17
|
1 |
/*
|
|
2 |
* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
3 |
* All rights reserved.
|
|
4 |
* This component and the accompanying materials are made available
|
|
5 |
* under the terms of the License "Eclipse Public License v1.0"
|
|
6 |
* which accompanies this distribution, and is available
|
|
7 |
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
8 |
*
|
|
9 |
* Initial Contributors:
|
|
10 |
* Nokia Corporation - initial contribution.
|
|
11 |
*
|
|
12 |
* Contributors:
|
|
13 |
*
|
|
14 |
* Description:
|
|
15 |
*
|
|
16 |
*/
|
|
17 |
|
|
18 |
|
|
19 |
#include <bigint.h>
|
|
20 |
#include <e32std.h>
|
|
21 |
#include <securityerr.h>
|
|
22 |
#include "words.h"
|
|
23 |
#include "primes.h"
|
|
24 |
#include "algorithms.h"
|
|
25 |
#include "mont.h"
|
|
26 |
#include "stackinteger.h"
|
|
27 |
|
|
28 |
static TBool IsSmallPrime(TUint aK);
|
|
29 |
|
|
30 |
static inline void EliminateComposites(TUint* aS, TUint aPrime, TUint aJ,
|
|
31 |
TUint aMaxIndex)
|
|
32 |
{
|
|
33 |
for(; aJ<aMaxIndex; aJ+=aPrime)
|
|
34 |
ArraySetBit(aS, aJ);
|
|
35 |
}
|
|
36 |
|
|
37 |
static inline TInt FindLeastSignificantZero(TUint aX)
|
|
38 |
{
|
|
39 |
aX = ~aX;
|
|
40 |
int i = 0;
|
|
41 |
if( aX << 16 == 0 ) aX>>=16, i+=16;
|
|
42 |
if( aX << 24 == 0 ) aX>>=8, i+=8;
|
|
43 |
if( aX << 28 == 0 ) aX>>=4, i+=4;
|
|
44 |
if( aX << 30 == 0 ) aX>>=2, i+=2;
|
|
45 |
if( aX << 31 == 0 ) ++i;
|
|
46 |
return i;
|
|
47 |
}
|
|
48 |
|
|
49 |
static inline TInt FindFirstPrimeCandidate(TUint* aS, TUint aBitLength)
|
|
50 |
{
|
|
51 |
assert(aBitLength % WORD_BITS == 0);
|
|
52 |
TUint i=0;
|
|
53 |
//The empty statement at the end of this is stop warnings in all compilers
|
|
54 |
for(; aS[i] == KMaxTUint && i<BitsToWords(aBitLength); i++) {;}
|
|
55 |
|
|
56 |
if(i == BitsToWords(aBitLength))
|
|
57 |
return -1;
|
|
58 |
else
|
|
59 |
{
|
|
60 |
assert( FindLeastSignificantZero((TUint)(aS[i])) >= 0 );
|
|
61 |
assert( FindLeastSignificantZero((TUint)(aS[i])) <= 31 );
|
|
62 |
return i*WORD_BITS + FindLeastSignificantZero((TUint32)(aS[i]));
|
|
63 |
}
|
|
64 |
}
|
|
65 |
|
|
66 |
static inline TUint FindSmallestIndex(TUint aPrime, TUint aRemainder)
|
|
67 |
{
|
|
68 |
TUint& j = aRemainder;
|
|
69 |
if(j)
|
|
70 |
{
|
|
71 |
j = aPrime - aRemainder;
|
|
72 |
if( j & 0x1L )
|
|
73 |
{
|
|
74 |
//if j is odd then this + j is even so we actually want
|
|
75 |
//the next number for which (this + j % p == 0) st this + j is odd
|
|
76 |
//that is: this + j + p == 0 mod p
|
|
77 |
j += aPrime;
|
|
78 |
}
|
|
79 |
//Turn j into an index for a bit array representing odd numbers only
|
|
80 |
j>>=1;
|
|
81 |
}
|
|
82 |
return j;
|
|
83 |
}
|
|
84 |
|
|
85 |
static inline TUint RabinMillerRounds(TUint aBits)
|
|
86 |
{
|
|
87 |
//See HAC Table 4.4
|
|
88 |
if(aBits > 1300)
|
|
89 |
return 2;
|
|
90 |
if (aBits > 850)
|
|
91 |
return 3;
|
|
92 |
if (aBits > 650)
|
|
93 |
return 4;
|
|
94 |
if (aBits > 550)
|
|
95 |
return 5;
|
|
96 |
if (aBits > 450)
|
|
97 |
return 6;
|
|
98 |
if (aBits > 400)
|
|
99 |
return 7;
|
|
100 |
if (aBits > 350)
|
|
101 |
return 8;
|
|
102 |
if (aBits > 300)
|
|
103 |
return 9;
|
|
104 |
if (aBits > 250)
|
|
105 |
return 12;
|
|
106 |
if (aBits > 200)
|
|
107 |
return 15;
|
|
108 |
if (aBits > 150)
|
|
109 |
return 18;
|
|
110 |
if (aBits > 100)
|
|
111 |
return 27;
|
|
112 |
//All of the above are optimisations on the worst case. The worst case
|
|
113 |
//chance of odd composite integers being declared prime by Rabin-Miller is
|
|
114 |
//(1/4)^t where t is the number of rounds. Thus, t = 40 means that the
|
|
115 |
//chance of declaring a composite integer prime is less than 2^(-80). See
|
|
116 |
//HAC Fact 4.25 and most of chapter 4 for more details.
