crypto/weakcryptospi/test/tasymmetric/cryptopp/exponentiate.cpp
changeset 8 35751d3474b7
equal deleted inserted replaced
2:675a964f4eb5 8:35751d3474b7
       
     1 /*
       
     2 * Copyright (c) 2005-2009 Nokia Corporation and/or its subsidiary(-ies).
       
     3 * All rights reserved.
       
     4 * This component and the accompanying materials are made available
       
     5 * under the terms of the License "Eclipse Public License v1.0"
       
     6 * which accompanies this distribution, and is available
       
     7 * at the URL "http://www.eclipse.org/legal/epl-v10.html".
       
     8 *
       
     9 * Initial Contributors:
       
    10 * Nokia Corporation - initial contribution.
       
    11 *
       
    12 * Contributors:
       
    13 *
       
    14 * Description: 
       
    15 *
       
    16 */
       
    17 
       
    18 
       
    19 /**
       
    20  @file
       
    21 */
       
    22 
       
    23 #include "modarith.h"
       
    24 #include "nbtheory.h"
       
    25 #include <iostream.h>
       
    26 
       
    27 USING_NAMESPACE(CryptoPP)
       
    28 
       
    29 void CheckEPOCDecrypt(Integer& e, Integer& p, Integer& q, Integer& cipher, Integer& expectedPlaintext);
       
    30 
       
    31 void TestRSASigning()
       
    32 {
       
    33 	const Integer m("AA36ABCE88ACFDFF55523C7FC4523F90EFA00DF3774A259F2E62B4C5D99CB5ADB300A0285E5301930E0C70FB6876939CE616CE624A11E0086D341EBCACA0A1F5h");
       
    34 	const Integer d("0A033748626487695F5F30BC38B98B44C2CD2DFF434098CD20D8A138D090BF64797C3FA7A2CDCB3CD1E0BDBA2654B4F9DF8E8AE59D733D9F33B301624AFD1D51h");
       
    35 	const Integer e(17);
       
    36 
       
    37 //	Take EPOC padded plain text, sign and verify
       
    38 	const Integer plain("01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0054859B342C49EA2Ah");
       
    39 	const Integer expectedSig("786C08484F59280886A19919BECA53711819B2D2DD82D702E2F6DE991DC89CB968C01B1315A742B5BE783A781B5B1286F46DAFE29DE675C64A3BA4781DEF8F19h");
       
    40 	
       
    41 //	Private Encrypt (Sign) signedText = (digest ^ d) mod m
       
    42 	Integer cipher_privateEncrypt = a_exp_b_mod_c(plain, d, m);
       
    43 	assert(cipher_privateEncrypt==expectedSig);
       
    44 		
       
    45 //	Public Decrypt (Decrypt) = (signedText ^ e) mod m
       
    46 	Integer verified = a_exp_b_mod_c(cipher_privateEncrypt, e, m);
       
    47 	assert(verified==plain);
       
    48 		
       
    49 //	Now reverse operations (as in previous bugged asymmetric) and check results...
       
    50 //	Do a private decrypt for bad signing
       
    51 	Integer badSign = a_exp_b_mod_c(plain, d, m);
       
    52 	assert(badSign==expectedSig);
       
    53 
       
    54 //	And verify (public encryption)
       
    55 	Integer badVerify = a_exp_b_mod_c(badSign, e, m);
       
    56 	assert(badVerify==plain);
       
    57 
       
    58 }
       
    59 
       
    60 void TestRSADecryptValues()
       
    61 {
       
    62 //	First test a good set
       
    63 /*	<modulus>BBF82F090682CE9C2338AC2B9DA871F7368D07EED41043A440D6B6F07454F51FB8DFBAAF035C02AB61EA48CEEB6FCD4876ED520D60E1EC4619719D8A5B8B807FAFB8E0A3DFC737723EE6B4B7D93A2584EE6A649D060953748834B2454598394EE0AAB12D7B61A51F527A9A41F6C1687FE2537298CA2A8F5946F8E5FD091DBDCB</modulus>
       
