|
1 /* |
|
2 * Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies). |
|
3 * All rights reserved. |
|
4 * This component and the accompanying materials are made available |
|
5 * under the terms of the License "Eclipse Public License v1.0" |
|
6 * which accompanies this distribution, and is available |
|
7 * at the URL "http://www.eclipse.org/legal/epl-v10.html". |
|
8 * |
|
9 * Initial Contributors: |
|
10 * Nokia Corporation - initial contribution. |
|
11 * |
|
12 * Contributors: |
|
13 * |
|
14 * Description: |
|
15 * DSA Keypair implementation |
|
16 * DSA keypair generation implementation |
|
17 * |
|
18 */ |
|
19 |
|
20 |
|
21 /** |
|
22 @file |
|
23 */ |
|
24 |
|
25 #include "dsakeypairgenimpl.h" |
|
26 #include "pluginconfig.h" |
|
27 #include "keypair.h" |
|
28 #include "common/inlines.h" // For TClassSwap |
|
29 #include "mont.h" |
|
30 #include "sha1impl.h" |
|
31 #include <random.h> |
|
32 |
|
33 |
|
34 const TUint KShaSize = 20; |
|
35 const TUint KMinPrimeLength = 512; |
|
36 const TUint KMaxPrimeLength = 1024; |
|
37 const TUint KPrimeLengthMultiple = 64; |
|
38 |
|
39 using namespace SoftwareCrypto; |
|
40 |
|
41 |
|
42 /* CDSAPrimeCertificate */ |
|
43 |
|
44 CDSAPrimeCertificate* CDSAPrimeCertificate::NewL(const TDesC8& aSeed, TUint aCounter) |
|
45 { |
|
46 CDSAPrimeCertificate* self = NewLC(aSeed, aCounter); |
|
47 CleanupStack::Pop(); |
|
48 return self; |
|
49 } |
|
50 |
|
51 CDSAPrimeCertificate* CDSAPrimeCertificate::NewLC(const TDesC8& aSeed, TUint aCounter) |
|
52 { |
|
53 CDSAPrimeCertificate* self = new(ELeave) CDSAPrimeCertificate(aCounter); |
|
54 CleanupStack::PushL(self); |
|
55 self->ConstructL(aSeed); |
|
56 return self; |
|
57 } |
|
58 |
|
59 const TDesC8& CDSAPrimeCertificate::Seed() const |
|
60 { |
|
61 return *iSeed; |
|
62 } |
|
63 |
|
64 TUint CDSAPrimeCertificate::Counter() const |
|
65 { |
|
66 return iCounter; |
|
67 } |
|
68 |
|
69 CDSAPrimeCertificate::~CDSAPrimeCertificate() |
|
70 { |
|
71 delete const_cast<HBufC8*>(iSeed); |
|
72 } |
|
73 |
|
74 void CDSAPrimeCertificate::ConstructL(const TDesC8& aSeed) |
|
75 { |
|
76 iSeed = aSeed.AllocL(); |
|
77 } |
|
78 |
|
79 CDSAPrimeCertificate::CDSAPrimeCertificate(TUint aCounter) |
|
80 : iCounter(aCounter) |
|
81 { |
|
82 } |
|
83 |
|
84 CDSAPrimeCertificate::CDSAPrimeCertificate() |
|
85 { |
|
86 } |
|
87 |
|
88 |
|
89 /* CDSAKeyPairGenImpl */ |
|
90 CDSAKeyPairGenImpl::CDSAKeyPairGenImpl() |
|
91 { |
|
92 } |
|
93 |
|
94 CDSAKeyPairGenImpl::~CDSAKeyPairGenImpl() |
|
95 { |
|
96 delete iPrimeCertificate; |
|
97 } |
|
98 |
|
99 CDSAKeyPairGenImpl* CDSAKeyPairGenImpl::NewL() |
|
100 { |
|
101 CDSAKeyPairGenImpl* self = CDSAKeyPairGenImpl::NewLC(); |
|
102 CleanupStack::Pop(self); |
|
103 return self; |
|
104 } |
|
105 |
|
106 CDSAKeyPairGenImpl* CDSAKeyPairGenImpl::NewLC() |
|
107 { |
|
108 CDSAKeyPairGenImpl* self = new(ELeave) CDSAKeyPairGenImpl(); |
|
109 CleanupStack::PushL(self); |
|
110 self->ConstructL(); |
|
111 return self; |
|
112 } |
|
113 |
|
114 void CDSAKeyPairGenImpl::ConstructL(void) |
|
115 { |
|
116 CKeyPairGenImpl::ConstructL(); |
|
117 } |
|
118 |
|
119 CExtendedCharacteristics* CDSAKeyPairGenImpl::CreateExtendedCharacteristicsL() |
