& aInteger) |
|
952 |
{ |
|
953 |
assert(Size() >= aInteger.Size()); |
|
954 |
CopyWords(Ptr(), aInteger.Ptr(), aInteger.Size()); |
|
955 |
if(Size() > aInteger.Size()) |
|
956 |
{ |
|
957 |
Mem::FillZ(Ptr()+aInteger.Size(), WordsToBytes(Size()-aInteger.Size())); |
|
958 |
} |
|
959 |
SetSign(aInteger.Sign()); |
|
960 |
} |
|
961 |
||
962 |
void TInteger::Construct(TInt aInteger) |
|
963 |
{ |
|
964 |
Construct((TUint)aInteger); |
|
965 |
if(aInteger < 0) |
|
966 |
{ |
|
967 |
SetSign(ENegative); |
|
968 |
Ptr()[0] = -aInteger; |
|
969 |
} |
|
970 |
} |
|
971 |
||
972 |
void TInteger::Construct(TUint aInteger) |
|
973 |
{ |
|
974 |
assert(Size() >= 2); |
|
975 |
SetSign(EPositive); |
|
976 |
Ptr()[0] = aInteger; |
|
977 |
Mem::FillZ(Ptr()+1, WordsToBytes(Size()-1)); |
|
978 |
} |
|
979 |
||
980 |
void TInteger::ConstructStack(TUint aWords, TUint aInteger) |
|
981 |
{ |
|
982 |
SetPtr((TUint*)(this)+2); |
|
983 |
//SetStackBased(); //Not strictly needed as stackbased is a 0 at bit 1 |
|
984 |
SetSize(aWords); |
|
985 |
assert(Size() >= 2); |
|
986 |
Ptr()[0] = aInteger; |
|
987 |
Mem::FillZ(&(Ptr()[1]), WordsToBytes(Size()-1)); |
|
988 |
} |
|
989 |
||
990 |
void TInteger::ConstructStack(TUint aWords, const TInteger& aInteger) |
|
991 |
{ |
|
992 |
SetPtr((TUint*)(this)+2); |
|
993 |
//SetStackBased(); //Not strictly needed as stackbased is a 0 at bit 1 |
|
994 |
SetSize(aWords); |
|
995 |
assert( Size() >= RoundupSize(aInteger.WordCount()) ); |
|
996 |
CopyWords(Ptr(), aInteger.Ptr(), aInteger.Size()); |
|
997 |
Mem::FillZ(Ptr()+aInteger.Size(), WordsToBytes(Size()-aInteger.Size())); |
|
998 |
} |
|
999 |
||
1000 |
// Methods are excluded from coverage due to the problem with BullsEye on ONB. |
|
1001 |
// Manually verified that these methods are functionally covered. |
|
1002 |
#ifdef _BullseyeCoverage |
|
1003 |
#pragma suppress_warnings on |
|
1004 |
#pragma BullseyeCoverage off |
|
1005 |
#pragma suppress_warnings off |
|
1006 |
#endif |
|
1007 |
||
1008 |
EXPORT_C TInteger& TInteger::operator/=(TInt aOperand) |
|
1009 |
{ |
|
1010 |
TStackInteger64 operand(aOperand); |
|
1011 |
*this /= operand; |
|
1012 |
return *this; |
|
1013 |
} |
|
1014 |
||
1015 |
EXPORT_C TInteger& TInteger::operator%=(TInt aOperand) |
|
1016 |
{ |
|
1017 |
TStackInteger64 operand(aOperand); |
|
1018 |
assert(operand.NotNegative()); |
|
1019 |
*this %= operand; |
|
1020 |
return *this; |
|
1021 |
} |
|
1022 |
||
1023 |
EXPORT_C TInt TInteger::ConvertToLongL(void) const |
|
1024 |
{ |
|
1025 |
if(!IsConvertableToLong()) |
|
1026 |
{ |
|
1027 |
User::Leave(KErrTotalLossOfPrecision); |
|
1028 |
} |
|
1029 |
return ConvertToLong(); |
|
1030 |
} |
|
1031 |
||
1032 |
TInt TInteger::ConvertToLong(void) const |
|
1033 |
{ |
|
1034 |
TUint value = ConvertToUnsignedLong(); |
|
1035 |
return Sign() == EPositive ? value : -(static_cast<TInt>(value)); |
|
1036 |
} |
|
1037 |
||
1038 |
TBool TInteger::IsConvertableToLong(void) const |
|
1039 |
{ |
|
1040 |
if(WordCount() > 1) |
|
1041 |
{ |
|
1042 |
return EFalse; |
|
1043 |
} |
|
1044 |
TUint value = (Ptr())[0]; |
|
1045 |
if(Sign() == EPositive) |
|
1046 |
{ |
|
1047 |
return static_cast<TInt>(value) >= 0; |
|
1048 |
} |
|
1049 |
else |
|
1050 |
{ |
|
1051 |
return -(static_cast<TInt>(value)) < 0; |
|
1052 |
} |
|
1053 |
} |
|
1054 |
||
1055 |
EXPORT_C RInteger TInteger::SquaredL() const |
|
1056 |
{ |
|
1057 |
//PositiveMultiplyL optimises for the squaring case already |
|
1058 |
//Any number squared is positive, no need for negative handling in TimesL |
|
1059 |
return PositiveMultiplyL(*this, *this); |
|
1060 |
} |
|
1061 |
||
1062 |
EXPORT_C RInteger TInteger::DividedByL(TUint aOperand) const |
|
1063 |
{ |
|
1064 |
TUint remainder; |
|
1065 |
