crypto/weakcrypto/source/asymmetric/dsakeys.cpp
changeset 71 dd83586b62d6
equal deleted inserted replaced
66:8873e6835f7b 71:dd83586b62d6
       
     1 /*
       
     2 * Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
       
     3 * All rights reserved.
       
     4 * This component and the accompanying materials are made available
       
     5 * under the terms of the License "Eclipse Public License v1.0"
       
     6 * which accompanies this distribution, and is available
       
     7 * at the URL "http://www.eclipse.org/legal/epl-v10.html".
       
     8 *
       
     9 * Initial Contributors:
       
    10 * Nokia Corporation - initial contribution.
       
    11 *
       
    12 * Contributors:
       
    13 *
       
    14 * Description: 
       
    15 *
       
    16 */
       
    17 
       
    18 
       
    19 #include <asymmetrickeys.h>
       
    20 #include <bigint.h>
       
    21 #include <random.h>
       
    22 #include <hash.h>
       
    23 #include "../common/inlines.h"
       
    24 #include "../bigint/mont.h"
       
    25 
       
    26 const TUint SHASIZE = 20;
       
    27 const TUint KMinPrimeLength = 512;
       
    28 const TUint KMaxPrimeLength = 1024;
       
    29 const TUint KPrimeLengthMultiple = 64;
       
    30 
       
    31 /* CDSAParameters */
       
    32 
       
    33 EXPORT_C const TInteger& CDSAParameters::P(void) const
       
    34 	{
       
    35 	return iP;
       
    36 	}
       
    37 
       
    38 EXPORT_C const TInteger& CDSAParameters::Q(void) const
       
    39 	{
       
    40 	return iQ;
       
    41 	}
       
    42 
       
    43 EXPORT_C const TInteger& CDSAParameters::G(void) const
       
    44 	{
       
    45 	return iG;
       
    46 	}
       
    47 
       
    48 EXPORT_C CDSAParameters::~CDSAParameters(void)
       
    49 	{
       
    50 	iP.Close();
       
    51 	iQ.Close();
       
    52 	iG.Close();
       
    53 	}
       
    54 
       
    55 EXPORT_C CDSAParameters* CDSAParameters::NewL(RInteger& aP, RInteger& aQ, 
       
    56 	RInteger& aG)
       
    57 	{
       
    58 	CDSAParameters* me = new (ELeave) CDSAParameters(aP, aQ, aG);
       
    59 	return (me);
       
    60 	}
       
    61 
       
    62 EXPORT_C TBool CDSAParameters::ValidatePrimesL(const CDSAPrimeCertificate& aCert)
       
    63 	const
       
    64 	{
       
    65 	TBool result = EFalse;
       
    66 	RInteger p;
       
    67 	RInteger q;
       
    68 	//Regenerate primes using aCert's seed and counter
       
    69 	TUint counter = aCert.Counter();
       
    70 	if(!CDSAParameters::GeneratePrimesL(aCert.Seed(), counter, p, 
       
    71 		P().BitCount(), q, ETrue))
       
    72 		{
       
    73 		return result;
       
    74 		}
       
    75 	//this doesn't leave, no need to push p and q
       
    76 	if(p == P() && q == Q() && counter == aCert.Counter())
       
    77 		{
       
    78 		result = ETrue;
       
    79 		}
       
    80 	p.Close();
       
    81 	q.Close();
       
    82 	return result;
       
    83 	}
       
    84 
       
    85 EXPORT_C TBool CDSAParameters::ValidPrimeLength(TUint aPrimeBits)
       
    86 	{
       
    87 	return (aPrimeBits >= KMinPrimeLength &&
       
    88 		aPrimeBits <= KMaxPrimeLength &&
       
    89 		aPrimeBits % KPrimeLengthMultiple == 0);
       
    90 	}
       
    91 
       
    92 EXPORT_C CDSAParameters::CDSAParameters(RInteger& aP, RInteger& aQ, 	
       
    93 	RInteger& aG) : iP(aP), iQ(aQ), iG(aG)
       
    94 	{
       
    95 	}
       
    96 
       
    97 EXPORT_C CDSAParameters::CDSAParameters(void)
       
    98 	{
       
    99 	}
       
   100 
       
   101 TBool CDSAParameters::GeneratePrimesL(const TDesC8& aSeed, TUint& aCounter, 
       
   102 	RInteger& aP, TUint aL, RInteger& aQ, TBool aUseInputCounter)
       
   103 	{
       
   104 	//This follows the steps in FIPS 186-2 
       
   105 	//See DSS Appendix 2.2
       
   106 	//Note. Step 1 is performed prior to calling GeneratePrimesL, so that this
       
   107 	//routine can be used for both generation and validation.
       
