Move the Security package to EPL, and add the implementations of the cryptographic algorithms
/*
* Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
* Common implementation of SHA224 and SHA256
* RFC 4634 (US Secure Hash Algorithms (SHA and HMAC-SHA))
*
*/
/**
@file
*/
#include "sha224and256.h"
/**
* SHA256 Constants
*
* SHA-256 uses a sequence of sixty-four constant 32-bit words.
* These words represent the first thirty-two bits of the fractional
* parts of the cube roots of the first sixtyfour prime numbers.
*
* FIPS 180-2 Section 4.2.2
*/
const TUint K[64] =
{
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
/**
* Define the SHA SIGMA and sigma macros
*
* FIPS 180-2 section 4.1.2
*/
// Equation 4.4
inline TUint SHA256_SIGMA0(TUint aWord)
{
return (SHA_ROTR<TUint>( 2,aWord) ^ SHA_ROTR<TUint>(13,aWord) ^ SHA_ROTR<TUint>(22,aWord));
}
// Equation 4.5
inline TUint SHA256_SIGMA1(TUint aWord)
{
return (SHA_ROTR<TUint>( 6,aWord) ^ SHA_ROTR<TUint>(11,aWord) ^ SHA_ROTR<TUint>(25,aWord));
}
// Equation 4.6
inline TUint SHA256_sigma0(TUint aWord)
{
return (SHA_ROTR<TUint>( 7,aWord) ^ SHA_ROTR<TUint>(18,aWord) ^ SHA_SHR<TUint>( 3,aWord));
}
// Equation 4.7
inline TUint SHA256_sigma1(TUint aWord)
{
return (SHA_ROTR<TUint>(17,aWord) ^ SHA_ROTR<TUint>(19,aWord) ^ SHA_SHR<TUint>(10,aWord));
}
// Macros
inline TUint MakeWord(const TUint8* aData)
{
return (aData[0] << 24 | aData[1] << 16 | aData[2] << 8 | aData[3]);
}
CSHA224And256* CSHA224And256::NewL()
{
CSHA224And256* self=new (ELeave) CSHA224And256();
return self;
}
CSHA224And256::CSHA224And256() : iHash(KSHA256HashSize)
{
}
CSHA224And256::CSHA224And256(const CSHA224And256& aSHAImpl)
: iHash(aSHAImpl.iHash),
iA(aSHAImpl.iA),
iB(aSHAImpl.iB),
iC(aSHAImpl.iC),
iD(aSHAImpl.iD),
iE(aSHAImpl.iE),
iF(aSHAImpl.iF),
iG(aSHAImpl.iG),
iH(aSHAImpl.iH),
iNl(aSHAImpl.iNl),
iNh(aSHAImpl.iNh)
{
Mem::Copy(iData, aSHAImpl.iData, KSHA256BlockSize*sizeof(TUint));
}
void CSHA224And256::Reset(const TAny* aValArray)
{
const TUint* values = static_cast<const TUint*>(aValArray);
iA=values[0];
iB=values[1];
iC=values[2];
iD=values[3];
iE=values[4];
iF=values[5];
iG=values[6];
iH=values[7];
iNh=0;
iNl=0;
}
// This assumes a big-endian architecture
void CSHA224And256::Update(const TUint8* aData,TUint aLength)
{
while((aLength / 4) > 0 && (iNl % 4 == 0))
{
iData[iNl>>2] = MakeWord(aData);
iNl+=4;
aData+=4;
aLength-=4;
if(iNl==KSHA256BlockSize)
{
Block();
AddLength(KSHA256BlockSize);
}
}
while(aLength--)
{
if(!(iNl&0x03))
{
iData[iNl >> 2] = 0;
}
iData[iNl >> 2] |= *aData << ((3 - iNl&0x03) << 3) ;
++aData;
++iNl;
if(iNl==KSHA256BlockSize)
{
Block();
AddLength(KSHA256BlockSize);
}
}
}
//This function will panic if the total input length is longer than 2^64 in bits
_LIT(KPanicString, "Message length exceeds supported length");
inline void CSHA224And256::AddLength(const TUint aLength)
{
TUint64 temp = iNh;
iNh += aLength << 3;
__ASSERT_ALWAYS((temp <= iNh), User::Panic(KPanicString, KErrOverflow));
}
static inline void CSHA256_16( const TUint aA,
const TUint aB,
const TUint aC,
TUint& aD,
const TUint aE,
const TUint aF,
const TUint aG,
TUint& aH,
TUint aTemp1,
TUint aTemp2,
const TUint aK,
const TUint aWord)
{
aTemp1 = aH + SHA256_SIGMA1(aE) + SHA_Ch(aE,aF,aG) + aK + aWord;
aTemp2 = SHA256_SIGMA0(aA) + SHA_Maj(aA,aB,aC);
aD = aD + aTemp1;
aH = aTemp1 + aTemp2;
}
static inline void CSHA256_48( const TUint aA,
const TUint aB,
const TUint aC,
TUint& aD,
const TUint aE,
const TUint aF,
const TUint aG,
TUint& aH,
TUint aTemp1,
TUint aTemp2,
const TUint aK,
TUint& aWord0,
const TUint aWord2,
const TUint aWord7,
const TUint aWord15,
const TUint aWord16)
{
aWord0 = SHA256_sigma1(aWord2) + aWord7 + SHA256_sigma0(aWord15) + aWord16;
CSHA256_16(aA, aB, aC, aD, aE, aF, aG, aH, aTemp1, aTemp2, aK, aWord0);
}
/**
* This function actually calculates the hash.
