Move the Security package to EPL, and add the implementations of the cryptographic algorithms
/*
* Copyright (c) 2002-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include "rijndael.h"
#include "rijndaeltables.h"
#include "../common/inlines.h"
#include <cryptostrength.h>
const TUint KAESKeyBytes128 = 16;
const TUint KAESKeyBytes192 = 24;
const TUint KAESKeyBytes256 = 32;
const TUint KAESBlockBytes = 16;
/* CRijndael */
EXPORT_C CRijndael::CRijndael(void)
{
}
void CRijndael::Reset()
{
SetKey(*iKey);
}
TInt CRijndael::KeySize() const
{
return (4*(iRounds+1));
}
CRijndael::~CRijndael()
{
delete iKey;
}
void CRijndael::ConstructL(const TDesC8& aKey)
{
TUint keySize = aKey.Size();
assert((keySize==KAESKeyBytes128)||(keySize==KAESKeyBytes192)||(keySize==KAESKeyBytes256));
iKey = aKey.AllocL();
iRounds = keySize/4 + 6;
SetKey(aKey);
}
void CRijndael::SetKey(const TDesC8& aKey)
{
TUint keySize = aKey.Size();
TUint32 temp;
TUint32* rk = &iK[0];
TUint i = 0;
GetUserKeyBigEndian(rk, keySize/4, &aKey[0], keySize);
switch(keySize)
{
case (KAESKeyBytes128):
{
FOREVER
{
temp = rk[3];
rk[4] = rk[0] ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 2)] & 0xff000000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 1)] & 0x00ff0000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 0)] & 0x0000ff00) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 3)] & 0x000000ff) ^
RIJNDAEL_TABLE::rcon[i];
rk[5] = rk[1] ^ rk[4];
rk[6] = rk[2] ^ rk[5];
rk[7] = rk[3] ^ rk[6];
if (++i == 10)
break;
rk += 4;
}
}
break;
case (KAESKeyBytes192):
{
FOREVER
{
temp = rk[ 5];
rk[ 6] = rk[ 0] ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 2)] & 0xff000000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 1)] & 0x00ff0000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 0)] & 0x0000ff00) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 3)] & 0x000000ff) ^
RIJNDAEL_TABLE::rcon[i];
rk[ 7] = rk[ 1] ^ rk[ 6];
rk[ 8] = rk[ 2] ^ rk[ 7];
rk[ 9] = rk[ 3] ^ rk[ 8];
if (++i == 8)
break;
rk[10] = rk[ 4] ^ rk[ 9];
rk[11] = rk[ 5] ^ rk[10];
rk += 6;
}
}
break;
case (KAESKeyBytes256):
{
FOREVER
{
temp = rk[ 7];
rk[ 8] = rk[ 0] ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 2)] & 0xff000000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 1)] & 0x00ff0000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 0)] & 0x0000ff00) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 3)] & 0x000000ff) ^
RIJNDAEL_TABLE::rcon[i];
rk[ 9] = rk[ 1] ^ rk[ 8];
rk[10] = rk[ 2] ^ rk[ 9];
rk[11] = rk[ 3] ^ rk[10];
if (++i == 7)
break;
temp = rk[11];
rk[12] = rk[ 4] ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 3)] & 0xff000000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 2)] & 0x00ff0000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 1)] & 0x0000ff00) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(temp, 0)] & 0x000000ff);
