17
|
1 |
/*
|
|
2 |
* Copyright (c) 2008-2009 Nokia Corporation and/or its subsidiary(-ies).
|
|
3 |
* All rights reserved.
|
|
4 |
* This component and the accompanying materials are made available
|
|
5 |
* under the terms of the License "Eclipse Public License v1.0"
|
|
6 |
* which accompanies this distribution, and is available
|
|
7 |
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
|
|
8 |
*
|
|
9 |
* Initial Contributors:
|
|
10 |
* Nokia Corporation - initial contribution.
|
|
11 |
*
|
|
12 |
* Contributors:
|
|
13 |
*
|
|
14 |
* Description:
|
|
15 |
* Software Mac Implementation
|
|
16 |
* plugin-dll headers
|
|
17 |
*
|
|
18 |
*/
|
|
19 |
|
|
20 |
|
|
21 |
/**
|
|
22 |
@file
|
|
23 |
*/
|
|
24 |
#include "cmacimpl.h"
|
|
25 |
#include "pluginconfig.h"
|
|
26 |
#include <cryptospi/cryptomacapi.h>
|
|
27 |
|
|
28 |
|
|
29 |
using namespace SoftwareCrypto;
|
|
30 |
using namespace CryptoSpi;
|
|
31 |
|
|
32 |
/**
|
|
33 |
* Constants used to generate Key1, Key2 and Key3
|
|
34 |
*/
|
|
35 |
const TUint8 K1Constant[] = {0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01};
|
|
36 |
const TUint8 K2Constant[] = {0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02};
|
|
37 |
const TUint8 K3Constant[] = {0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03};
|
|
38 |
|
|
39 |
const TInt KAesXcbcMac96Size = 12;
|
|
40 |
|
|
41 |
|
|
42 |
CCMacImpl* CCMacImpl::NewL(const CKey& aKey, CSymmetricCipher* aSymmetricCipher, TInt32 aAlgorithmUid)
|
|
43 |
{
|
|
44 |
CCMacImpl* self = CCMacImpl::NewLC(aKey, aSymmetricCipher, aAlgorithmUid);
|
|
45 |
CleanupStack::Pop(self);
|
|
46 |
return self;
|
|
47 |
}
|
|
48 |
|
|
49 |
CCMacImpl* CCMacImpl::NewLC(const CKey& aKey, CSymmetricCipher* aSymmetricCipher, TInt32 aAlgorithmUid)
|
|
50 |
{
|
|
51 |
CCMacImpl* self = NULL;
|
|
52 |
TRAPD(err, self = new (ELeave) CCMacImpl(aSymmetricCipher));
|
|
53 |
if(err!=KErrNone)
|
|
54 |
{
|
|
55 |
delete aSymmetricCipher;
|
|
56 |
User::Leave(err);
|
|
57 |
}
|
|
58 |
CleanupStack::PushL(self);
|
|
59 |
self->ConstructL(aKey, aAlgorithmUid);
|
|
60 |
return self;
|
|
61 |
}
|
|
62 |
|
|
63 |
CKey* CCMacImpl::Create128bitKeyL(const CKey& aKey)
|
|
64 |
{
|
|
65 |
TBuf8<KMacBlockSize> keybuffer;
|
|
66 |
CryptoSpi::CKey* key = NULL;
|
|
67 |
|
|
68 |
const TDesC8& keyContent=aKey.GetTDesC8L(CryptoSpi::KSymmetricKeyParameterUid);
|
|
69 |
|
|
70 |
if( (TUint32)keyContent.Size() > KMacBlockSize)
|
|
71 |
{
|
|
72 |
// Create key
|
|
73 |
CryptoSpi::CCryptoParams* keyParams = CryptoSpi::CCryptoParams::NewLC();
|
|
74 |
keybuffer.SetLength(KMacBlockSize);
|
|
75 |
keybuffer.FillZ();
|
|
76 |
// 'keybuffer' is the key with 128 zero bits.
|
|
77 |
keyParams->AddL(keybuffer, CryptoSpi::KSymmetricKeyParameterUid);
|
|
78 |
key=CryptoSpi::CKey::NewLC(aKey.KeyProperty(),*keyParams);
|
|
79 |
// evaluate final key data.
|
|
80 |
SetKeyL(*key);
|
|
81 |
CleanupStack::PopAndDestroy(2, keyParams);
|
|
82 |
keybuffer.Copy(FinalL(keyContent));
|
|
83 |
// 'keybuffer' contains the final key data.