    64 	<P>EECFAE81B1B9B3C908810B10A1B5600199EB9F44AEF4FDA493B81A9E3D84F632124EF0236E5D1E3B7E28FAE7AA040A2D5B252176459D1F397541BA2A58FB6599</P>
       
    65 	<Q>C97FB1F027F453F6341233EAAAD1D9353F6C42D08866B1D05A0F2035028B9D869840B41666B42E92EA0DA3B43204B5CFCE3352524D0416A5A441E700AF461503</Q>
       
    66 	<dP>54494CA63EBA0337E4E24023FCD69A5AEB07DDDC0183A4D0AC9B54B051F2B13ED9490975EAB77414FF59C1F7692E9A2E202B38FC910A474174ADC93C1F67C981</dP>
       
    67 	<dQ>471E0290FF0AF0750351B7F878864CA961ADBD3A8A7E991C5C0556A94C3146A7F9803F8F6F8AE342E931FD8AE47A220D1B99A495849807FE39F9245A9836DA3D</dQ>
       
    68 	<qInv>B06C4FDABB6301198D265BDBAE9423B380F271F73453885093077FCD39E2119FC98632154F5883B167A967BF402B4E9E2E0F9656E698EA3666EDFB25798039F7</qInv>
       
    69 	<plaintext>D436E99569FD32A7C8A05BBC90D32C49</plaintext>
       
    70 	<ciphertext>4B9C35BC3CA99B3908EF91C91F4D661544B5462CB3079D7B7A610B90039602F080417B049B7F31BAF16A87B59986620EC1BBD791AD30774309C05F0AFA24B0BF1EA1FEAA3A8EFA2C24F5626B8A9C9A157C1018DA54D314E728E2DB75E84FB5E99082561D904139B95C4DA70A5AB6412527B97CEDA04C6FB00BE1E44537706FF2</ciphertext>
       
    71 */
       
    72 	Integer e1 = Integer(17);
       
    73 	Integer p1 = Integer("EECFAE81B1B9B3C908810B10A1B5600199EB9F44AEF4FDA493B81A9E3D84F632124EF0236E5D1E3B7E28FAE7AA040A2D5B252176459D1F397541BA2A58FB6599h");
       
    74 	Integer q1 = Integer("C97FB1F027F453F6341233EAAAD1D9353F6C42D08866B1D05A0F2035028B9D869840B41666B42E92EA0DA3B43204B5CFCE3352524D0416A5A441E700AF461503h");
       
    75 	Integer cipher1 = Integer("4B9C35BC3CA99B3908EF91C91F4D661544B5462CB3079D7B7A610B90039602F080417B049B7F31BAF16A87B59986620EC1BBD791AD30774309C05F0AFA24B0BF1EA1FEAA3A8EFA2C24F5626B8A9C9A157C1018DA54D314E728E2DB75E84FB5E99082561D904139B95C4DA70A5AB6412527B97CEDA04C6FB00BE1E44537706FF2h");
       
    76 	Integer ePlaintext1 = Integer("D436E99569FD32A7C8A05BBC90D32C49h"); 
       
    77 
       
    78 	CheckEPOCDecrypt(e1, p1, q1, cipher1, ePlaintext1); 
       
    79 
       
    80 //	Now test a bad set
       
    81 /*
       
    82 	<input>123456789ABCDEF123456789ABCDEF</input>
       
    83 	<P>ED49CE92ABF0509006E412AC7F28EEA7626107C3F2456FA18E6513153D6F6003</P>
       
    84 	<Q>ED12B5B118CBA1154DC24AE05AAB1E3A33B5E47A3715861697498824E5BCA331</Q>
       
    85 	----------- e -----------
       
    86 01 00 01 
       
    87 	 ----------- P -----------
       
    88 ed 49 ce 92 ab f0 50 90 06 e4 12 ac 7f 28 ee a7 62 61 07 c3 f2 45 6f a1 8e 65 13 15 3d 6f 60 03 
       
    89 	 ----------- Q -----------
       
    90 ed 12 b5 b1 18 cb a1 15 4d c2 4a e0 5a ab 1e 3a 33 b5 e4 7a 37 15 86 16 97 49 88 24 e5 bc a3 31 
       
