Move the Security package to EPL, and add the implementations of the cryptographic algorithms
/*
* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include <asymmetrickeys.h>
#include <bigint.h>
#include "../common/inlines.h"
const TUint KFermat4 = 65537;
/* CRSAParameters */
EXPORT_C const TInteger& CRSAParameters::N(void) const
{
return iN;
}
EXPORT_C CRSAParameters::~CRSAParameters(void)
{
iN.Close();
}
EXPORT_C CRSAParameters::CRSAParameters(RInteger& aN) : iN(aN)
{
}
EXPORT_C CRSAParameters::CRSAParameters(void)
{
}
/* CRSAPublicKey */
EXPORT_C CRSAPublicKey* CRSAPublicKey::NewL(RInteger& aN, RInteger& aE)
{
CRSAPublicKey* self = NewLC(aN, aE);
CleanupStack::Pop();
return self;
}
EXPORT_C CRSAPublicKey* CRSAPublicKey::NewLC(RInteger& aN, RInteger& aE)
{
CRSAPublicKey* self = new(ELeave) CRSAPublicKey(aN, aE);
CleanupStack::PushL(self);
self->ConstructL();
return self;
}
void CRSAPublicKey::ConstructL()
{
// Check that the modulus and exponent are positive integers
// as specified by RSA
if(!N().IsPositive() || !E().IsPositive() || (E() <= 1))
{
// If we need to leave during construction we must release ownership
// of the RInteger parameters that were passed in.
// These parameters should be on the cleanup stack so if we don't
// release ownership they will be deleted twice, causing a panic
iN = RInteger();
iE = RInteger();
User::Leave(KErrArgument);
}
}
EXPORT_C const TInteger& CRSAPublicKey::E(void) const
{
return iE;
}
EXPORT_C CRSAPublicKey::CRSAPublicKey()
{
}
EXPORT_C CRSAPublicKey::CRSAPublicKey(RInteger& aN, RInteger& aE)
: CRSAParameters(aN), iE(aE)
{
}
EXPORT_C CRSAPublicKey::~CRSAPublicKey(void)
{
iE.Close();
}
/* CRSAPrivateKeyType */
CRSAPrivateKey::CRSAPrivateKey(const TRSAPrivateKeyType aKeyType, RInteger& aN)
: CRSAParameters(aN), iKeyType(aKeyType)
{}
/* CRSAPrivateKeyStandard */
EXPORT_C CRSAPrivateKeyStandard* CRSAPrivateKeyStandard::NewL(RInteger& aN,
RInteger& aD)
{
CRSAPrivateKeyStandard* self = NewLC(aN, aD);
CleanupStack::Pop();
return self;
}
EXPORT_C CRSAPrivateKeyStandard* CRSAPrivateKeyStandard::NewLC(RInteger& aN,
RInteger& aD)
{
CRSAPrivateKeyStandard* self = new(ELeave) CRSAPrivateKeyStandard(aN, aD);
CleanupStack::PushL(self);
self->ConstructL();
return self;
}
void CRSAPrivateKeyStandard::ConstructL()
{
// Check that the modulus and exponent are positive integers
if(!N().IsPositive() || !D().IsPositive() || (D() <= 1))
{
// If we need to leave during construction we must release ownership
// of the RInteger parameters that were passed in.
// These parameters should be on the cleanup stack so if we don't
// release ownership they will be deleted twice, causing a panic
iN = RInteger();
iD = RInteger();
User::Leave(KErrArgument);
}
}
EXPORT_C const TInteger& CRSAPrivateKeyStandard::D(void) const
{
return iD;
}
EXPORT_C CRSAPrivateKeyStandard::CRSAPrivateKeyStandard(RInteger& aN,
RInteger& aD) : CRSAPrivateKey(EStandard, aN), iD(aD)
{
}
EXPORT_C CRSAPrivateKeyStandard::~CRSAPrivateKeyStandard()
{
iD.Close();
}
/* CRSAPrivateKeyCRT */
EXPORT_C CRSAPrivateKeyCRT* CRSAPrivateKeyCRT::NewL(RInteger& aN, RInteger& aP,
RInteger& aQ, RInteger& aDP, RInteger& aDQ, RInteger& aQInv)
{
CRSAPrivateKeyCRT* self = NewLC(aN, aP, aQ, aDP, aDQ, aQInv);
CleanupStack::Pop();
return self;
}
EXPORT_C CRSAPrivateKeyCRT* CRSAPrivateKeyCRT::NewLC(RInteger& aN, RInteger& aP,
RInteger& aQ, RInteger& aDP, RInteger& aDQ, RInteger& aQInv)
{
CRSAPrivateKeyCRT* self = new(ELeave) CRSAPrivateKeyCRT(aN, aP, aQ,
aDP, aDQ, aQInv);
CleanupStack::PushL(self);
self->ConstructL();
return self;
}
EXPORT_C CRSAPrivateKeyCRT::CRSAPrivateKeyCRT(RInteger& aN, RInteger& aP,
RInteger& aQ, RInteger& aDP, RInteger& aDQ, RInteger& aQInv)
: CRSAPrivateKey(EStandardCRT, aN), iP(aP), iQ(aQ), iDP(aDP), iDQ(aDQ),
iQInv(aQInv)
{
}
void CRSAPrivateKeyCRT::ConstructL()
{
// Check that all parameters are positive integers
if(!P().IsPositive() || !Q().IsPositive() || !DP().IsPositive()
|| !DQ().IsPositive() || !QInv().IsPositive())
{
// If we need to leave during construction we must release ownership
// of the RInteger parameters that were passed in.