   108 	//Step 1.  Choose an arbitrary sequence of at least 160 bits and call it
       
   109 	//SEED.  Let g be the length of SEED in bits.
       
   110 
       
   111 	if(!CDSAParameters::ValidPrimeLength(aL))
       
   112 		{
       
   113 		User::Leave(KErrNotSupported);
       
   114 		}
       
   115 	
       
   116 	CSHA1* sha1 = CSHA1::NewL();
       
   117 	CleanupStack::PushL(sha1);
       
   118 
       
   119 	HBufC8* seedBuf = aSeed.AllocLC();
       
   120 	TPtr8 seed = seedBuf->Des();
       
   121 	TUint gBytes = aSeed.Size();
       
   122 	//Note that the DSS's g = BytesToBits(gBytes) ie. the number of random bits
       
   123 	//in the seed.  
       
   124 	//This function has made the assumption (for ease of computation) that g%8
       
   125 	//is 0.  Ie the seed is a whole number of random bytes.
       
   126 	TBuf8<SHASIZE> U; 
       
   127 	TBuf8<SHASIZE> temp; 
       
   128 	const TUint n = (aL-1)/160;
       
   129 	const TUint b = (aL-1)%160;
       
   130 	HBufC8* Wbuf = HBufC8::NewMaxLC((n+1) * SHASIZE);
       
   131 	TUint8* W = const_cast<TUint8*>(Wbuf->Ptr());
       
   132 
       
   133 	U.Copy(sha1->Final(seed));
       
   134 	
       
   135 	//Step 2. U = SHA-1[SEED] XOR SHA-1[(SEED+1) mod 2^g]
       
   136 	for(TInt i=gBytes - 1, carry=ETrue; i>=0 && carry; i--)
       
   137 		{
       
   138 		//!++(TUint) adds one to the current word which if it overflows to zero
       
   139 		//sets carry to 1 thus letting the loop continue.  It's a poor man's
       
   140 		//multi-word addition.  Swift eh?
       
   141 		carry = !++(seed[i]);
       
   142 		}
       
   143 
       
   144 	temp.Copy(sha1->Final(seed));
       
   145 	XorBuf(const_cast<TUint8*>(U.Ptr()), temp.Ptr(), SHASIZE);
       
   146 
       
   147 	//Step 3. Form q from U by setting the most significant bit (2^159)
       
   148 	//and the least significant bit to 1.
       
   149 	U[0] |= 0x80;
       
   150 	U[SHASIZE-1] |= 1;
       
   151 
       
   152 	aQ = RInteger::NewL(U);
       
   153 	CleanupStack::PushL(aQ);
       
   154 
       
   155 	//Step 4. Use a robust primality testing algo to test if q is prime
       
   156 	//The robust part is the calling codes problem.  This will use whatever
       
   157 	//random number generator you set for the thread.  To attempt FIPS 186-2
       
   158 	//compliance, set a FIPS 186-2 compliant RNG.
       
   159 	if( !aQ.IsPrimeL() )
       
   160 		{
       
   161 		//Step 5. If not exit and get a new seed
       
   162 		CleanupStack::PopAndDestroy(&aQ);
       
   163 		CleanupStack::PopAndDestroy(Wbuf);
       
   164 		CleanupStack::PopAndDestroy(seedBuf);
       
   165 		CleanupStack::PopAndDestroy(sha1);
       
   166 		return EFalse;
       
   167 		}
       
   168 	
       
   169 	TUint counterEnd = aUseInputCounter ? aCounter+1 : 4096;
       
   170 	
       
   171 	//Step 6. Let counter = 0 and offset = 2
       
   172 	//Note 1. that the DSS speaks of SEED + offset + k because they always
       
   173 	//refer to a constant SEED.  We update our seed as we go so the offset
       
   174 	//variable has already been added to seed in the previous iterations.
       
   175 	//Note 2. We've already added 1 to our seed, so the first time through this
       
   176 	//the offset in DSS speak will be 2.
       
   177 	for(TUint counter=0; counter < counterEnd; counter++)
       
   178 		{
       
   179 		//Step 7. For k=0, ..., n let
       
   180 		// Vk = SHA-1[(SEED + offset + k) mod 2^g]
       
   181 		//I'm storing the Vk's inside of a big W buffer.
       