* Function is defined in FIPS 180-2 section 6.2.2
*
* This function is the expanded version of the following loop.
* for(TUint i = 0; i < 64; ++i)
* {
* if(i >= 16)
* {
* iData[i] = SHA256_sigma1(iData[i-2]) + iData[i-7] + SHA256_sigma0(iData[i-15]) + iData[i-16];
* }
*
* temp1 = tempH + SHA256_SIGMA1(tempE) + SHA_Ch(tempE,tempF,tempG) + K[i] + iData[i];
* temp2 = SHA256_SIGMA0(tempA) + SHA_Maj(tempA,tempB,tempC);
* tempH = tempG;
* tempG = tempF;
* tempF = tempE;
* tempE = tempD + temp1;
* tempD = tempC;
* tempC = tempB;
* tempB = tempA;
* tempA = temp1 + temp2;
* }
*/
void CSHA224And256::Block()
{
TUint tempA=iA;
TUint tempB=iB;
TUint tempC=iC;
TUint tempD=iD;
TUint tempE=iE;
TUint tempF=iF;
TUint tempG=iG;
TUint tempH=iH;
TUint temp1=0;
TUint temp2=0;
CSHA256_16(tempA,tempB,tempC,tempD,tempE,tempF,tempG,tempH,temp1,temp2,K[0],iData[0]);
CSHA256_16(tempH,tempA,tempB,tempC,tempD,tempE,tempF,tempG,temp1,temp2,K[1],iData[1]);
CSHA256_16(tempG,tempH,tempA,tempB,tempC,tempD,tempE,tempF,temp1,temp2,K[2],iData[2]);
CSHA256_16(tempF,tempG,tempH,tempA,tempB,tempC,tempD,tempE,temp1,temp2,K[3],iData[3]);
CSHA256_16(tempE,tempF,tempG,tempH,tempA,tempB,tempC,tempD,temp1,temp2,K[4],iData[4]);
CSHA256_16(tempD,tempE,tempF,tempG,tempH,tempA,tempB,tempC,temp1,temp2,K[5],iData[5]);
CSHA256_16(tempC,tempD,tempE,tempF,tempG,tempH,tempA,tempB,temp1,temp2,K[6],iData[6]);
CSHA256_16(tempB,tempC,tempD,tempE,tempF,tempG,tempH,tempA,temp1,temp2,K[7],iData[7]);
CSHA256_16(tempA,tempB,tempC,tempD,tempE,tempF,tempG,tempH,temp1,temp2,K[8],iData[8]);
CSHA256_16(tempH,tempA,tempB,tempC,tempD,tempE,tempF,tempG,temp1,temp2,K[9],iData[9]);
CSHA256_16(tempG,tempH,tempA,tempB,tempC,tempD,tempE,tempF,temp1,temp2,K[10],iData[10]);
CSHA256_16(tempF,tempG,tempH,tempA,tempB,tempC,tempD,tempE,temp1,temp2,K[11],iData[11]);
CSHA256_16(tempE,tempF,tempG,tempH,tempA,tempB,tempC,tempD,temp1,temp2,K[12],iData[12]);
CSHA256_16(tempD,tempE,tempF,tempG,tempH,tempA,tempB,tempC,temp1,temp2,K[13],iData[13]);
CSHA256_16(tempC,tempD,tempE,tempF,tempG,tempH,tempA,tempB,temp1,temp2,K[14],iData[14]);
CSHA256_16(tempB,tempC,tempD,tempE,tempF,tempG,tempH,tempA,temp1,temp2,K[15],iData[15]);
CSHA256_48( tempA, tempB, tempC, tempD, tempE, tempF, tempG, tempH, temp1, temp2,
K[16], iData[16], iData[14], iData[9], iData[1], iData[0]);
CSHA256_48( tempH, tempA, tempB, tempC, tempD, tempE, tempF, tempG, temp1, temp2,
K[17], iData[17], iData[15], iData[10], iData[2], iData[1]);
CSHA256_48( tempG, tempH, tempA, tempB, tempC, tempD, tempE, tempF, temp1, temp2,
K[18], iData[18], iData[16], iData[11], iData[3], iData[2]);
CSHA256_48( tempF, tempG, tempH, tempA, tempB, tempC, tempD, tempE, temp1, temp2,
K[19], iData[19], iData[17], iData[12], iData[4], iData[3]);
CSHA256_48( tempE, tempF, tempG, tempH, tempA, tempB, tempC, tempD, temp1, temp2,
K[20], iData[20], iData[18], iData[13], iData[5], iData[4]);