    91 	 ----------- DP -----------
       
    92 dc e0 33 15 7c 4e f9 ee d7 3b 3d d6 ab 97 22 6f 54 b8 15 4e 64 1a 16 4b 40 0c fd b2 6b b9 5c 99 
       
    93 	 ----------- DQ -----------
       
    94 27 65 a3 92 11 a7 cd 56 27 fc f0 ca 85 e6 c7 f8 2e 1d bd 21 5e 44 12 6b 70 aa c4 98 35 21 7b 11 
       
    95 	 ----------- QInv -----------
       
    96 76 2f 0a 8c fa 16 d8 a6 df 53 0b 1c fa 5f ff 4c 55 a4 4f 52 e1 b6 28 89 1f c9 c9 10 1c d9 73 2d 
       
    97 	 ----------- N -----------
       
    98 db be ab d7 a5 8e c2 a8 83 17 83 86 9a 2e 07 12 03 1a 5c 0f 87 a8 4b d3 fe 3c 21 91 df 49 4e 2b e4 fa 8d a8 65 e5 c8 c7 49 4d fa c5 5c 6a d2 fc e6 96 2e 3b de 1b 38 28 94 93 04 47 dd a7 49 93 
       
    99 	 ----------- ciphertext -----------
       
   100 69 3a 72 26 39 cc 70 9c 89 ac dc 24 8c 52 ef 01 dd f7 5a c3 8e bf f9 8d eb ed 25 5e 11 f0 d9 b1 43 de 14 97 d2 34 65 a6 2c 11 13 6e f8 c4 37 81 01 d5 8e 8d ea 0b 33 f2 9f e2 df 68 c4 c7 34 2c 
       
   101 
       
   102 */
       
   103 //	Two primes: p, q
       
   104 	Integer e2 = Integer(65537);
       
   105 	Integer p2 = Integer("ED49CE92ABF0509006E412AC7F28EEA7626107C3F2456FA18E6513153D6F6003h");
       
   106 	Integer q2 = Integer("ED12B5B118CBA1154DC24AE05AAB1E3A33B5E47A3715861697498824E5BCA331h");
       
   107 	Integer cipher2 = Integer("693A722639CC709C89ACDC248C52EF01DDF75AC38EBFF98DEBED255E11F0D9B143DE1497D23465A62C11136EF8C4378101D58E8DEA0B33F29FE2DF68C4C7342Ch");
       
   108 	Integer ePlaintext2 = Integer("123456789ABCDEF123456789ABCDEFh"); 
       
   109 	
       
   110 	CheckEPOCDecrypt(e2, p2, q2, cipher2, ePlaintext2);
       
   111 
       
   112 /*
       
   113 <modulus>EF6419DC54EC49B7D0524BA675727F6D895A66A9940F3C76B6220A5B9073357D70702C9FC2D6ECA41448356CE562F7FFAF1DA64BA947274BA0D372F5866B69CB</modulus>
       
   114 <P>FB4F79F4E8C816B816A817120901AED45D0FD72F3DC4BA6946F790776E8A5845</P>
       
   115 <Q>F3DBAF51B232E334964581AE27DE17BFF90A66AE84C2BE95574082880BFF82CF</Q>
       
   116 <dP>63D8A1C5B22EBD080AC861D2228DEE9E251344155ADF2C88E34F3CB096D49459</dP>
       
   117 <dQ>F145A87EC23B0B059AB08690132DF07DA61F9E5C894A4D5A610B989A9694658D</dQ>
       
   118 <qInv>4B8869676360EDC92F0B02F0B93580A570686E7EA3C7D39A5E572AB79314CCBD</qInv>
       
   119 <ciphertext>2EAEAE1F07AAD1D3A14C2178397DFECD91C92E963511BE5CDDE8BCA79B47ECEF68F8DD2F8240DE2E05E90E2A75FAA6495CE903DE413D332CFDD2DD83BC8244C5</ciphertext>
       
