crypto/weakcrypto/source/asymmetric/dsaverifier.cpp
branchRCL_3
changeset 96 a71299154b21
parent 95 641f389e9157
child 97 c575b960b6c8
child 99 94225563cd41
--- a/crypto/weakcrypto/source/asymmetric/dsaverifier.cpp	Tue Aug 31 17:00:08 2010 +0300
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,109 +0,0 @@
-/*
-* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
-* All rights reserved.
-* This component and the accompanying materials are made available
-* under the terms of the License "Eclipse Public License v1.0"
-* which accompanies this distribution, and is available
-* at the URL "http://www.eclipse.org/legal/epl-v10.html".
-*
-* Initial Contributors:
-* Nokia Corporation - initial contribution.
-*
-* Contributors:
-*
-* Description: 
-*
-*/
-
-
-#include <asymmetric.h>
-#include <asymmetrickeys.h>
-#include <bigint.h>
-
-EXPORT_C CDSAVerifier* CDSAVerifier::NewL(const CDSAPublicKey& aKey)
-	{
-	CDSAVerifier* self = new(ELeave)CDSAVerifier(aKey);
-	return self;
-	}
-
-EXPORT_C CDSAVerifier* CDSAVerifier::NewLC(const CDSAPublicKey& aKey)
-	{
-	CDSAVerifier* self = NewL(aKey);
-	CleanupStack::PushL(self);
-	return self;
-	}
-
-TInt CDSAVerifier::MaxInputLength(void) const
-	{
-	// return CSHA1::DIGESTBYTES
-	return 160;
-	}
-
-TBool CDSAVerifier::VerifyL(const TDesC8& aInput, 
-	const CDSASignature& aSignature) const
-	{
-	//see HAC 11.56 or DSS section 6
-	//I'll follow HAC as I like the description better
-
-	// a) Obtain A's authenticate public key
-
-	// b) Verify that 0 < r < q and 0 < s < q; if not reject signature
-	if (aSignature.R() <= 0 || aSignature.R() >= iPublicKey.Q())
-		{
-		return EFalse;
-		}
-	if (aSignature.S() <= 0 || aSignature.S() >= iPublicKey.Q())
-		{
-		return EFalse;
-		}
-
-	TBool result = EFalse;
-
-	// c) Compute w = s^(-1) mod q and h(m)
-	RInteger w = aSignature.S().InverseModL(iPublicKey.Q());
-	CleanupStack::PushL(w);
-	// Note that in order to be interoperable, compliant with the DSS, and
-	// secure, aInput must be the result of a SHA-1 hash
-	RInteger hm = RInteger::NewL(aInput);
-	CleanupStack::PushL(hm);
-
-	// d) Compute u1 = w * hm mod q and u2 = r * w mod q
-	RInteger u1 = TInteger::ModularMultiplyL(w, hm, iPublicKey.Q());
-	CleanupStack::PushL(u1);
-
-	RInteger u2 = TInteger::ModularMultiplyL(aSignature.R(), w, iPublicKey.Q());
-	CleanupStack::PushL(u2);
-
-	// e) Compute v = ((g^u1 * y^u2) mod p) mod q
-	RInteger temp = TInteger::ModularExponentiateL(iPublicKey.G(), u1,
-		iPublicKey.P());
-	CleanupStack::PushL(temp);
-	RInteger temp1 = TInteger::ModularExponentiateL(iPublicKey.Y(), u2,
-		iPublicKey.P());
-	CleanupStack::PushL(temp1);
-	RInteger v = TInteger::ModularMultiplyL(temp, temp1, iPublicKey.P());
-	CleanupStack::PushL(v);
-	v %= iPublicKey.Q();
-
-	// f) Accept the signature iff v == r
-	if(v == aSignature.R())
-		{
-		result = ETrue;
-		}
-
-	CleanupStack::PopAndDestroy(&v);
-	CleanupStack::PopAndDestroy(&temp1);
-	CleanupStack::PopAndDestroy(&temp);
-	CleanupStack::PopAndDestroy(&u2);
-	CleanupStack::PopAndDestroy(&u1);
-	CleanupStack::PopAndDestroy(&hm);
-	CleanupStack::PopAndDestroy(&w); 
-
-	return result;	
-	}
-
-CDSAVerifier::CDSAVerifier(const CDSAPublicKey& aKey)  
-	: iPublicKey(aKey)
-	{
-	}
-