rk[13] = rk[ 5] ^ rk[12];
rk[14] = rk[ 6] ^ rk[13];
rk[15] = rk[ 7] ^ rk[14];
rk += 8;
}
}
break;
default:
assert(0); // Shouldn't get here, keeps compiler happy
}
}
/* CAESEncryptor */
EXPORT_C CAESEncryptor* CAESEncryptor::NewL(const TDesC8& aKey)
{
CAESEncryptor* me = CAESEncryptor::NewLC(aKey);
CleanupStack::Pop(me);
return (me);
}
EXPORT_C CAESEncryptor* CAESEncryptor::NewLC(const TDesC8& aKey)
{
CAESEncryptor* me = new (ELeave) CAESEncryptor();
CleanupStack::PushL(me);
me->ConstructL(aKey);
TCrypto::IsSymmetricWeakEnoughL(BytesToBits(aKey.Size()));
return (me);
}
TInt CAESEncryptor::BlockSize() const
{
return KAESBlockBytes;
}
void CAESEncryptor::Transform(TDes8& aBlock)
{
assert((TUint)aBlock.Size()==KAESBlockBytes);
TUint32 s0, s1, s2, s3, t0, t1, t2, t3;
const TUint32* rk = &iK[0];
/*
* map byte array block to cipher state
* and add initial round key:
*/
GetBlockBigEndian((TUint8*)&aBlock[0], s0, s1, s2, s3);
s0 ^= rk[0];
s1 ^= rk[1];
s2 ^= rk[2];
s3 ^= rk[3];
/*
* Nr - 1 full rounds:
*/
TUint r = iRounds >> 1;
FOREVER
{
t0 =
RIJNDAEL_TABLE::Te0[GETBYTE(s0, 3)] ^
RIJNDAEL_TABLE::Te1[GETBYTE(s1, 2)] ^
RIJNDAEL_TABLE::Te2[GETBYTE(s2, 1)] ^
RIJNDAEL_TABLE::Te3[GETBYTE(s3, 0)] ^
rk[4];
t1 =
RIJNDAEL_TABLE::Te0[GETBYTE(s1, 3)] ^
RIJNDAEL_TABLE::Te1[GETBYTE(s2, 2)] ^
RIJNDAEL_TABLE::Te2[GETBYTE(s3, 1)] ^
RIJNDAEL_TABLE::Te3[GETBYTE(s0, 0)] ^
rk[5];
t2 =
RIJNDAEL_TABLE::Te0[GETBYTE(s2, 3)] ^
RIJNDAEL_TABLE::Te1[GETBYTE(s3, 2)] ^
RIJNDAEL_TABLE::Te2[GETBYTE(s0, 1)] ^
RIJNDAEL_TABLE::Te3[GETBYTE(s1, 0)] ^
rk[6];
t3 =
RIJNDAEL_TABLE::Te0[GETBYTE(s3, 3)] ^
RIJNDAEL_TABLE::Te1[GETBYTE(s0, 2)] ^
RIJNDAEL_TABLE::Te2[GETBYTE(s1, 1)] ^
RIJNDAEL_TABLE::Te3[GETBYTE(s2, 0)] ^
rk[7];
rk += 8;
if (--r == 0)
break;
s0 =
RIJNDAEL_TABLE::Te0[GETBYTE(t0, 3)] ^
RIJNDAEL_TABLE::Te1[GETBYTE(t1, 2)] ^
RIJNDAEL_TABLE::Te2[GETBYTE(t2, 1)] ^
RIJNDAEL_TABLE::Te3[GETBYTE(t3, 0)] ^
rk[0];
s1 =
RIJNDAEL_TABLE::Te0[GETBYTE(t1, 3)] ^
RIJNDAEL_TABLE::Te1[GETBYTE(t2, 2)] ^
RIJNDAEL_TABLE::Te2[GETBYTE(t3, 1)] ^
RIJNDAEL_TABLE::Te3[GETBYTE(t0, 0)] ^
rk[1];
s2 =
RIJNDAEL_TABLE::Te0[GETBYTE(t2, 3)] ^
RIJNDAEL_TABLE::Te1[GETBYTE(t3, 2)] ^
RIJNDAEL_TABLE::Te2[GETBYTE(t0, 1)] ^
RIJNDAEL_TABLE::Te3[GETBYTE(t1, 0)] ^
rk[2];
s3 =
RIJNDAEL_TABLE::Te0[GETBYTE(t3, 3)] ^
RIJNDAEL_TABLE::Te1[GETBYTE(t0, 2)] ^
RIJNDAEL_TABLE::Te2[GETBYTE(t1, 1)] ^
RIJNDAEL_TABLE::Te3[GETBYTE(t2, 0)] ^
rk[3];
}
/*
* apply last round and
* map cipher state to byte array block:
*/
s0 =
(RIJNDAEL_TABLE::Te4[GETBYTE(t0, 3)] & 0xff000000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(t1, 2)] & 0x00ff0000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(t2, 1)] & 0x0000ff00) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(t3, 0)] & 0x000000ff) ^
rk[0];
s1 =