   120 <plaintext>123456789ABCDEF123456789ABCDEF123456789ABCDEF123456789ABCDEF</plaintext>
       
   121 */
       
   122 	Integer e3 = Integer(65537);
       
   123 	Integer p3 = Integer("FB4F79F4E8C816B816A817120901AED45D0FD72F3DC4BA6946F790776E8A5845h");
       
   124 	Integer q3 = Integer("F3DBAF51B232E334964581AE27DE17BFF90A66AE84C2BE95574082880BFF82CFh");
       
   125 	Integer cipher3 = Integer("2EAEAE1F07AAD1D3A14C2178397DFECD91C92E963511BE5CDDE8BCA79B47ECEF68F8DD2F8240DE2E05E90E2A75FAA6495CE903DE413D332CFDD2DD83BC8244C5h");
       
   126 	Integer ePlaintext3 = Integer("123456789ABCDEF123456789ABCDEF123456789ABCDEF123456789ABCDEFh");
       
   127 
       
   128 	CheckEPOCDecrypt(e3, p3, q3, cipher3, ePlaintext3);
       
   129 }
       
   130 
       
   131 void CheckEPOCDecrypt(Integer& e, Integer& p, Integer& q, Integer& cipher, Integer& expectedPlaintext)
       
   132 {
       
   133 //////////////////////////////////
       
   134 //	Key generation
       
   135 //////////////////////////////////
       
   136 
       
   137 //	calculate n = p * q 
       
   138 	Integer n=p*q;
       
   139 
       
   140 	Integer r1 = p;
       
   141     r1-=1;		//	r1 = p-1
       
   142     
       
   143 	Integer r2=q;
       
   144     r2-=1;		//	r2 = q-1
       
   145     
       
   146 	Integer r0=r1;
       
   147     r0*=r2;	//	r0 = (p-1)(q-1)
       
   148 
       
   149 //	e * d = 1 mod ((p-1)(q-1)) 
       
   150 //	d = e^(-1) mod ((p-1)(q-1))
       
   151 //! calculate multiplicative inverse of *this mod n
       
   152 //	Integer InverseMod(const Integer &n) const;
       
   153 	Integer d = e;
       
   154 	d = d.InverseMod(r0);
       
   155 
       
   156 //	calculate dP = d mod (p-1) 
       
   157 	Integer dP=d;
       
   158 	dP%=r1;
       
   159 
       
   160 //	calculate dQ = d mod (q-1) 
       
   161 	Integer dQ=d;
       
   162 	dQ%=r2;
       
   163 
       
   164 //	calculate inverse of qInv = q^(-1)mod(p)
       
   165     Integer qInv=q;
       
   166 	qInv = qInv.InverseMod(p);
       
   167 
       
   168 
       
   169 //////////////////////////////////
       
   170 //	Decryption
       
   171 //////////////////////////////////
       
   172 
       
   173 //	m1 = c^(dP) mod(p)
       
   174 	Integer m1 = ModularExponentiation((cipher % p), dP, p);
       
   175 	
       
   176 //	m2 = c^(dQ) mod(Q)
       
   177 	Integer m2 = ModularExponentiation((cipher % q), dQ, q);
       
   178 
       
   179 //	Calculate CRT
       
   180 //	h = (m1-m2) qInv mod(p)	
       
   181 	Integer plainRes = m1 - m2;
       
   182 	plainRes *= qInv;
       
   183 	plainRes %= p;
       
   184 
       
   185 //	output = m2 + q * plainRes	
       
   186 	plainRes *= q;
       
   187 	plainRes += m2;
       
   188 
       
   189 //	assert(expectedPlaintext==plainRes);	//	Not true because ciphertext includes
       
   190 }											//	padding and plaintext doesn't. Though
       
   191 											//	it's possible to compare the first chunk
       
   192 											//	of plainRes with expectedPlaintext
       
   193 
       
   194 int main(int argc, char** argv)
       
   195 {
       
   196 //	TestRSASigning();
       
   197 	TestRSADecryptValues();
       
   198 	return 0;
       
   199 }
       
   200