   182 		for(TUint k=0; k<=n; k++)
       
   183 			{
       
   184 			for(TInt i=gBytes-1, carry=ETrue; i>=0 && carry; i--)
       
   185 				{
       
   186 				carry = !++(seed[i]);
       
   187 				}
       
   188 			if(!aUseInputCounter || counter == aCounter)
       
   189 				{
       
   190 				TPtr8 Wptr(W+(n-k)*SHASIZE, gBytes);
       
   191 				Wptr.Copy(sha1->Final(seed));
       
   192 				}
       
   193 			}
       
   194 		if(!aUseInputCounter || counter == aCounter)
       
   195 			{
       
   196 			//Step 8. Let W be the integer...  and let X = W + 2^(L-1)
       
   197 			const_cast<TUint8&>((*Wbuf)[SHASIZE - 1 - b/8]) |= 0x80;
       
   198 			TPtr8 Wptr(W + SHASIZE - 1 - b/8, aL/8, aL/8);
       
   199 			RInteger X = RInteger::NewL(Wptr);
       
   200 			CleanupStack::PushL(X);
       
   201 			//Step 9. Let c = X mod 2q and set p = X - (c-1)
       
   202 			RInteger twoQ = aQ.TimesL(TInteger::Two());
       
   203 			CleanupStack::PushL(twoQ);
       
   204 			RInteger c = X.ModuloL(twoQ);
       
   205 			CleanupStack::PushL(c);
       
   206 			--c;
       
   207 			aP = X.MinusL(c);
       
   208 			CleanupStack::PopAndDestroy(3, &X); //twoQ, c, X
       
   209 			CleanupStack::PushL(aP);
       
   210 			
       
   211 			//Step 10 and 11: if p >= 2^(L-1) and p is prime
       
   212 			if( aP.Bit(aL-1) && aP.IsPrimeL() )
       
   213 				{
       
   214 				aCounter = counter;
       
   215 				CleanupStack::Pop(&aP);
       
   216 				CleanupStack::Pop(&aQ);
       
   217 				CleanupStack::PopAndDestroy(Wbuf);
       
   218 				CleanupStack::PopAndDestroy(seedBuf);
       
   219 				CleanupStack::PopAndDestroy(sha1);
       
   220 				return ETrue;
       
   221 				}
       
   222 			CleanupStack::PopAndDestroy(&aP);
       
   223 			}
       
   224 		}
       
   225 	CleanupStack::PopAndDestroy(&aQ);
       
   226 	CleanupStack::PopAndDestroy(Wbuf);
       
   227 	CleanupStack::PopAndDestroy(seedBuf);
       
   228 	CleanupStack::PopAndDestroy(sha1);
       
   229 	return EFalse;
       
   230 	}
       
   231 
       
   232 /* CDSAPublicKey */
       
   233 
       
   234 EXPORT_C CDSAPublicKey* CDSAPublicKey::NewL(RInteger& aP, RInteger& aQ, 
       
   235 	RInteger& aG, RInteger& aY)
       
   236 	{
       
   237 	CDSAPublicKey* self = new(ELeave) CDSAPublicKey(aP, aQ, aG, aY);
       
   238 	return self;
       
   239 	}
       
   240 
       
   241 EXPORT_C CDSAPublicKey* CDSAPublicKey::NewLC(RInteger& aP, RInteger& aQ, 
       
   242 	RInteger& aG, RInteger& aY)
       
   243 	{
       
   244 	CDSAPublicKey* self = NewL(aP, aQ, aG, aY);
       
   245 	CleanupStack::PushL(self);
       
   246 	return self;
       
   247 	}
       
   248 
       
   249 EXPORT_C const TInteger& CDSAPublicKey::Y(void) const
       
   250 	{
       
   251 	return iY;
       
   252 	}
       
   253 
       
   254 EXPORT_C CDSAPublicKey::CDSAPublicKey(void)
       
   255 	{
       
   256 	} 
       
   257 
       
   258 EXPORT_C CDSAPublicKey::CDSAPublicKey(RInteger& aP, RInteger& aQ, RInteger& aG, 
       
   259 	RInteger& aY) : CDSAParameters(aP, aQ, aG), iY(aY)
       
   260 	{
       
   261 	}
       
   262 
       
   263 EXPORT_C CDSAPublicKey::~CDSAPublicKey(void)
       
   264 	{
       
   265 	iY.Close();
       
   266 	}
       
   267 
       
   268 /* CDSAPrivateKey */
       
   269 
       
   270 EXPORT_C CDSAPrivateKey* CDSAPrivateKey::NewL(RInteger& aP, RInteger& aQ, 
       
   271 	RInteger& aG, RInteger& aX)
       
   272 	{
       
   273 	CDSAPrivateKey* self = new(ELeave) CDSAPrivateKey(aP, aQ, aG, aX);
       
   274 	return self;
       
