--- a/crypto/weakcrypto/source/asymmetric/dsaverifier.cpp Tue Aug 31 17:00:08 2010 +0300
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,109 +0,0 @@
-/*
-* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
-* All rights reserved.
-* This component and the accompanying materials are made available
-* under the terms of the License "Eclipse Public License v1.0"
-* which accompanies this distribution, and is available
-* at the URL "http://www.eclipse.org/legal/epl-v10.html".
-*
-* Initial Contributors:
-* Nokia Corporation - initial contribution.
-*
-* Contributors:
-*
-* Description:
-*
-*/
-
-
-#include <asymmetric.h>
-#include <asymmetrickeys.h>
-#include <bigint.h>
-
-EXPORT_C CDSAVerifier* CDSAVerifier::NewL(const CDSAPublicKey& aKey)
- {
- CDSAVerifier* self = new(ELeave)CDSAVerifier(aKey);
- return self;
- }
-
-EXPORT_C CDSAVerifier* CDSAVerifier::NewLC(const CDSAPublicKey& aKey)
- {
- CDSAVerifier* self = NewL(aKey);
- CleanupStack::PushL(self);
- return self;
- }
-
-TInt CDSAVerifier::MaxInputLength(void) const
- {
- // return CSHA1::DIGESTBYTES
- return 160;
- }
-
-TBool CDSAVerifier::VerifyL(const TDesC8& aInput,
- const CDSASignature& aSignature) const
- {
- //see HAC 11.56 or DSS section 6
- //I'll follow HAC as I like the description better
-
- // a) Obtain A's authenticate public key
-
- // b) Verify that 0 < r < q and 0 < s < q; if not reject signature
- if (aSignature.R() <= 0 || aSignature.R() >= iPublicKey.Q())
- {
- return EFalse;
- }
- if (aSignature.S() <= 0 || aSignature.S() >= iPublicKey.Q())
- {
- return EFalse;
- }
-
- TBool result = EFalse;
-
- // c) Compute w = s^(-1) mod q and h(m)
- RInteger w = aSignature.S().InverseModL(iPublicKey.Q());
- CleanupStack::PushL(w);
- // Note that in order to be interoperable, compliant with the DSS, and
- // secure, aInput must be the result of a SHA-1 hash
- RInteger hm = RInteger::NewL(aInput);
- CleanupStack::PushL(hm);
-
- // d) Compute u1 = w * hm mod q and u2 = r * w mod q
- RInteger u1 = TInteger::ModularMultiplyL(w, hm, iPublicKey.Q());
- CleanupStack::PushL(u1);
-
- RInteger u2 = TInteger::ModularMultiplyL(aSignature.R(), w, iPublicKey.Q());
- CleanupStack::PushL(u2);
-
- // e) Compute v = ((g^u1 * y^u2) mod p) mod q
- RInteger temp = TInteger::ModularExponentiateL(iPublicKey.G(), u1,
- iPublicKey.P());
- CleanupStack::PushL(temp);
- RInteger temp1 = TInteger::ModularExponentiateL(iPublicKey.Y(), u2,
- iPublicKey.P());
- CleanupStack::PushL(temp1);
- RInteger v = TInteger::ModularMultiplyL(temp, temp1, iPublicKey.P());
- CleanupStack::PushL(v);
- v %= iPublicKey.Q();
-
- // f) Accept the signature iff v == r
- if(v == aSignature.R())
- {
- result = ETrue;
- }
-
- CleanupStack::PopAndDestroy(&v);
- CleanupStack::PopAndDestroy(&temp1);
- CleanupStack::PopAndDestroy(&temp);
- CleanupStack::PopAndDestroy(&u2);
- CleanupStack::PopAndDestroy(&u1);
- CleanupStack::PopAndDestroy(&hm);
- CleanupStack::PopAndDestroy(&w);
-
- return result;
- }
-
-CDSAVerifier::CDSAVerifier(const CDSAPublicKey& aKey)
- : iPublicKey(aKey)
- {
- }
-