(RIJNDAEL_TABLE::Te4[GETBYTE(t1, 3)] & 0xff000000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(t2, 2)] & 0x00ff0000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(t3, 1)] & 0x0000ff00) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(t0, 0)] & 0x000000ff) ^
rk[1];
s2 =
(RIJNDAEL_TABLE::Te4[GETBYTE(t2, 3)] & 0xff000000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(t3, 2)] & 0x00ff0000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(t0, 1)] & 0x0000ff00) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(t1, 0)] & 0x000000ff) ^
rk[2];
s3 =
(RIJNDAEL_TABLE::Te4[GETBYTE(t3, 3)] & 0xff000000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(t0, 2)] & 0x00ff0000) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(t1, 1)] & 0x0000ff00) ^
(RIJNDAEL_TABLE::Te4[GETBYTE(t2, 0)] & 0x000000ff) ^
rk[3];
PutBlockBigEndian((TUint8*)&aBlock[0], s0, s1, s2, s3);
}
CAESEncryptor::CAESEncryptor(void)
{
}
/* CAESDecryptor */
EXPORT_C CAESDecryptor* CAESDecryptor::NewL(const TDesC8& aKey)
{
CAESDecryptor* me = CAESDecryptor::NewLC(aKey);
CleanupStack::Pop(me);
return (me);
}
EXPORT_C CAESDecryptor* CAESDecryptor::NewLC(const TDesC8& aKey)
{
CAESDecryptor* me = new (ELeave) CAESDecryptor();
CleanupStack::PushL(me);
me->ConstructL(aKey);
TCrypto::IsSymmetricWeakEnoughL(BytesToBits(aKey.Size()));
return (me);
}
TInt CAESDecryptor::BlockSize() const
{
return KAESBlockBytes;
}
void CAESDecryptor::Transform(TDes8& aBlock)
{
TUint32 s0, s1, s2, s3, t0, t1, t2, t3;
const TUint32* rk = &iK[0];
/*
* map byte array block to cipher state
* and add initial round key:
*/
GetBlockBigEndian((TUint8*)&aBlock[0], s0, s1, s2, s3);
s0 ^= rk[0];
s1 ^= rk[1];
s2 ^= rk[2];
s3 ^= rk[3];
/*
* Nr - 1 full rounds:
*/
TUint r = iRounds >> 1;
FOREVER
{
t0 =
RIJNDAEL_TABLE::Td0[GETBYTE(s0, 3)] ^
RIJNDAEL_TABLE::Td1[GETBYTE(s3, 2)] ^
RIJNDAEL_TABLE::Td2[GETBYTE(s2, 1)] ^
RIJNDAEL_TABLE::Td3[GETBYTE(s1, 0)] ^
rk[4];
t1 =
RIJNDAEL_TABLE::Td0[GETBYTE(s1, 3)] ^
RIJNDAEL_TABLE::Td1[GETBYTE(s0, 2)] ^
RIJNDAEL_TABLE::Td2[GETBYTE(s3, 1)] ^
RIJNDAEL_TABLE::Td3[GETBYTE(s2, 0)] ^
rk[5];
t2 =
RIJNDAEL_TABLE::Td0[GETBYTE(s2, 3)] ^
RIJNDAEL_TABLE::Td1[GETBYTE(s1, 2)] ^
RIJNDAEL_TABLE::Td2[GETBYTE(s0, 1)] ^
RIJNDAEL_TABLE::Td3[GETBYTE(s3, 0)] ^
rk[6];
t3 =
RIJNDAEL_TABLE::Td0[GETBYTE(s3, 3)] ^
RIJNDAEL_TABLE::Td1[GETBYTE(s2, 2)] ^
RIJNDAEL_TABLE::Td2[GETBYTE(s1, 1)] ^
RIJNDAEL_TABLE::Td3[GETBYTE(s0, 0)] ^
rk[7];
rk += 8;
if (--r == 0)
break;
s0 =
RIJNDAEL_TABLE::Td0[GETBYTE(t0, 3)] ^
RIJNDAEL_TABLE::Td1[GETBYTE(t3, 2)] ^
RIJNDAEL_TABLE::Td2[GETBYTE(t2, 1)] ^
RIJNDAEL_TABLE::Td3[GETBYTE(t1, 0)] ^
rk[0];
s1 =
RIJNDAEL_TABLE::Td0[GETBYTE(t1, 3)] ^
RIJNDAEL_TABLE::Td1[GETBYTE(t0, 2)] ^
RIJNDAEL_TABLE::Td2[GETBYTE(t3, 1)] ^
RIJNDAEL_TABLE::Td3[GETBYTE(t2, 0)] ^
rk[1];
s2 =
RIJNDAEL_TABLE::Td0[GETBYTE(t2, 3)] ^
RIJNDAEL_TABLE::Td1[GETBYTE(t1, 2)] ^
RIJNDAEL_TABLE::Td2[GETBYTE(t0, 1)] ^
RIJNDAEL_TABLE::Td3[GETBYTE(t3, 0)] ^
rk[2];
s3 =
RIJNDAEL_TABLE::Td0[GETBYTE(t3, 3)] ^