|
|
117 |
return 40;
|
|
118 |
}
|
|
119 |
|
|
120 |
static TBool HasSmallDivisorL(const TInteger& aPossiblePrime)
|
|
121 |
{
|
|
122 |
assert(aPossiblePrime.IsOdd());
|
|
123 |
//Start checking at the first odd prime, whether it is even should have
|
|
124 |
//already been checked
|
|
125 |
for( TUint i=1; i < KPrimeTableSize; i++ )
|
|
126 |
{
|
|
127 |
if( aPossiblePrime.ModuloL(KPrimeTable[i]) == 0 )
|
|
128 |
{
|
|
129 |
return ETrue;
|
|
130 |
}
|
|
131 |
}
|
|
132 |
return EFalse;
|
|
133 |
}
|
|
134 |
|
|
135 |
static TBool RabinMillerIterationL(const CMontgomeryStructure& aMont,
|
|
136 |
const TInteger& aProbablePrime, const TInteger& aBase)
|
|
137 |
{
|
|
138 |
//see HAC 4.24
|
|
139 |
const TInteger& n = aProbablePrime;
|
|
140 |
assert(n > KLastSmallPrimeSquared);
|
|
141 |
assert(n.IsOdd());
|
|
142 |
assert(aBase > TInteger::One());
|
|
143 |
|
|
144 |
RInteger nminus1 = n.MinusL(TInteger::One());
|
|
145 |
CleanupStack::PushL(nminus1);
|
|
146 |
assert(aBase < nminus1);
|
|
147 |
|
|
148 |
// 1) find (s | 2^s*r == n-1) where r is odd
|
|
149 |
// we want the largest power of 2 that divides n-1
|
|
150 |
TUint s=0;
|
|
151 |
for(;;s++)
|
|
152 |
{
|
|
153 |
if(nminus1.Bit(s))
|
|
154 |
{
|
|
155 |
break;
|
|
156 |
}
|
|
157 |
}
|
|
158 |
// (r = (n-1) / 2^s) which is equiv to (n-1 >>= s)
|
|
159 |
RInteger r = RInteger::NewL(nminus1);
|
|
160 |
CleanupStack::PushL(r);
|
|
161 |
r >>= s;
|
|
162 |
|
|
163 |
//At no point do we own y, aMont owns it
|
|
164 |
const TInteger* y = &(aMont.ExponentiateL(aBase, r));
|
|
165 |
|
|
166 |
TBool probablePrime = EFalse;
|
|
167 |
|
|
168 |
TUint j=1;
|
|
169 |
if( *y == TInteger::One() || *y == nminus1 )
|
|
170 |
{
|
|
171 |
probablePrime = ETrue;
|
|
172 |
}
|
|
173 |
else
|
|
174 |
{
|
|
175 |
for(j=1; j<s; j++)
|
|
176 |
{
|
|
177 |
y = &(aMont.SquareL(*y));
|
|
178 |
if(*y == nminus1)
|
|
179 |
{
|
|
180 |
probablePrime = ETrue;
|
|
181 |
break;
|
|
182 |
}
|
|
183 |
}
|
|
184 |
}
|
|
185 |
CleanupStack::PopAndDestroy(&r);
|
|
186 |
CleanupStack::PopAndDestroy(&nminus1);//y,r,nminus1
|
|
187 |
return probablePrime;
|
|
188 |
}
|
|
189 |
|
|
190 |
static TBool RabinMillerTestL(const CMontgomeryStructure& aMont,
|
|
191 |
const TInteger& aProbablePrime, TUint aRounds)
|
|
192 |
{
|
|
193 |
const TInteger& n = aProbablePrime;
|
|
194 |
assert(n > KLastSmallPrimeSquared);
|
|
195 |
|
|
196 |
RInteger nminus2 = n.MinusL(TInteger::Two());
|
|
197 |
CleanupStack::PushL(nminus2);
|
|
198 |
|
|
199 |
for(TUint i=0; i<aRounds; i++)
|
|
200 |
{
|
|
201 |
RInteger base = RInteger::NewRandomL(TInteger::Two(), nminus2);
|
|
202 |
CleanupStack::PushL(base);
|
|
203 |
if(!RabinMillerIterationL(aMont, n, base))
|
|
204 |
{
|
|
205 |