// These parameters should be on the cleanup stack so if we don't
// release ownership they will be deleted twice, causing a panic
iN = RInteger();
iP = RInteger();
iQ = RInteger();
iDP = RInteger();
iDQ = RInteger();
iQInv = RInteger();
User::Leave(KErrArgument);
}
}
EXPORT_C CRSAPrivateKeyCRT::~CRSAPrivateKeyCRT()
{
iP.Close();
iQ.Close();
iDP.Close();
iDQ.Close();
iQInv.Close();
}
EXPORT_C const TInteger& CRSAPrivateKeyCRT::P(void) const
{
return iP;
}
EXPORT_C const TInteger& CRSAPrivateKeyCRT::Q(void) const
{
return iQ;
}
EXPORT_C const TInteger& CRSAPrivateKeyCRT::DP(void) const
{
return iDP;
}
EXPORT_C const TInteger& CRSAPrivateKeyCRT::DQ(void) const
{
return iDQ;
}
EXPORT_C const TInteger& CRSAPrivateKeyCRT::QInv(void) const
{
return iQInv;
}
/* CRSAKeyPair */
EXPORT_C CRSAKeyPair* CRSAKeyPair::NewL(TUint aModulusBits,
TRSAPrivateKeyType aKeyType /*= EStandardCRT*/)
{
CRSAKeyPair* self = NewLC(aModulusBits, aKeyType);
CleanupStack::Pop();
return self;
}
EXPORT_C CRSAKeyPair* CRSAKeyPair::NewLC(TUint aModulusBits,
TRSAPrivateKeyType aKeyType /*= EStandardCRT*/)
{
CRSAKeyPair* self = new(ELeave) CRSAKeyPair();
CleanupStack::PushL(self);
self->ConstructL(aModulusBits, aKeyType, KFermat4);
return self;
}
EXPORT_C const CRSAPublicKey& CRSAKeyPair::PublicKey(void) const
{
return *iPublic;
}
EXPORT_C const CRSAPrivateKey& CRSAKeyPair::PrivateKey(void) const
{
return *iPrivate;
}
EXPORT_C CRSAKeyPair::~CRSAKeyPair(void)
{
delete iPublic;
delete iPrivate;
}
EXPORT_C CRSAKeyPair::CRSAKeyPair(void)
{
}
void CRSAKeyPair::ConstructL(TUint aModulusBits,
TRSAPrivateKeyType aKeyType, TUint aPublicExponent)
{
RInteger e = RInteger::NewL(aPublicExponent);
CleanupStack::PushL(e);
RInteger p;
RInteger q;
//these make sure n is a least aModulusBits long
TInt pbits=(aModulusBits+1)/2;
TInt qbits=aModulusBits-pbits;
//generate a prime p such that GCD(e,p-1) == 1
for (;;)
{
p = RInteger::NewPrimeL(pbits,TInteger::ETop2BitsSet);
CleanupStack::PushL(p);
--p;
RInteger gcd = e.GCDL(p);
if( gcd == 1 )
{
++p;
gcd.Close();
//p is still on cleanup stack
break;
}
CleanupStack::PopAndDestroy(&p);
gcd.Close();
}
//generate a prime q such that GCD(e,q-1) == 1 && (p != q)
for (;;)
{
q = RInteger::NewPrimeL(qbits,TInteger::ETop2BitsSet);
CleanupStack::PushL(q);
--q;
RInteger gcd = e.GCDL(q);
if( gcd == 1 )
{
++q;
if( p != q )
{
gcd.Close();
//q is still on cleanup stack
break;
}
}
CleanupStack::PopAndDestroy(&q);
gcd.Close();
}
//make sure p > q
if ( p < q)
{
TClassSwap(p,q);
}
//calculate n = p * q
RInteger n = p.TimesL(q);
CleanupStack::PushL(n);
--p;
--q;
//temp = (p-1)(q-1)
RInteger temp = p.TimesL(q);
CleanupStack::PushL(temp);
//e * d = 1 mod ((p-1)(q-1))
//d = e^(-1) mod ((p-1)(q-1))
RInteger d = e.InverseModL(temp);
CleanupStack::PopAndDestroy(&temp); //temp
CleanupStack::PushL(d);
if (aKeyType==EStandardCRT)
{
//calculate dP = d mod (p-1)
RInteger dP = d.ModuloL(p); //p is still p-1
CleanupStack::PushL(dP);
//calculate dQ = d mod (q-1)
RInteger dQ = d.ModuloL(q); //q is still q-1
CleanupStack::PushL(dQ);
++p;
++q;
//calculate inverse of qInv = q^(-1)mod(p)
RInteger qInv = q.InverseModL(p);
CleanupStack::PushL(qInv);
iPrivate = CRSAPrivateKeyCRT::NewL(n,p,q,dP,dQ,qInv);
CleanupStack::Pop(3, &dP); //qInv, dQ, dP
CleanupStack::PopAndDestroy(&d); //d
CleanupStack::Pop(3, &p); //n, q, p
//e is still on cleanup stack
}
else if (aKeyType==EStandard)
{
iPrivate = CRSAPrivateKeyStandard::NewL(n,d);
CleanupStack::Pop(2, &n); //d, n
CleanupStack::PopAndDestroy(2, &p); //q, p
//e is still on cleanup stack
}
else
{
User::Leave(KErrNotSupported);
}
//make a copy of n for the public parameters
RInteger n1 = RInteger::NewL(PrivateKey().N());
CleanupStack::PushL(n1);
iPublic = CRSAPublicKey::NewL(n1,e);
CleanupStack::Pop(2, &e); //n1, e
}