RIJNDAEL_TABLE::Td1[GETBYTE(t2, 2)] ^
RIJNDAEL_TABLE::Td2[GETBYTE(t1, 1)] ^
RIJNDAEL_TABLE::Td3[GETBYTE(t0, 0)] ^
rk[3];
}
/*
* apply last round and
* map cipher state to byte array block:
*/
s0 =
(RIJNDAEL_TABLE::Td4[GETBYTE(t0, 3)] & 0xff000000) ^
(RIJNDAEL_TABLE::Td4[GETBYTE(t3, 2)] & 0x00ff0000) ^
(RIJNDAEL_TABLE::Td4[GETBYTE(t2, 1)] & 0x0000ff00) ^
(RIJNDAEL_TABLE::Td4[GETBYTE(t1, 0)] & 0x000000ff) ^
rk[0];
s1 =
(RIJNDAEL_TABLE::Td4[GETBYTE(t1, 3)] & 0xff000000) ^
(RIJNDAEL_TABLE::Td4[GETBYTE(t0, 2)] & 0x00ff0000) ^
(RIJNDAEL_TABLE::Td4[GETBYTE(t3, 1)] & 0x0000ff00) ^
(RIJNDAEL_TABLE::Td4[GETBYTE(t2, 0)] & 0x000000ff) ^
rk[1];
s2 =
(RIJNDAEL_TABLE::Td4[GETBYTE(t2, 3)] & 0xff000000) ^
(RIJNDAEL_TABLE::Td4[GETBYTE(t1, 2)] & 0x00ff0000) ^
(RIJNDAEL_TABLE::Td4[GETBYTE(t0, 1)] & 0x0000ff00) ^
(RIJNDAEL_TABLE::Td4[GETBYTE(t3, 0)] & 0x000000ff) ^
rk[2];
s3 =
(RIJNDAEL_TABLE::Td4[GETBYTE(t3, 3)] & 0xff000000) ^
(RIJNDAEL_TABLE::Td4[GETBYTE(t2, 2)] & 0x00ff0000) ^
(RIJNDAEL_TABLE::Td4[GETBYTE(t1, 1)] & 0x0000ff00) ^
(RIJNDAEL_TABLE::Td4[GETBYTE(t0, 0)] & 0x000000ff) ^
rk[3];
PutBlockBigEndian((TUint8*)&aBlock[0], s0, s1, s2, s3);
}
void CAESDecryptor::SetKey(const TDesC8& aKey)
{
CRijndael::SetKey(aKey);
TUint i, j;
TUint32* rk = &iK[0];
TUint32 temp;
// invert the order of the round keys
for (i = 0, j = 4*iRounds; i < j; i += 4, j -= 4)
{
temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp;
temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;
temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;
temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;
}
// apply the inverse MixColumn transform to all round keys but the first and the last
for (i = 1; i < iRounds; i++)
{
rk += 4;
rk[0] =
RIJNDAEL_TABLE::Td0[RIJNDAEL_TABLE::Te4[GETBYTE(rk[0], 3)] & 0xff] ^
RIJNDAEL_TABLE::Td1[RIJNDAEL_TABLE::Te4[GETBYTE(rk[0], 2)] & 0xff] ^
RIJNDAEL_TABLE::Td2[RIJNDAEL_TABLE::Te4[GETBYTE(rk[0], 1)] & 0xff] ^
RIJNDAEL_TABLE::Td3[RIJNDAEL_TABLE::Te4[GETBYTE(rk[0], 0)] & 0xff];
rk[1] =
RIJNDAEL_TABLE::Td0[RIJNDAEL_TABLE::Te4[GETBYTE(rk[1], 3)] & 0xff] ^
RIJNDAEL_TABLE::Td1[RIJNDAEL_TABLE::Te4[GETBYTE(rk[1], 2)] & 0xff] ^
RIJNDAEL_TABLE::Td2[RIJNDAEL_TABLE::Te4[GETBYTE(rk[1], 1)] & 0xff] ^
RIJNDAEL_TABLE::Td3[RIJNDAEL_TABLE::Te4[GETBYTE(rk[1], 0)] & 0xff];
rk[2] =
RIJNDAEL_TABLE::Td0[RIJNDAEL_TABLE::Te4[GETBYTE(rk[2], 3)] & 0xff] ^
RIJNDAEL_TABLE::Td1[RIJNDAEL_TABLE::Te4[GETBYTE(rk[2], 2)] & 0xff] ^
RIJNDAEL_TABLE::Td2[RIJNDAEL_TABLE::Te4[GETBYTE(rk[2], 1)] & 0xff] ^
RIJNDAEL_TABLE::Td3[RIJNDAEL_TABLE::Te4[GETBYTE(rk[2], 0)] & 0xff];
rk[3] =
RIJNDAEL_TABLE::Td0[RIJNDAEL_TABLE::Te4[GETBYTE(rk[3], 3)] & 0xff] ^
RIJNDAEL_TABLE::Td1[RIJNDAEL_TABLE::Te4[GETBYTE(rk[3], 2)] & 0xff] ^
RIJNDAEL_TABLE::Td2[RIJNDAEL_TABLE::Te4[GETBYTE(rk[3], 1)] & 0xff] ^
RIJNDAEL_TABLE::Td3[RIJNDAEL_TABLE::Te4[GETBYTE(rk[3], 0)] & 0xff];
}
}
CAESDecryptor::CAESDecryptor()
{
}