CleanupStack::PopAndDestroy(2, &nminus2);//base, nminus2
|
|
206 |
return EFalse;
|
|
207 |
}
|
|
208 |
CleanupStack::PopAndDestroy(&base);
|
|
209 |
}
|
|
210 |
CleanupStack::PopAndDestroy(&nminus2);
|
|
211 |
return ETrue;
|
|
212 |
}
|
|
213 |
|
|
214 |
static TBool IsStrongProbablePrimeL(const TInteger& aPrime)
|
|
215 |
{
|
|
216 |
CMontgomeryStructure* mont = CMontgomeryStructure::NewLC(aPrime);
|
|
217 |
//This should be using short circuit evaluation
|
|
218 |
TBool probablePrime = RabinMillerIterationL(*mont, aPrime, TInteger::Two())
|
|
219 |
&& RabinMillerTestL(*mont, aPrime,RabinMillerRounds(aPrime.BitCount()));
|
|
220 |
CleanupStack::PopAndDestroy(mont);
|
|
221 |
return probablePrime;
|
|
222 |
}
|
|
223 |
|
|
224 |
/* In the _vast_ majority of cases this simply checks that your chosen random
|
|
225 |
* number is >= KLastSmallPrimeSquared and return EFalse and lets the normal
|
|
226 |
* prime generation routines handle the situation. In the case where it is
|
|
227 |
* smaller, it generates a provable prime and returns ETrue. The algorithm for
|
|
228 |
* finding a provable prime < KLastPrimeSquared is not the most efficient in the
|
|
229 |
* world, but two points come to mind
|
|
230 |
* 1) The two if statements hardly _ever_ evaluate to ETrue in real life.
|
|
231 |
* 2) Even when it is, the distribution of primes < KLastPrimeSquared is pretty
|
|
232 |
* dense, so you aren't going to have check many.
|
|
233 |
* This function is essentially here for two reasons:
|
|
234 |
* 1) Ensures that it is possible to generate primes < KLastPrimeSquared (the
|
|
235 |
* test code does this)
|
|
236 |
* 2) Ensures that if you request a prime of a large bit size that there is an
|
|
237 |
* even probability distribution across all integers < 2^aBits
|
|
238 |
*/
|
|
239 |
TBool TInteger::SmallPrimeRandomizeL(void)
|
|
240 |
{
|
|
241 |
TBool foundPrime = EFalse;
|
|
242 |
//If the random number we've chosen is less than KLastSmallPrime,
|
|
243 |
//testing for primality is easy.
|
|
244 |
if(*this <= KLastSmallPrime)
|
|
245 |
{
|
|
246 |
//If Zero or One, or two, next prime number is two
|
|
247 |
if(IsZero() || *this == One() || *this == Two())
|
|
248 |
{
|
|
249 |
CopyL(TInteger::Two());
|
|
250 |
foundPrime = ETrue;
|
|
251 |
}
|
|
252 |
else
|
|
253 |
{
|
|
254 |
//Make sure any number we bother testing is at least odd
|
|
255 |
SetBit(0);
|
|
256 |
//Binary search the small primes.
|
|
257 |
while(!IsSmallPrime(ConvertToUnsignedLong()))
|
|
258 |
{
|
|
259 |
//If not prime, add two and try the next odd number.
|
|
260 |
|
|
261 |
//will never carry as the minimum size of an RInteger is 2
|
|
262 |
//words. Much bigger than KLastSmallPrime on 32bit
|
|
263 |
//architectures.
