Move the Security package to EPL, and add the implementations of the cryptographic algorithms
/*
* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include <asymmetric.h>
#include <asymmetrickeys.h>
#include <bigint.h>
EXPORT_C CDSAVerifier* CDSAVerifier::NewL(const CDSAPublicKey& aKey)
{
CDSAVerifier* self = new(ELeave)CDSAVerifier(aKey);
return self;
}
EXPORT_C CDSAVerifier* CDSAVerifier::NewLC(const CDSAPublicKey& aKey)
{
CDSAVerifier* self = NewL(aKey);
CleanupStack::PushL(self);
return self;
}
TInt CDSAVerifier::MaxInputLength(void) const
{
// return CSHA1::DIGESTBYTES
return 160;
}
TBool CDSAVerifier::VerifyL(const TDesC8& aInput,
const CDSASignature& aSignature) const
{
//see HAC 11.56 or DSS section 6
//I'll follow HAC as I like the description better
// a) Obtain A's authenticate public key
// b) Verify that 0 < r < q and 0 < s < q; if not reject signature
if (aSignature.R() <= 0 || aSignature.R() >= iPublicKey.Q())
{
return EFalse;
}
if (aSignature.S() <= 0 || aSignature.S() >= iPublicKey.Q())
{
return EFalse;
}
TBool result = EFalse;
// c) Compute w = s^(-1) mod q and h(m)
RInteger w = aSignature.S().InverseModL(iPublicKey.Q());
CleanupStack::PushL(w);
// Note that in order to be interoperable, compliant with the DSS, and
// secure, aInput must be the result of a SHA-1 hash
RInteger hm = RInteger::NewL(aInput);
CleanupStack::PushL(hm);
// d) Compute u1 = w * hm mod q and u2 = r * w mod q
RInteger u1 = TInteger::ModularMultiplyL(w, hm, iPublicKey.Q());
CleanupStack::PushL(u1);
RInteger u2 = TInteger::ModularMultiplyL(aSignature.R(), w, iPublicKey.Q());
CleanupStack::PushL(u2);
// e) Compute v = ((g^u1 * y^u2) mod p) mod q
RInteger temp = TInteger::ModularExponentiateL(iPublicKey.G(), u1,
iPublicKey.P());
CleanupStack::PushL(temp);
RInteger temp1 = TInteger::ModularExponentiateL(iPublicKey.Y(), u2,
iPublicKey.P());
CleanupStack::PushL(temp1);
RInteger v = TInteger::ModularMultiplyL(temp, temp1, iPublicKey.P());
CleanupStack::PushL(v);
v %= iPublicKey.Q();
// f) Accept the signature iff v == r
if(v == aSignature.R())
{
result = ETrue;
}
CleanupStack::PopAndDestroy(&v);
CleanupStack::PopAndDestroy(&temp1);
CleanupStack::PopAndDestroy(&temp);
CleanupStack::PopAndDestroy(&u2);
CleanupStack::PopAndDestroy(&u1);
CleanupStack::PopAndDestroy(&hm);
CleanupStack::PopAndDestroy(&w);
return result;
}
CDSAVerifier::CDSAVerifier(const CDSAPublicKey& aKey)
: iPublicKey(aKey)
{
}