|
120 { |
|
121 // All Symbian software plug-ins have unlimited concurrency, cannot be reserved |
|
122 // for exclusive use and are not CERTIFIED to be standards compliant. |
|
123 return CExtendedCharacteristics::NewL(KMaxTInt, EFalse); |
|
124 } |
|
125 |
|
126 const CExtendedCharacteristics* CDSAKeyPairGenImpl::GetExtendedCharacteristicsL() |
|
127 { |
|
128 return CDSAKeyPairGenImpl::CreateExtendedCharacteristicsL(); |
|
129 } |
|
130 |
|
131 TUid CDSAKeyPairGenImpl::ImplementationUid() const |
|
132 { |
|
133 return KCryptoPluginDsaKeyPairGenUid; |
|
134 } |
|
135 |
|
136 void CDSAKeyPairGenImpl::Reset() |
|
137 { |
|
138 // does nothing in this plugin |
|
139 } |
|
140 |
|
141 TBool CDSAKeyPairGenImpl::ValidPrimeLength(TUint aPrimeBits) |
|
142 { |
|
143 return (aPrimeBits >= KMinPrimeLength && |
|
144 aPrimeBits <= KMaxPrimeLength && |
|
145 aPrimeBits % KPrimeLengthMultiple == 0); |
|
146 } |
|
147 |
|
148 TBool CDSAKeyPairGenImpl::GeneratePrimesL(const TDesC8& aSeed, |
|
149 TUint& aCounter, |
|
150 RInteger& aP, |
|
151 TUint aL, |
|
152 RInteger& aQ, |
|
153 TBool aUseInputCounter) |
|
154 { |
|
155 //This follows the steps in FIPS 186-2 |
|
156 //See DSS Appendix 2.2 |
|
157 //Note. Step 1 is performed prior to calling GeneratePrimesL, so that this |
|
158 //routine can be used for both generation and validation. |
|
159 //Step 1. Choose an arbitrary sequence of at least 160 bits and call it |
|
160 //SEED. Let g be the length of SEED in bits. |
|
161 |
|
162 if(!ValidPrimeLength(aL)) |
|
163 { |
|
164 User::Leave(KErrNotSupported); |
|
165 } |
|
166 |
|
167 CSHA1Impl* sha1 = CSHA1Impl::NewL(); |
|
168 CleanupStack::PushL(sha1); |
|
169 |
|
170 HBufC8* seedBuf = aSeed.AllocLC(); |
|
171 TPtr8 seed = seedBuf->Des(); |
|
172 TUint gBytes = aSeed.Size(); |
|
173 |
|
174 //Note that the DSS's g = BytesToBits(gBytes) ie. the number of random bits |
|
175 //in the seed. |
|
176 //This function has made the assumption (for ease of computation) that g%8 |
|
177 //is 0. Ie the seed is a whole number of random bytes. |
|
178 TBuf8<KShaSize> U; |
|
179 TBuf8<KShaSize> temp; |
|
180 const TUint n = (aL-1)/160; |
|
181 const TUint b = (aL-1)%160; |
|
182 HBufC8* Wbuf = HBufC8::NewMaxLC((n+1) * KShaSize); |
|
183 TUint8* W = const_cast<TUint8*>(Wbuf->Ptr()); |
|
184 |
|
185 U.Copy(sha1->Final(seed)); |
|
186 |
|
187 //Step 2. U = SHA-1[SEED] XOR SHA-1[(SEED+1) mod 2^g] |
|
188 for(TInt i=gBytes - 1, carry=ETrue; i>=0 && carry; i--) |
|
189 { |
|
190 //!++(TUint) adds one to the current word which if it overflows to zero |
|
191 //sets carry to 1 thus letting the loop continue. It's a poor man's |
|
192 //multi-word addition. Swift eh? |
|
193 carry = !++(seed[i]); |
|
194 } |
|
195 |
|
196 temp.Copy(sha1->Final(seed)); |
|
197 XorBuf(const_cast<TUint8*>(U.Ptr()), temp.Ptr(), KShaSize); |
|
198 |
|
199 //Step 3. Form q from U by setting the most significant bit (2^159) |
|
200 //and the least significant bit to 1. |
|
201 U[0] |= 0x80; |
|
202 U[KShaSize-1] |= 1; |
|
203 |
|
204 aQ = RInteger::NewL(U); |
|
205 CleanupStack::PushL(aQ); |
|
206 |
|
207 //Step 4. Use a robust primality testing algo to test if q is prime |
|