|
|
264 |
IncrementNoCarry(Ptr(), Size(), 2);
|
|
265 |
}
|
|
266 |
assert(IsSmallPrime(ConvertToUnsignedLong()));
|
|
267 |
foundPrime = ETrue;
|
|
268 |
}
|
|
269 |
}
|
|
270 |
else if(*this <= KLastSmallPrimeSquared)
|
|
271 |
{
|
|
272 |
//Make sure any number we bother testing is at least odd
|
|
273 |
SetBit(0);
|
|
274 |
|
|
275 |
while(HasSmallDivisorL(*this) && *this <= KLastSmallPrimeSquared)
|
|
276 |
{
|
|
277 |
//If not prime, add two and try the next odd number.
|
|
278 |
|
|
279 |
//will never carry as the minimum size of an RInteger is 2
|
|
280 |
//words. Much bigger than KLastSmallPrime on 32bit
|
|
281 |
//architectures.
|
|
282 |
IncrementNoCarry(Ptr(), Size(), 2);
|
|
283 |
}
|
|
284 |
//If we exited while loop because it had no small divisor then it is
|
|
285 |
//prime. Otherwise, we've exceeded the limit of what we can provably
|
|
286 |
//generate. Therefore the normal prime gen routines will be run on it
|
|
287 |
//now.
|
|
288 |
if(*this < KLastSmallPrimeSquared)
|
|
289 |
{
|
|
290 |
foundPrime = ETrue;
|
|
291 |
}
|
|
292 |
}
|
|
293 |
//This doesn't mean there is no such prime, simply means that the number
|
|
294 |
//wasn't less than KSmallPrimeSquared and needs to be handled by the normal
|
|
295 |
//prime generation routines.
|
|
296 |
return foundPrime;
|
|
297 |
}
|
|
298 |
|
|
299 |
void TInteger::PrimeRandomizeL(TUint aBits, TRandomAttribute aAttr)
|
|
300 |
{
|
|
301 |
assert(aBits > 1);
|
|
302 |
|
|
303 |
//"this" is "empty" currently. Consists of Size() words of 0's. This is just
|
|
304 |
//checking that sign flag is positive as we don't set it later.
|
|
305 |
assert(NotNegative());
|
|
306 |
|
|
307 |
//Flag for the whole function saying if we've found a prime
|
|
308 |
TBool foundProbablePrime = EFalse;
|
|
309 |
|
|
310 |
//Find 2^aBits + 1 -- any prime we find must be less than this.
|
|
311 |
RInteger max = RInteger::NewEmptyL(BitsToWords(aBits)+1);
|
|
312 |
CleanupStack::PushL(max);
|
|
313 |
max.SetBit(aBits);
|
|
314 |
assert(max.BitCount()-1 == aBits);
|
|
315 |
|
|
316 |
// aBits | approx number of odd numbers you must try to have a 50%
|
|
317 |
// chance of finding a prime
|
|
318 |
//---------------------------------------------------------
|
|
319 |
// 512 | 122
|
|
320 |
// 1024 | 245
|
|
321 |
// 2048 | 1023
|
|
322 |
//Therefore if we are generating larger than 1024 bit numbers we'll use a
|
|
323 |
//bigger bit array to have a better chance of avoiding re-generating it.
|
|
324 |
TUint sLength = aBits > 1024 ? 1024 : 512;
|
|
325 |
RInteger S = RInteger::NewEmptyL(BitsToWords(sLength));
|
|
326 |
CleanupStack::PushL(S);
|
|
327 |
|
|
328 |
while(!foundProbablePrime)
|
|
329 |
{
|
|
330 |
//Randomly choose aBits
|
|
331 |
RandomizeL(aBits, aAttr);
|
|
332 |
|
|
333 |
//If the random number chosen is less than KSmallPrimeSquared, we have a
|
|
334 |
//special set of routines.