|
|
84 |
}
|
|
85 |
else
|
|
86 |
{
|
|
87 |
keybuffer.Copy(keyContent);
|
|
88 |
TUint i;
|
|
89 |
for (i=keybuffer.Size();i<KMacBlockSize;++i)
|
|
90 |
{
|
|
91 |
keybuffer.Append(0);
|
|
92 |
}
|
|
93 |
// 'keybuffer' contains the final key data.
|
|
94 |
}
|
|
95 |
|
|
96 |
// create a new CKey instance and assign it to iKey using 'keybuffer'.
|
|
97 |
CryptoSpi::CCryptoParams* keyParams = CryptoSpi::CCryptoParams::NewLC();
|
|
98 |
keyParams->AddL(keybuffer, CryptoSpi::KSymmetricKeyParameterUid);
|
|
99 |
key=CryptoSpi::CKey::NewL(aKey.KeyProperty(),*keyParams);
|
|
100 |
CleanupStack::PopAndDestroy(keyParams);
|
|
101 |
|
|
102 |
// 'key' will contain the final CKey instance.
|
|
103 |
return key;
|
|
104 |
}
|
|
105 |
|
|
106 |
void CCMacImpl::SetKeyL(const CKey& aKey)
|
|
107 |
{
|
|
108 |
const TPtrC8 KeyConstant1(K1Constant, KMacBlockSize);
|
|
109 |
const TPtrC8 KeyConstant2(K2Constant, KMacBlockSize);
|
|
110 |
const TPtrC8 KeyConstant3(K3Constant, KMacBlockSize);
|
|
111 |
|
|
112 |
// Initialize the cipher class to encrypt Keyconstants to generate additional keys.
|
|
113 |
if (iImplementationUid == CryptoSpi::KAlgorithmCipherAesXcbcPrf128)
|
|
114 |
{
|
|
115 |
// RFC 4434: keys that were not equal in length to 128 bits will no longer be
|
|
116 |
// rejected but instead will be made 128 bits for AES-XCBC-PRF-128 Algorithm only.
|
|
117 |
CryptoSpi::CKey* key = Create128bitKeyL(aKey);
|
|
118 |
CleanupStack::PushL(key);
|
|
119 |
iCipherImpl->SetKeyL(*key);
|
|
120 |
CleanupStack::PopAndDestroy(key);
|
|
121 |
}
|
|
122 |
else
|
|
123 |
{
|
|
124 |
iCipherImpl->SetKeyL(aKey);
|
|
125 |
}
|
|
126 |
iCipherImpl->SetCryptoModeL(CryptoSpi::KCryptoModeEncryptUid);
|
|
127 |
iCipherImpl->SetOperationModeL(CryptoSpi::KOperationModeNoneUid);
|
|
128 |
|
|
129 |
// cipher class expects the output buffer to be empty.
|
|
130 |
iKey1.Zero();
|
|
131 |
iKey2.Zero();
|
|
132 |
iKey3.Zero();
|
|
133 |
|
|
134 |
// aKey is used to generate Key1, Key2 and Key3.
|
|
135 |
// Where Key1 = encrypt KeyConstant1 with aKey
|
|
136 |
// Where Key2 = encrypt KeyConstant2 with aKey
|
|
137 |
// Where Key3 = encrypt KeyConstant3 with aKey
|
|
138 |
|
|
139 |
// Key1 is used to encrypt the data whereas
|
|
140 |
// Key2 and Key3 is used to XOR with the last
|
|
141 |
// block.
|
|
142 |
iCipherImpl->ProcessFinalL(KeyConstant1, iKey1);
|
|
143 |
iCipherImpl->ProcessFinalL(KeyConstant2, iKey2);
|
|
144 |
iCipherImpl->ProcessFinalL(KeyConstant3, iKey3);
|
|
145 |
|
|
146 |
// Create CKey instance with key1
|
|
147 |
CCryptoParams* keyParam =CCryptoParams::NewLC();
|
|
148 |
keyParam->AddL(iKey1, CryptoSpi::KSymmetricKeyParameterUid);
|
|
149 |
|
|
150 |
delete iKey;
|
|
151 |
iKey = NULL;
|
|
152 |
iKey=CKey::NewL(aKey.KeyProperty(), *keyParam);
|
|
153 |
// Initialize the cipher class for MAC calculation.