208 //The robust part is the calling codes problem. This will use whatever |
|
209 //random number generator you set for the thread. To attempt FIPS 186-2 |
|
210 //compliance, set a FIPS 186-2 compliant RNG. |
|
211 if( !aQ.IsPrimeL() ) |
|
212 { |
|
213 //Step 5. If not exit and get a new seed |
|
214 CleanupStack::PopAndDestroy(4, sha1); |
|
215 return EFalse; |
|
216 } |
|
217 |
|
218 TUint counterEnd = aUseInputCounter ? aCounter+1 : 4096; |
|
219 |
|
220 //Step 6. Let counter = 0 and offset = 2 |
|
221 //Note 1. that the DSS speaks of SEED + offset + k because they always |
|
222 //refer to a constant SEED. We update our seed as we go so the offset |
|
223 //variable has already been added to seed in the previous iterations. |
|
224 //Note 2. We've already added 1 to our seed, so the first time through this |
|
225 //the offset in DSS speak will be 2. |
|
226 for(TUint counter=0; counter < counterEnd; counter++) |
|
227 { |
|
228 //Step 7. For k=0, ..., n let |
|
229 // Vk = SHA-1[(SEED + offset + k) mod 2^g] |
|
230 //I'm storing the Vk's inside of a big W buffer. |
|
231 for(TUint k=0; k<=n; k++) |
|
232 { |
|
233 for(TInt i=gBytes-1, carry=ETrue; i>=0 && carry; i--) |
|
234 { |
|
235 carry = !++(seed[i]); |
|
236 } |
|
237 if(!aUseInputCounter || counter == aCounter) |
|
238 { |
|
239 TPtr8 Wptr(W+(n-k)*KShaSize, gBytes); |
|
240 Wptr.Copy(sha1->Final(seed)); |
|
241 } |
|
242 } |
|
243 if(!aUseInputCounter || counter == aCounter) |
|
244 { |
|
245 //Step 8. Let W be the integer... and let X = W + 2^(L-1) |
|
246 const_cast<TUint8&>((*Wbuf)[KShaSize - 1 - b/8]) |= 0x80; |
|
247 TPtr8 Wptr(W + KShaSize - 1 - b/8, aL/8, aL/8); |
|
248 RInteger X = RInteger::NewL(Wptr); |
|
249 CleanupStack::PushL(X); |
|
250 //Step 9. Let c = X mod 2q and set p = X - (c-1) |
|
251 RInteger twoQ = aQ.TimesL(TInteger::Two()); |
|
252 CleanupStack::PushL(twoQ); |
|
253 RInteger c = X.ModuloL(twoQ); |
|
254 CleanupStack::PushL(c); |
|
255 --c; |
|
256 aP = X.MinusL(c); |
|
257 CleanupStack::PopAndDestroy(3, &X); //twoQ, c, X |
|
258 CleanupStack::PushL(aP); |
|
259 |
|
260 //Step 10 and 11: if p >= 2^(L-1) and p is prime |
|
261 if( aP.Bit(aL-1) && aP.IsPrimeL() ) |
|
262 { |
|
263 aCounter = counter; |
|
264 CleanupStack::Pop(2, &aQ); |
|
265 CleanupStack::PopAndDestroy(3, sha1); |
|
266 return ETrue; |
|
267 } |
|
268 CleanupStack::PopAndDestroy(&aP); |
|
269 } |
|
270 } |
|
271 CleanupStack::PopAndDestroy(4, &sha1); |
|
272 return EFalse; |
|
273 } |
|
274 |
|
275 void CDSAKeyPairGenImpl::GenerateKeyPairL(TInt aKeySize, |
|
276 const CCryptoParams& aKeyParameters, |
|
277 CKeyPair*& aKeyPair) |
|
278 { |
|
279 //This is the first step of DSA prime generation. The remaining steps are |
|
280 //performed in CDSAParameters::GeneratePrimesL |
|
281 //Step 1. Choose an arbitrary sequence of at least 160 bits and call it |
|
282 //SEED. Let g be the length of SEED in bits. |
|
283 TBuf8<KShaSize> seed(KShaSize); |
|
284 TUint c; |
|
285 RInteger p; |
|
286 RInteger q; |
|
287 |
|
288 do |
|
289 { |
|
290 GenerateRandomBytesL(seed); |
|
291 } |
|
292 while(!GeneratePrimesL(seed, c, p, aKeySize, q)); |
|
293 |
|
294 //Double PushL will not fail as GeneratePrimesL uses the CleanupStack |