   275 	}
       
   276 
       
   277 EXPORT_C CDSAPrivateKey* CDSAPrivateKey::NewLC(RInteger& aP, RInteger& aQ, 
       
   278 	RInteger& aG, RInteger& aX)
       
   279 	{
       
   280 	CDSAPrivateKey* self = NewL(aP, aQ, aG, aX);
       
   281 	CleanupStack::PushL(self);
       
   282 	return self;
       
   283 	}
       
   284 
       
   285 EXPORT_C const TInteger& CDSAPrivateKey::X(void) const
       
   286 	{
       
   287 	return iX;
       
   288 	}
       
   289 
       
   290 CDSAPrivateKey::CDSAPrivateKey(RInteger& aP, RInteger& aQ, RInteger& aG, 
       
   291 	RInteger& aX) : CDSAParameters(aP, aQ, aG), iX(aX)
       
   292 	{
       
   293 	}
       
   294 
       
   295 EXPORT_C CDSAPrivateKey::CDSAPrivateKey(void)
       
   296 	{
       
   297 	}
       
   298 
       
   299 EXPORT_C CDSAPrivateKey::~CDSAPrivateKey(void)
       
   300 	{
       
   301 	iX.Close();
       
   302 	}
       
   303 
       
   304 /* CDSAKeyPair */
       
   305 
       
   306 EXPORT_C CDSAKeyPair* CDSAKeyPair::NewL(TUint aKeyBits)
       
   307 	{
       
   308 	CDSAKeyPair* self = NewLC(aKeyBits);
       
   309 	CleanupStack::Pop();
       
   310 	return self;
       
   311 	}
       
   312 
       
   313 EXPORT_C CDSAKeyPair* CDSAKeyPair::NewLC(TUint aKeyBits)
       
   314 	{
       
   315 	CDSAKeyPair* self = new(ELeave) CDSAKeyPair();
       
   316 	CleanupStack::PushL(self);
       
   317 	self->ConstructL(aKeyBits);
       
   318 	return self;
       
   319 	}
       
   320 
       
   321 EXPORT_C const CDSAPublicKey& CDSAKeyPair::PublicKey(void) const
       
   322 	{
       
   323 	return *iPublic;
       
   324 	}
       
   325 	
       
   326 EXPORT_C const CDSAPrivateKey& CDSAKeyPair::PrivateKey(void) const
       
   327 	{
       
   328 	return *iPrivate;
       
   329 	}
       
   330 
       
   331 EXPORT_C CDSAKeyPair::~CDSAKeyPair(void) 
       
   332 	{
       
   333 	delete iPublic;
       
   334 	delete iPrivate;
       
   335 	delete iPrimeCertificate;
       
   336 	}
       
   337 
       
   338 EXPORT_C CDSAKeyPair::CDSAKeyPair(void) 
       
   339 	{
       
   340 	}
       
   341 
       
   342 EXPORT_C const CDSAPrimeCertificate& CDSAKeyPair::PrimeCertificate(void) const
       
   343 	{
       
   344 	return *iPrimeCertificate;
       
   345 	}
       
   346 
       
   347 void CDSAKeyPair::ConstructL(TUint aPBits)
       
   348 	{
       
   349 	//This is the first step of DSA prime generation.  The remaining steps are
       
   350 	//performed in CDSAParameters::GeneratePrimesL
       
   351 	//Step 1.  Choose an arbitrary sequence of at least 160 bits and call it
       
   352 	//SEED.  Let g be the length of SEED in bits.
       
   353 	TBuf8<SHASIZE> seed(SHASIZE); 
       
   354 	TUint c;
       
   355 	RInteger p;
       
   356 	RInteger q;
       
   357 	do 
       
   358 		{
       
   359 		GenerateRandomBytesL(seed);
       
   360 		}
       
   361 	while(!CDSAParameters::GeneratePrimesL(seed, c, p, aPBits, q));
       
   362 	//Double PushL will not fail as GeneratePrimesL uses the CleanupStack
       
   363 	//(at least one push and pop ;)
       
   364 	CleanupStack::PushL(p);
       
   365 	CleanupStack::PushL(q);
       
   366 	iPrimeCertificate = CDSAPrimeCertificate::NewL(seed, c);
       
   367 
       
   368 	CMontgomeryStructure* montP = CMontgomeryStructure::NewLC(p);
       
   369 
       
   370 	--p;
       