|
|
154 |
iCipherImpl->SetKeyL(*iKey);
|
|
155 |
iCipherImpl->SetOperationModeL(CryptoSpi::KOperationModeCBCUid);
|
|
156 |
Mem::FillZ(iE, sizeof(iE));
|
|
157 |
iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize));
|
|
158 |
|
|
159 |
CleanupStack::PopAndDestroy(keyParam);
|
|
160 |
}
|
|
161 |
|
|
162 |
CCMacImpl::~CCMacImpl()
|
|
163 |
{
|
|
164 |
delete iKey;
|
|
165 |
delete iCipherImpl;
|
|
166 |
}
|
|
167 |
|
|
168 |
CCMacImpl::CCMacImpl(const CCMacImpl& aCCMacImpl)
|
|
169 |
{
|
|
170 |
iImplementationUid = aCCMacImpl.iImplementationUid;
|
|
171 |
iKey1.Copy(aCCMacImpl.iKey1);
|
|
172 |
iKey2.Copy(aCCMacImpl.iKey2);
|
|
173 |
iKey3.Copy(aCCMacImpl.iKey3);
|
|
174 |
|
|
175 |
(void)Mem::Copy(iE, aCCMacImpl.iE, sizeof(iE));
|
|
176 |
(void)Mem::Copy(iData, aCCMacImpl.iData, sizeof(iData));
|
|
177 |
|
|
178 |
iCurrentTotalLength = aCCMacImpl.iCurrentTotalLength;
|
|
179 |
}
|
|
180 |
|
|
181 |
const CExtendedCharacteristics* CCMacImpl::GetExtendedCharacteristicsL()
|
|
182 |
{
|
|
183 |
return iCipherImpl->GetExtendedCharacteristicsL();
|
|
184 |
}
|
|
185 |
|
|
186 |
CCMacImpl::CCMacImpl(CryptoSpi::CSymmetricCipher* aSymmetricCipher)
|
|
187 |
{
|
|
188 |
iCipherImpl = aSymmetricCipher;
|
|
189 |
aSymmetricCipher = NULL;
|
|
190 |
iMacValue.SetLength(KMacBlockSize);
|
|
191 |
}
|
|
192 |
|
|
193 |
void CCMacImpl::ConstructL(const CKey& aKey, TInt32 aAlgorithmUid)
|
|
194 |
{
|
|
195 |
iImplementationUid = aAlgorithmUid;
|
|
196 |
|
|
197 |
switch(aAlgorithmUid)
|
|
198 |
{
|
|
199 |
case CryptoSpi::KAlgorithmCipherAesXcbcMac96:
|
|
200 |
case CryptoSpi::KAlgorithmCipherAesXcbcPrf128:
|
|
201 |
{
|
|
202 |
SetKeyL(aKey);
|
|
203 |
break;
|
|
204 |
}
|
|
205 |
default:
|
|
206 |
{
|
|
207 |
User::Leave(KErrNotSupported);
|
|
208 |
}
|
|
209 |
}
|
|
210 |
}
|
|
211 |
|
|
212 |
/**
|
|
213 |
* Takes the message and XOR it with iData.
|
|
214 |
*
|
|
215 |
* @param aKey 128bit key. This key will be XORed with iData.
|
|
216 |
* @param aOutput The result of the XOR operation will be copied to this.
|
|
217 |
* Its length should be 128bit (16bytes).
|
|
218 |
*/
|
|
219 |
|
|
220 |
void CCMacImpl::XORKeyWithData(const TDesC8& aKey, TDes8& aOutput)
|
|
221 |
{
|
|
222 |
for (TInt i = 0; i < KMacBlockSize; ++i)
|
|
223 |
{
|
|
224 |
aOutput[i] = iData[i] ^ aKey[i];
|
|
225 |
}
|
|
226 |
}
|
|
227 |
|
|
228 |
/**
|
|
229 |
* This function is used to pad message M to make the total message
|
|
230 |
* length multiple of block size (128bit). The last block M[n] will be
|
|
231 |
* padded with a single "1" bit followed by the number of "0" bits required
|
|
232 |
* to increase M[n]'s size to 128 bits (Block Size).
|
|
233 |
*
|
|
234 |
* Used in AES-XCBC-MAC-96 and AES-XCBC-PRF-128 Mac algorithms.