|
295 //(at least one push and pop ;) |
|
296 CleanupStack::PushL(p); |
|
297 CleanupStack::PushL(q); |
|
298 |
|
299 iPrimeCertificate = CDSAPrimeCertificate::NewL(seed, c); |
|
300 |
|
301 // aKeyParameters isn't const here anymore |
|
302 CCryptoParams& paramRef=const_cast<CCryptoParams&>(aKeyParameters); |
|
303 paramRef.AddL(c, KDsaKeyGenerationCounterUid); |
|
304 paramRef.AddL(seed, KDsaKeyGenerationSeedUid); |
|
305 |
|
306 CMontgomeryStructure* montP = CMontgomeryStructure::NewLC(p); |
|
307 |
|
308 --p; |
|
309 |
|
310 // e = (p-1)/q |
|
311 RInteger e = p.DividedByL(q); |
|
312 CleanupStack::PushL(e); |
|
313 |
|
314 --p; //now it's p-2 :) |
|
315 |
|
316 RInteger h; |
|
317 const TInteger* g = 0; |
|
318 do |
|
319 { |
|
320 // find a random h | 1 < h < p-1 |
|
321 h = RInteger::NewRandomL(TInteger::Two(), p); |
|
322 CleanupStack::PushL(h); |
|
323 // g = h^e mod p |
|
324 g = &(montP->ExponentiateL(h, e)); |
|
325 CleanupStack::PopAndDestroy(&h); |
|
326 } |
|
327 while( *g <= TInteger::One() ); |
|
328 CleanupStack::PopAndDestroy(&e); |
|
329 |
|
330 ++p; //reincrement p to original value |
|
331 ++p; |
|
332 |
|
333 |
|
334 RInteger g1 = RInteger::NewL(*g); //take a copy of montP's g |
|
335 CleanupStack::PushL(g1); |
|
336 --q; |
|
337 // select random x | 0 < x < q |
|
338 RInteger x = RInteger::NewRandomL(TInteger::One(), q); |
|
339 CleanupStack::PushL(x); |
|
340 ++q; |
|
341 |
|
342 // |
|
343 // create the keys parameters |
|
344 CCryptoParams* privateKeyParameters = CCryptoParams::NewLC(); |
|
345 privateKeyParameters->AddL(p, KDsaKeyParameterPUid); |
|
346 privateKeyParameters->AddL(q, KDsaKeyParameterQUid); |
|
347 privateKeyParameters->AddL(g1, KDsaKeyParameterGUid); |
|
348 privateKeyParameters->AddL(x, KDsaKeyParameterXUid); |
|
349 TKeyProperty privateKeyProperties = {KDSAKeyPairGeneratorUid, |
|
350 KCryptoPluginDsaKeyPairGenUid, |
|
351 KDsaPrivateKeyUid, |
|
352 KNonEmbeddedKeyUid}; |
|
353 |
|
354 CCryptoParams* publicKeyParameters = CCryptoParams::NewLC(); |
|
355 publicKeyParameters->AddL(p, KDsaKeyParameterPUid); |
|
356 publicKeyParameters->AddL(q, KDsaKeyParameterQUid); |
|
357 publicKeyParameters->AddL(g1, KDsaKeyParameterGUid); |
|
358 RInteger y = RInteger::NewL(montP->ExponentiateL(*g, x)); |
|
359 CleanupStack::PushL(y); |
|
360 publicKeyParameters->AddL(y, KDsaKeyParameterYUid); |
|
361 TKeyProperty publicKeyProperties = {KDSAKeyPairGeneratorUid, |
|
362 KCryptoPluginDsaKeyPairGenUid, |
|
363 KDsaPublicKeyUid, |
|
364 KNonEmbeddedKeyUid}; |
|
365 |
|
366 // |
|
367 // create the private key |
|
368 // |
|
369 CKey* privateKey = CKey::NewL(privateKeyProperties, *privateKeyParameters); |
|
370 CleanupStack::PushL(privateKey); |
|
371 |
|
372 // |
|
373 // create the public key |
|
374 // |
|
375 CKey* publicKey = CKey::NewL(publicKeyProperties, *publicKeyParameters); |
|
376 CleanupStack::PushL(publicKey); |
|
377 |
|
378 aKeyPair = CKeyPair::NewL(publicKey, privateKey); |
|
379 |
|
380 //publicKey, publicKeyParameters, y, privateKey, privateKeyParameters, x, g1, montP, q, p |
|
381 CleanupStack::Pop(2, privateKey); |
|
382 CleanupStack::PopAndDestroy(8, &p); |
|
383 } |