CSHA256_48( tempD, tempE, tempF, tempG, tempH, tempA, tempB, tempC, temp1, temp2,
K[21], iData[21], iData[19], iData[14], iData[6], iData[5]);
CSHA256_48( tempC, tempD, tempE, tempF, tempG, tempH, tempA, tempB, temp1, temp2,
K[22], iData[22], iData[20], iData[15], iData[7], iData[6]);
CSHA256_48( tempB, tempC, tempD, tempE, tempF, tempG, tempH, tempA, temp1, temp2,
K[23], iData[23], iData[21], iData[16], iData[8], iData[7]);
CSHA256_48( tempA, tempB, tempC, tempD, tempE, tempF, tempG, tempH, temp1, temp2,
K[24], iData[24], iData[22], iData[17], iData[9], iData[8]);
CSHA256_48( tempH, tempA, tempB, tempC, tempD, tempE, tempF, tempG, temp1, temp2,
K[25], iData[25], iData[23], iData[18], iData[10], iData[9]);
CSHA256_48( tempG, tempH, tempA, tempB, tempC, tempD, tempE, tempF, temp1, temp2,
K[26], iData[26], iData[24], iData[19], iData[11], iData[10]);
CSHA256_48( tempF, tempG, tempH, tempA, tempB, tempC, tempD, tempE, temp1, temp2,
K[27], iData[27], iData[25], iData[20], iData[12], iData[11]);
CSHA256_48( tempE, tempF, tempG, tempH, tempA, tempB, tempC, tempD, temp1, temp2,
K[28], iData[28], iData[26], iData[21], iData[13], iData[12]);
CSHA256_48( tempD, tempE, tempF, tempG, tempH, tempA, tempB, tempC, temp1, temp2,
K[29], iData[29], iData[27], iData[22], iData[14], iData[13]);
CSHA256_48( tempC, tempD, tempE, tempF, tempG, tempH, tempA, tempB, temp1, temp2,
K[30], iData[30], iData[28], iData[23], iData[15], iData[14]);
CSHA256_48( tempB, tempC, tempD, tempE, tempF, tempG, tempH, tempA, temp1, temp2,
K[31], iData[31], iData[29], iData[24], iData[16], iData[15]);
CSHA256_48( tempA, tempB, tempC, tempD, tempE, tempF, tempG, tempH, temp1, temp2,
K[32], iData[32], iData[30], iData[25], iData[17], iData[16]);
CSHA256_48( tempH, tempA, tempB, tempC, tempD, tempE, tempF, tempG, temp1, temp2,
K[33], iData[33], iData[31], iData[26], iData[18], iData[17]);
CSHA256_48( tempG, tempH, tempA, tempB, tempC, tempD, tempE, tempF, temp1, temp2,
K[34], iData[34], iData[32], iData[27], iData[19], iData[18]);
CSHA256_48( tempF, tempG, tempH, tempA, tempB, tempC, tempD, tempE, temp1, temp2,
K[35], iData[35], iData[33], iData[28], iData[20], iData[19]);
CSHA256_48( tempE, tempF, tempG, tempH, tempA, tempB, tempC, tempD, temp1, temp2,
K[36], iData[36], iData[34], iData[29], iData[21], iData[20]);
CSHA256_48( tempD, tempE, tempF, tempG, tempH, tempA, tempB, tempC, temp1, temp2,
K[37], iData[37], iData[35], iData[30], iData[22], iData[21]);
CSHA256_48( tempC, tempD, tempE, tempF, tempG, tempH, tempA, tempB, temp1, temp2,
K[38], iData[38], iData[36], iData[31], iData[23], iData[22]);
CSHA256_48( tempB, tempC, tempD, tempE, tempF, tempG, tempH, tempA, temp1, temp2,
K[39], iData[39], iData[37], iData[32], iData[24], iData[23]);
CSHA256_48( tempA, tempB, tempC, tempD, tempE, tempF, tempG, tempH, temp1, temp2,