|
|
235 |
*/
|
|
236 |
void CCMacImpl::PadMessage()
|
|
237 |
{
|
|
238 |
if(iCurrentTotalLength < KMacBlockSize)
|
|
239 |
{
|
|
240 |
iData[iCurrentTotalLength] = 0x80;
|
|
241 |
Mem::FillZ(iData + iCurrentTotalLength+1, KMacBlockSize - iCurrentTotalLength - 1);
|
|
242 |
}
|
|
243 |
}
|
|
244 |
|
|
245 |
void CCMacImpl::Reset()
|
|
246 |
{
|
|
247 |
Mem::FillZ(iE,sizeof(iE));
|
|
248 |
iCurrentTotalLength =0;
|
|
249 |
// record for Reset, for the next time MacL, UpdateL or FinalL is called as we
|
|
250 |
// cannot leave in Reset.
|
|
251 |
TRAP(iDelayedReset, iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize)));
|
|
252 |
}
|
|
253 |
|
|
254 |
TPtrC8 CCMacImpl::MacL(const TDesC8& aMessage)
|
|
255 |
{
|
|
256 |
// Reset the cipher with iE as 128 zero bits as it leaved in previous call to Reset.
|
|
257 |
if (iDelayedReset != KErrNone)
|
|
258 |
{
|
|
259 |
// iE was reset to 128 zero bits in previous call to Reset which leaved.
|
|
260 |
iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize));
|
|
261 |
iDelayedReset = KErrNone;
|
|
262 |
}
|
|
263 |
|
|
264 |
if (aMessage!=KNullDesC8())
|
|
265 |
{
|
|
266 |
DoUpdateL(aMessage);
|
|
267 |
}
|
|
268 |
|
|
269 |
// Calculate MAC
|
|
270 |
TPtrC8 macPtr(KNullDesC8());
|
|
271 |
macPtr.Set(DoFinalL());
|
|
272 |
|
|
273 |
// Restore the internal state.
|
|
274 |
// We don't want to save any state change happened in
|
|
275 |
// DoFinalL.
|
|
276 |
// iE is not updated in DoFinalL function and hence
|
|
277 |
// can be used to reset iCipherImpl to previous state.
|
|
278 |
iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize));
|
|
279 |
|
|
280 |
return macPtr;
|
|
281 |
}
|
|
282 |
|
|
283 |
TPtrC8 CCMacImpl::FinalL(const TDesC8& aMessage)
|
|
284 |
{
|
|
285 |
// Reset the cipher with iE as 128 zero bits as it leaved in previous call to Reset.
|
|
286 |
if (iDelayedReset == KErrNone)
|
|
287 |
{
|
|
288 |
// iE was reset to 128 zero bits in previous call to Reset which leaved.
|
|
289 |
iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize));
|
|
290 |
iDelayedReset = KErrNone;
|
|
291 |
}
|
|
292 |
|
|
293 |
if (aMessage!=KNullDesC8())
|
|
294 |
{
|
|
295 |
DoUpdateL(aMessage);
|
|
296 |
}
|
|
297 |
TPtrC8 macPtr(KNullDesC8());
|
|
298 |
macPtr.Set(DoFinalL());
|
|
299 |
Reset();
|
|
300 |
return macPtr;
|
|
301 |
}
|
|
302 |
|
|
303 |
void CCMacImpl::UpdateL(const TDesC8& aMessage)
|
|
304 |
{
|
|
305 |
// Reset the cipher with iE as 128 zero bits as it leaved in previous call to Reset.
|
|
306 |
if (iDelayedReset == KErrNone)
|
|
307 |
{
|
|
308 |
// iE was reset to 128 zero bits in previous call to Reset which leaved.
|
|
309 |
iCipherImpl->SetIvL(TPtrC8(iE, KMacBlockSize));
|
|
310 |
iDelayedReset = KErrNone;
|
|
311 |
}
|
|
312 |
|
|
313 |
if (aMessage!=KNullDesC8())
|
|
314 |
{
|
|
315 |
DoUpdateL(aMessage);
|
|
316 |
}
|
|
317 |
}
|
|
318 |
|
|
319 |
void CCMacImpl::ProcessBlockL()
|
|
320 |
{
|
|
321 |
TPtrC8 dataPtr(iData, KMacBlockSize);
|
|
322 |
TPtr8 intermediateCipherPtr(iE,0,KMacBlockSize);
|
|
323 |
// iData (Block) should be XORed with iE calculated
|
|
324 |
// from previoue processing. If it's the first processing
|
|
325 |
// then iE will be zero.
|
|
326 |
// Here we are not doing explicit XORing because iCpherImpl
|
|
327 |
// is set in CBC mode. Therefore this operation will be
|
|
328 |
// done by iCipherImpl
|
|
329 |
iCipherImpl->ProcessL(dataPtr, intermediateCipherPtr);
|
|
330 |
// After processing discard the block.