   371 
       
   372 	// e = (p-1)/q
       
   373 	RInteger e = p.DividedByL(q);
       
   374 	CleanupStack::PushL(e);
       
   375 
       
   376 	--p; //now it's p-2 :)
       
   377 
       
   378 	RInteger h;
       
   379 	const TInteger* g = 0;
       
   380 	do
       
   381 		{
       
   382 		// find a random h | 1 < h < p-1
       
   383 		h = RInteger::NewRandomL(TInteger::Two(), p);
       
   384 		CleanupStack::PushL(h);
       
   385 		// g = h^e mod p
       
   386 		g = &(montP->ExponentiateL(h, e));
       
   387 		CleanupStack::PopAndDestroy(&h); 
       
   388 		}
       
   389 	while( *g <= TInteger::One() );
       
   390 	CleanupStack::PopAndDestroy(&e);
       
   391 
       
   392 	++p; //reincrement p to original value
       
   393 	++p;
       
   394 
       
   395 	RInteger g1 = RInteger::NewL(*g); //take a copy of montP's g
       
   396 	CleanupStack::PushL(g1);
       
   397 	RInteger p1 = RInteger::NewL(p);
       
   398 	CleanupStack::PushL(p1);
       
   399 	RInteger q1 = RInteger::NewL(q);
       
   400 	CleanupStack::PushL(q1);
       
   401 	
       
   402 	--q;
       
   403 	// select random x | 0 < x < q
       
   404 	RInteger x = RInteger::NewRandomL(TInteger::One(), q);
       
   405 	CleanupStack::PushL(x);
       
   406 	++q;
       
   407 
       
   408 	iPrivate = CDSAPrivateKey::NewL(p1, q1, g1, x);
       
   409 	CleanupStack::Pop(4, &g1); //x,q1,p1,g1 -- all owned by iPrivate
       
   410 	
       
   411 	RInteger y = RInteger::NewL(montP->ExponentiateL(*g, iPrivate->X()));
       
   412 	CleanupStack::PushL(y);
       
   413 	RInteger g2 = RInteger::NewL(iPrivate->G());
       
   414 	CleanupStack::PushL(g2);
       
   415 	iPublic = CDSAPublicKey::NewL(p, q, g2, y);
       
   416 	CleanupStack::Pop(2, &y); //g2, y 
       
   417 	CleanupStack::PopAndDestroy(montP);
       
   418 	CleanupStack::Pop(2, &p); //q, p
       
   419 	}
       
   420 
       
   421 
       
   422 /* CDSAPrimeCertificate */
       
   423 
       
   424 EXPORT_C CDSAPrimeCertificate* CDSAPrimeCertificate::NewL(const TDesC8& aSeed,
       
   425 	TUint aCounter)
       
   426 	{
       
   427 	CDSAPrimeCertificate* self = NewLC(aSeed, aCounter);
       
   428 	CleanupStack::Pop();
       
   429 	return self;
       
   430 	}
       
   431 
       
   432 EXPORT_C CDSAPrimeCertificate* CDSAPrimeCertificate::NewLC(const TDesC8& aSeed,
       
   433 	TUint aCounter)
       
   434 	{
       
   435 	CDSAPrimeCertificate* self = new(ELeave) CDSAPrimeCertificate(aCounter);
       
   436 	CleanupStack::PushL(self);
       
   437 	self->ConstructL(aSeed);
       
   438 	return self;
       
   439 	}
       
   440 
       
   441 EXPORT_C const TDesC8& CDSAPrimeCertificate::Seed(void) const
       
   442 	{
       
   443 	return *iSeed;
       
   444 	}
       
   445 
       
   446 EXPORT_C TUint CDSAPrimeCertificate::Counter(void) const
       
   447 	{
       
   448 	return iCounter;
       
   449 	}
       
   450 
       
   451 EXPORT_C CDSAPrimeCertificate::~CDSAPrimeCertificate(void) 
       
   452 	{
       
   453 	delete const_cast<HBufC8*>(iSeed);
       
   454 	}
       
   455 
       
   456 void CDSAPrimeCertificate::ConstructL(const TDesC8& aSeed)
       
   457 	{
       
   458 	iSeed = aSeed.AllocL();
       
   459 	}
       
   460 
       
   461 EXPORT_C CDSAPrimeCertificate::CDSAPrimeCertificate(TUint aCounter) 
       
   462 	: iCounter(aCounter)
       
   463 	{
       
   464 	}
       
   465 
       
   466 EXPORT_C CDSAPrimeCertificate::CDSAPrimeCertificate(void) 
       
   467 	{
       
   468 	}