RInteger quotient; |
|
1066 |
DivideL(remainder, quotient, *this, aOperand); |
|
1067 |
return quotient; |
|
1068 |
} |
|
1069 |
||
1070 |
EXPORT_C RInteger TInteger::ExponentiateL(const TInteger& aExponent) const |
|
1071 |
{ |
|
1072 |
//See HAC 14.85 |
|
1073 |
||
1074 |
// 1.1 Precomputation |
|
1075 |
// g1 <- g |
|
1076 |
// g2 <- g^2 |
|
1077 |
RInteger g2 = SquaredL(); |
|
1078 |
CleanupStack::PushL(g2); |
|
1079 |
RInteger g1 = RInteger::NewL(*this); |
|
1080 |
CleanupStack::PushL(g1); |
|
1081 |
TWindowSlider slider(aExponent); |
|
1082 |
||
1083 |
// 1.2 |
|
1084 |
// For i from 1 to (2^(k-1) -1) do g2i+1 <- g2i-1 * g2 |
|
1085 |
TUint count = (1 << (slider.WindowSize()-1)) - 1; //2^(k-1) -1 |
|
1086 |
RRArray<RInteger> powerArray(count+1); //+1 because we append g1 |
|
79
a5e05e7296f9
Revision: 201025
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
43
diff
changeset
|
1087 |
powerArray.AppendL(g1); |
17 | 1088 |
CleanupStack::Pop(); //g1 |
1089 |
CleanupClosePushL(powerArray); |
|
1090 |
for(TUint k=1; k <= count; k++) |
|
1091 |
{ |
|
1092 |
RInteger g2iplus1 = g2.TimesL(powerArray[k-1]); |
|
79
a5e05e7296f9
Revision: 201025
Dremov Kirill (Nokia-D-MSW/Tampere) <kirill.dremov@nokia.com>
parents:
43
diff
changeset
|
1093 |
powerArray.AppendL(g2iplus1); |
17 | 1094 |
} |
1095 |
||
1096 |
// 2 A <- 1, i <- t |
|
1097 |
RInteger A = RInteger::NewL(One()); |
|
1098 |
CleanupStack::PushL(A); |
|
1099 |
TInt i = aExponent.BitCount() - 1; |
|
1100 |
||
1101 |
// 3 While i>=0 do: |
|
1102 |
while( i>=0 ) |
|
1103 |
{ |
|
1104 |
// 3.1 If ei == 0 then A <- A^2 |
|
1105 |
if(!aExponent.Bit(i)) |
|
1106 |
{ |
|
1107 |
A *= A; |
|
1108 |
i--; |
|
1109 |
} |
|
1110 |
// 3.2 Find longest bitstring ei,ei-1,...,el s.t. i-l+1<=k and el==1 |
|
1111 |
// and do: |
|
1112 |
// A <- (A^2^(i-l+1)) * g[the index indicated by the bitstring value] |
|
1113 |
else |
|
1114 |
{ |
|
1115 |
slider.FindNextWindow(i); |
|
1116 |
assert(slider.Length() >= 1); |
|
1117 |
for(TUint j=0; j<slider.Length(); j++) |
|
1118 |
{ |
|
1119 |
A *= A; |
|
1120 |
} |
|
1121 |
A *= powerArray[slider.Value()>>1]; |
|
1122 |
i -= slider.Length(); |
|
1123 |
} |
|
1124 |
} |
|
1125 |
CleanupStack::Pop(&A); |
|
1126 |
CleanupStack::PopAndDestroy(2, &g2); //powerArray, g2 |
|
1127 |
return A; |
|
1128 |
} |
|
1129 |
||
1130 |
void TInteger::DivideL(TUint& aRemainder, RInteger& aQuotient, |
|
1131 |
const TInteger& aDividend, TUint aDivisor) const |
|
1132 |
{ |
|
1133 |
if(!aDivisor) |
|
1134 |
{ |
|
1135 |
User::Leave(KErrDivideByZero); |
|
1136 |
} |
|
1137 |
||
1138 |
TUint i = aDividend.WordCount(); |
|
1139 |
aQuotient.CleanNewL(RoundupSize(i)); |
|
1140 |
PositiveDivide(aRemainder, aQuotient, aDividend, aDivisor); |
|
1141 |
||
1142 |
if(aDividend.NotNegative()) |
|
1143 |
{ |
|
1144 |
aQuotient.SetSign(TInteger::EPositive); |
|
1145 |
} |
|
1146 |
else |
|
1147 |
{ |
|
1148 |
aQuotient.SetSign(TInteger::ENegative); |
|
1149 |
if(aRemainder) |
|
1150 |
{ |
|
1151 |
--aQuotient; |
|
1152 |
aRemainder = aDivisor = aRemainder; |
|
1153 |
} |
|
1154 |
} |
|
1155 |
} |
|
1156 |
||
1157 |
void TInteger::PositiveDivide(TUint& aRemainder, TInteger& aQuotient, |
|
1158 |
const TInteger& aDividend, TUint aDivisor) const |
|
1159 |
{ |
|
1160 |
assert(aDivisor); |
|
1161 |
||
1162 |
TUint i = aDividend.WordCount(); |
|
1163 |
assert(aQuotient.Size() >= RoundupSize(i)); |
|
1164 |
assert(aQuotient.Sign() == TInteger::EPositive); |
|
1165 |
aRemainder = 0; |
|
1166 |
while(i--) |
|
1167 |
{ |
|
1168 |
aQuotient.Ptr()[i] = |
|
1169 |
TUint(MAKE_DWORD(aDividend.Ptr()[i], aRemainder) / aDivisor); |
|
1170 |
aRemainder = |
|
1171 |
TUint(MAKE_DWORD(aDividend.Ptr()[i], aRemainder) % aDivisor); |
|
1172 |
} |
|
1173 |
} |