K[40], iData[40], iData[38], iData[33], iData[25], iData[24]);
CSHA256_48( tempH, tempA, tempB, tempC, tempD, tempE, tempF, tempG, temp1, temp2,
K[41], iData[41], iData[39], iData[34], iData[26], iData[25]);
CSHA256_48( tempG, tempH, tempA, tempB, tempC, tempD, tempE, tempF, temp1, temp2,
K[42], iData[42], iData[40], iData[35], iData[27], iData[26]);
CSHA256_48( tempF, tempG, tempH, tempA, tempB, tempC, tempD, tempE, temp1, temp2,
K[43], iData[43], iData[41], iData[36], iData[28], iData[27]);
CSHA256_48( tempE, tempF, tempG, tempH, tempA, tempB, tempC, tempD, temp1, temp2,
K[44], iData[44], iData[42], iData[37], iData[29], iData[28]);
CSHA256_48( tempD, tempE, tempF, tempG, tempH, tempA, tempB, tempC, temp1, temp2,
K[45], iData[45], iData[43], iData[38], iData[30], iData[29]);
CSHA256_48( tempC, tempD, tempE, tempF, tempG, tempH, tempA, tempB, temp1, temp2,
K[46], iData[46], iData[44], iData[39], iData[31], iData[30]);
CSHA256_48( tempB, tempC, tempD, tempE, tempF, tempG, tempH, tempA, temp1, temp2,
K[47], iData[47], iData[45], iData[40], iData[32], iData[31]);
CSHA256_48( tempA, tempB, tempC, tempD, tempE, tempF, tempG, tempH, temp1, temp2,
K[48], iData[48], iData[46], iData[41], iData[33], iData[32]);
CSHA256_48( tempH, tempA, tempB, tempC, tempD, tempE, tempF, tempG, temp1, temp2,
K[49], iData[49], iData[47], iData[42], iData[34], iData[33]);
CSHA256_48( tempG, tempH, tempA, tempB, tempC, tempD, tempE, tempF, temp1, temp2,
K[50], iData[50], iData[48], iData[43], iData[35], iData[34]);
CSHA256_48( tempF, tempG, tempH, tempA, tempB, tempC, tempD, tempE, temp1, temp2,
K[51], iData[51], iData[49], iData[44], iData[36], iData[35]);
CSHA256_48( tempE, tempF, tempG, tempH, tempA, tempB, tempC, tempD, temp1, temp2,
K[52], iData[52], iData[50], iData[45], iData[37], iData[36]);
CSHA256_48( tempD, tempE, tempF, tempG, tempH, tempA, tempB, tempC, temp1, temp2,
K[53], iData[53], iData[51], iData[46], iData[38], iData[37]);
CSHA256_48( tempC, tempD, tempE, tempF, tempG, tempH, tempA, tempB, temp1, temp2,
K[54], iData[54], iData[52], iData[47], iData[39], iData[38]);
CSHA256_48( tempB, tempC, tempD, tempE, tempF, tempG, tempH, tempA, temp1, temp2,
K[55], iData[55], iData[53], iData[48], iData[40], iData[39]);
CSHA256_48( tempA, tempB, tempC, tempD, tempE, tempF, tempG, tempH, temp1, temp2,
K[56], iData[56], iData[54], iData[49], iData[41], iData[40]);
CSHA256_48( tempH, tempA, tempB, tempC, tempD, tempE, tempF, tempG, temp1, temp2,
K[57], iData[57], iData[55], iData[50], iData[42], iData[41]);
CSHA256_48( tempG, tempH, tempA, tempB, tempC, tempD, tempE, tempF, temp1, temp2,
K[58], iData[58], iData[56], iData[51], iData[43], iData[42]);
CSHA256_48( tempF, tempG, tempH, tempA, tempB, tempC, tempD, tempE, temp1, temp2,
K[59], iData[59], iData[57], iData[52], iData[44], iData[43]);
CSHA256_48( tempE, tempF, tempG, tempH, tempA, tempB, tempC, tempD, temp1, temp2,