|
|
335 |
if(SmallPrimeRandomizeL())
|
|
336 |
{
|
|
337 |
foundProbablePrime = ETrue;
|
|
338 |
}
|
|
339 |
else
|
|
340 |
{
|
|
341 |
//if it was <= KLastSmallPrimeSquared then it would have been
|
|
342 |
//handled by SmallPrimeRandomizeL()
|
|
343 |
assert(*this > KLastSmallPrimeSquared);
|
|
344 |
|
|
345 |
//Make sure any number we bother testing is at least odd
|
|
346 |
SetBit(0);
|
|
347 |
|
|
348 |
//Ensure that this + 2*sLength < max
|
|
349 |
RInteger temp = max.MinusL(*this);
|
|
350 |
CleanupStack::PushL(temp);
|
|
351 |
++temp;
|
|
352 |
temp >>=1;
|
|
353 |
if(temp < sLength)
|
|
354 |
{
|
|
355 |
//if this + 2*sLength >= max then we use a smaller sLength to
|
|
356 |
//ensure we don't find a number that is outside of our bounds
|
|
357 |
//(and bigger than our allocated memory for this)
|
|
358 |
|
|
359 |
//temp must be less than KMaxTUint as sLength is a TUint
|
|
360 |
sLength = temp.ConvertToUnsignedLong();
|
|
361 |
}
|
|
362 |
CleanupStack::PopAndDestroy(&temp);
|
|
363 |
|
|
364 |
//Start at 1 as no point in checking against 2 (all odd numbers)
|
|
365 |
for(TUint i=1; i<KPrimeTableSize; i++)
|
|
366 |
{
|
|
367 |
//no need to call ModuloL as we know KPrimeTable[i] is not 0
|
|
368 |
TUint remainder = Modulo(*this, KPrimeTable[i]);
|
|
369 |
TUint index = FindSmallestIndex(KPrimeTable[i], remainder);
|
|
370 |
EliminateComposites(S.Ptr(), KPrimeTable[i], index, sLength);
|
|
371 |
}
|
|
372 |
TInt j = FindFirstPrimeCandidate(S.Ptr(), sLength);
|
|
373 |
TInt prev = 0;
|
|
374 |
for(; j>=0; j=FindFirstPrimeCandidate(S.Ptr(), sLength))
|
|
375 |
{
|
|
376 |
ArraySetBit(S.Ptr(), j);
|
|
377 |
|
|
378 |
//should never carry as we earlier made sure that 2*j + this < max
|
|
379 |
//where max is 1 bit more than we asked for.
|
|
380 |
IncrementNoCarry(Ptr(), Size(), 2*(j-prev));
|
|
381 |
|
|
382 |
assert(*this < max);
|
|
383 |
assert(!HasSmallDivisorL(*this));
|
|
384 |
|
|
385 |
prev = j;
|
|
386 |
|
|
387 |
if( IsStrongProbablePrimeL(*this) )
|
|
388 |
{
|
|
389 |
foundProbablePrime = ETrue;
|
|
390 |
break;
|
|
391 |
}
|
|
392 |
}
|
|
393 |
//This clears the memory
|
|
394 |
S.CopyL(0, EFalse);
|
|
395 |
}
|
|
396 |
}
|
|
397 |
CleanupStack::PopAndDestroy(2, &max);
|
|
398 |
}
|
|
399 |
|
|
400 |
EXPORT_C TBool TInteger::IsPrimeL(void) const
|
|
401 |
{
|
|
402 |
if( NotPositive() )
|
|
403 |
{
|
|
404 |
return EFalse;
|
|
405 |
}
|
|
406 |
else if( IsEven() )
|
|
407 |
{
|
|
408 |
return *this == Two();
|
|
409 |
}
|
|
410 |
else if( *this <= KLastSmallPrime )
|
|
411 |
{
|
|
412 |
assert(KLastSmallPrime < KMaxTUint);
|
|
413 |
return IsSmallPrime(this->ConvertToUnsignedLong());
|
|
414 |
}
|
|
415 |
else if( *this <= KLastSmallPrimeSquared )
|
|
416 |
{
|
|
417 |
return !HasSmallDivisorL(*this);
|
|
418 |
}
|
|
419 |
else
|
|
420 |
{
|
|
421 |
return !HasSmallDivisorL(*this) && IsStrongProbablePrimeL(*this);
|
|
422 |
}
|
|
423 |
}
|
|
424 |
|
|
425 |
// Method is excluded from coverage due to the problem with BullsEye on ONB.
|
|
426 |
// Manually verified that this method is functionally covered.
|
|
427 |
#ifdef _BullseyeCoverage
|
|
428 |
#pragma suppress_warnings on
|
|
429 |
#pragma BullseyeCoverage off
|
|
430 |
#pragma suppress_warnings off
|
|
431 |
#endif
|
|
432 |
|
|
433 |
static TBool IsSmallPrime(TUint aK)
|
|
434 |
{
|
|
435 |
//This is just a binary search of our small prime table.
|
|
436 |
TUint l = 0;
|
|
437 |
TUint u = KPrimeTableSize;
|
|
438 |
while( u > l )
|
|
439 |
{
|
|
440 |
TUint m = (l+u)>>1;
|
|
441 |
TUint p = KPrimeTable[m];
|
|
442 |
if(aK < p)
|
|
443 |
u = m;
|
|
444 |
else if (aK > p)
|
|
445 |
l = m + 1;
|
|
446 |
else
|
|
447 |
return ETrue;
|
|
448 |
}
|
|
449 |
return EFalse;
|
|
450 |
}
|