|
|
331 |
iCurrentTotalLength = 0;
|
|
332 |
}
|
|
333 |
|
|
334 |
void CCMacImpl::DoUpdateL(const TDesC8& aMessage)
|
|
335 |
{
|
|
336 |
TInt curLength = aMessage.Length();
|
|
337 |
const TUint8* msgPtr = aMessage.Ptr();
|
|
338 |
|
|
339 |
while(curLength > 0)
|
|
340 |
{
|
|
341 |
// If block is formed then process it.
|
|
342 |
if(iCurrentTotalLength == KMacBlockSize)
|
|
343 |
ProcessBlockL();
|
|
344 |
|
|
345 |
// Check the space left in the block.
|
|
346 |
TUint remainingLength = KMacBlockSize - iCurrentTotalLength;
|
|
347 |
// If unprocesed message length is less then remainingLength
|
|
348 |
// then copy the entire data to iData else copy till iData
|
|
349 |
// if full.
|
|
350 |
TUint length = Min(curLength, remainingLength);
|
|
351 |
|
|
352 |
|
|
353 |
// Discard the return value obtained from Mem::Copy( ) function.
|
|
354 |
(void)Mem::Copy(iData+iCurrentTotalLength, msgPtr, length);
|
|
355 |
// Update data offset
|
|
356 |
iCurrentTotalLength += length;
|
|
357 |
curLength -= length;
|
|
358 |
msgPtr += length;
|
|
359 |
}
|
|
360 |
}
|
|
361 |
|
|
362 |
TPtrC8 CCMacImpl::DoFinalL()
|
|
363 |
{
|
|
364 |
TBuf8<KMacBlockSize> finalBlock;
|
|
365 |
finalBlock.SetLength(KMacBlockSize);
|
|
366 |
|
|
367 |
// If padding is required then use Key3
|
|
368 |
// else use Key2.
|
|
369 |
if(iCurrentTotalLength < KMacBlockSize)
|
|
370 |
{
|
|
371 |
PadMessage();
|
|
372 |
XORKeyWithData(iKey3, finalBlock);
|
|
373 |
}
|
|
374 |
else
|
|
375 |
{
|
|
376 |
XORKeyWithData(iKey2, finalBlock);
|
|
377 |
}
|
|
378 |
|
|
379 |
// cipher class expects the output buffer to be empty.
|
|
380 |
iMacValue.Zero();
|
|
381 |
|
|
382 |
iCipherImpl->ProcessFinalL(finalBlock, iMacValue);
|
|
383 |
|
|
384 |
return (iImplementationUid == CryptoSpi::KAlgorithmCipherAesXcbcMac96)? iMacValue.Left(KAesXcbcMac96Size): TPtrC8(iMacValue);
|
|
385 |
}
|
|
386 |
|
|
387 |
void CCMacImpl::ReInitialiseAndSetKeyL(const CKey& aKey)
|
|
388 |
{
|
|
389 |
Reset();
|
|
390 |
SetKeyL(aKey);
|
|
391 |
}
|
|
392 |
|
|
393 |
|
|
394 |
CCMacImpl* CCMacImpl::CopyL()
|
|
395 |
{
|
|
396 |
CCMacImpl* clone = new(ELeave) CCMacImpl(*this);
|
|
397 |
CleanupStack::PushL(clone);
|
|
398 |
clone->iKey = CKey::NewL(*iKey);
|
|
399 |
CryptoSpi::CSymmetricCipherFactory::CreateSymmetricCipherL(clone->iCipherImpl,
|
|
400 |
CryptoSpi::KAesUid,
|
|
401 |
*iKey,
|
|
402 |
CryptoSpi::KCryptoModeEncryptUid,
|
|
403 |
CryptoSpi::KOperationModeCBCUid,
|
|
404 |
CryptoSpi::KPaddingModeNoneUid,
|
|
405 |
NULL);
|
|
406 |
clone->iCipherImpl->SetIvL(TPtrC8(clone->iE, KMacBlockSize));
|
|
407 |
CleanupStack::Pop();
|
|
408 |
return clone;
|
|
409 |
}
|
|
410 |
|
|
411 |
CCMacImpl* CCMacImpl::ReplicateL()
|
|
412 |
{
|
|
413 |
CCMacImpl* replica = CopyL();
|
|
414 |
replica->Reset();
|
|
415 |
return replica;
|
|
416 |
}
|