K[60], iData[60], iData[58], iData[53], iData[45], iData[44]);
CSHA256_48( tempD, tempE, tempF, tempG, tempH, tempA, tempB, tempC, temp1, temp2,
K[61], iData[61], iData[59], iData[54], iData[46], iData[45]);
CSHA256_48( tempC, tempD, tempE, tempF, tempG, tempH, tempA, tempB, temp1, temp2,
K[62], iData[62], iData[60], iData[55], iData[47], iData[46]);
CSHA256_48( tempB, tempC, tempD, tempE, tempF, tempG, tempH, tempA, temp1, temp2,
K[63], iData[63], iData[61], iData[56], iData[48], iData[47]);
iA+=tempA;
iB+=tempB;
iC+=tempC;
iD+=tempD;
iE+=tempE;
iF+=tempF;
iG+=tempG;
iH+=tempH;
iNl=0;
}
/**
* According to the standard, the message must be padded to an
* even 512 bits. The first padding bit must be a '1'. The last
* 64 bits represent the length of the original message. All bits
* in between should be 0. This helper function will pad the
* message according to those rules by filling the iData array
* accordingly.
*/
void CSHA224And256::PadMessage()
{
const TUint padByte = 0x80;
if(!(iNl&0x03))
{
iData[iNl >> 2] = 0;
}
iData[iNl >> 2] |= padByte << ((3 - iNl&0x03) << 3) ;
if (iNl >= (KSHA256BlockSize - 2*sizeof(TUint)))
{
if (iNl < (KSHA256BlockSize - sizeof(TUint)))
iData[(KSHA256BlockSize >> 2) - 1]=0;
Block();
Mem::FillZ(iData, KSHA256BlockSize);
}
else
{
const TUint offset=(iNl+4)>>2; //+4 to account for the word added in the
//switch statement above
Mem::FillZ(iData+offset,(KSHA256BlockSize - offset*sizeof(TUint)));
}
//Length in bits
TUint64 msgLength = iNh;
iData[(KSHA256BlockSize >> 2) - 2] = (msgLength) >> 32;
iData[(KSHA256BlockSize >> 2) - 1] = (msgLength & 0xFFFFFFFF);
}
inline void CSHA224And256::CopyWordToHash(TUint aVal, TUint aIndex)
{
TUint value = MakeWord(reinterpret_cast<TUint8*>(&aVal));
Mem::Copy(const_cast<TUint8*>(iHash.Ptr())+ (4*aIndex), &value, sizeof(aVal));
}
const TDes8& CSHA224And256::Final()
{
AddLength(iNl);
PadMessage();
Block();
//
// Generate hash value into iHash
//
CopyWordToHash(iA, 0);
CopyWordToHash(iB, 1);
CopyWordToHash(iC, 2);
CopyWordToHash(iD, 3);
CopyWordToHash(iE, 4);
CopyWordToHash(iF, 5);
CopyWordToHash(iG, 6);
CopyWordToHash(iH, 7);
return iHash;
}
void CSHA224And256::RestoreState()
{
iA = iACopy;
iB = iBCopy;
iC = iCCopy;
iD = iDCopy;
iE = iECopy;
iF = iFCopy;
iG = iGCopy;
iH = iHCopy;
iNl = iNlCopy;
iNh = iNhCopy;
Mem::Copy(iData, iDataCopy, KSHA256BlockSize*sizeof(TUint));
}
void CSHA224And256::StoreState()
{
iACopy = iA;
iBCopy = iB;
iCCopy = iC;
iDCopy = iD;
iECopy = iE;
iFCopy = iF;
iGCopy = iG;
iHCopy = iH;
iNlCopy = iNl;
iNhCopy = iNh;
Mem::Copy(iDataCopy, iData, KSHA256BlockSize*sizeof(TUint));
}
// Implemented in hmacimpl.cpp or softwarehashbase.cpp
// but required as derived from MHash. No coverage here.
#ifdef _BullseyeCoverage
#pragma suppress_warnings on
#pragma BullseyeCoverage off
#pragma suppress_warnings off
#endif