/*
* Copyright (c) 2006-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include "desextendimpl.h"
#include "destables.h"
#include "../../../source/common/inlines.h"
#include "../des.inl"
#include "pluginconfig.h"
#include "symmetriccipherimpl.h"
#include <cryptostrength.h>
// bit 0 is left-most in byte
static const TInt bytebit[] = {0200,0100,040,020,010,04,02,01};
//Extended Charcteristics
static const TInt32 KExtendCharAttribute1 = 0x102ABCD1;
static const TUid KExtendCharAttribute1Uid ={KExtendCharAttribute1};
static const TInt32 KExtendCharAttribute2 = 0x102ABCD2;
static const TUid KExtendCharAttribute2Uid ={KExtendCharAttribute2};
static const TInt32 KExtendCharAttribute3 = 0x102ABCD3;
static const TUid KExtendCharAttribute3Uid ={KExtendCharAttribute3};
using namespace SoftwareCrypto;
/* CDesImpl */
CDesExtendImpl::CDesExtendImpl(
TUid aImplementationUid,
TUint8 aBlockBytes,
TUid aCryptoMode,
TUid aOperationMode,
TUid aPadding) :
CSymmetricBlockCipherImpl(aBlockBytes, aCryptoMode, aOperationMode, aPadding),
iImplementationUid(aImplementationUid)
{
}
CDesExtendImpl* CDesExtendImpl::NewL(TUid aImplementationUid, const CKey& aKey, TUid aCryptoMode, TUid aOperationMode, TUid aPadding)
{
CDesExtendImpl* self = CDesExtendImpl::NewLC(aImplementationUid, aKey, aCryptoMode, aOperationMode, aPadding);
CleanupStack::Pop(self);
return self;
}
CDesExtendImpl* CDesExtendImpl::NewLC(TUid aImplementationUid, const CKey& aKey, TUid aCryptoMode, TUid aOperationMode, TUid aPadding)
{
CDesExtendImpl* self = new(ELeave) CDesExtendImpl(aImplementationUid, KDesBlockBytes, aCryptoMode, aOperationMode, aPadding);
CleanupStack::PushL(self);
self->ConstructL(aKey);
const TDesC8& keyContent = aKey.GetTDesC8L(KSymmetricKeyParameterUid);
TCrypto::IsSymmetricWeakEnoughL(BytesToBits(keyContent.Size()) - keyContent.Size());
return self;
}
CDesExtendImpl::~CDesExtendImpl()
{
// make sure key information isn't visible to other processes if the
// page is reused.
delete iExtendChars;
Mem::FillZ(&iK, sizeof(iK));
}
void CDesExtendImpl::ConstructL(const CKey& aKey)
{
CSymmetricBlockCipherImpl::ConstructL(aKey);
iExtendChars = CreateExtendedCharacteristicsL();
SetKeySchedule();
}
CExtendedCharacteristics* CDesExtendImpl::CreateExtendedCharacteristicsL()
{
// All Symbian software plug-ins have unlimited concurrency, cannot be reserved
// for exclusive use and are not CERTIFIED to be standards compliant.
//***************************************************************
CExtendedCharacteristics* exChars = CExtendedCharacteristics::NewL(KMaxTInt, EFalse);
CleanupStack::PushL(exChars);
exChars->AddCharacteristicL(1234,KExtendCharAttribute1Uid);
exChars->AddCharacteristicL(5678,KExtendCharAttribute2Uid);
exChars->AddCharacteristicL(_L8("HAPPYDAYS"),KExtendCharAttribute3Uid);
//**************************************************************
CleanupStack::Pop(exChars);
return exChars;
}
const CExtendedCharacteristics* CDesExtendImpl::GetExtendedCharacteristicsL()
{
return iExtendChars;
}
TUid CDesExtendImpl::ImplementationUid() const
{
return iImplementationUid;
}
TBool CDesExtendImpl::IsValidKeyLength(TInt aKeyBytes) const
{
return (aKeyBytes == KDesKeyBytes);
}
TInt CDesExtendImpl::GetKeyStrength() const
{
// parity bits are excluded
return BytesToBits(KDesKeyBytes - 8);
}
void CDesExtendImpl::TransformEncrypt(
TUint8* aBuffer,
TUint aNumBlocks)
{
for (TInt i = 0; i < aNumBlocks; ++i)
{
ModeEncryptStart(aBuffer);
TUint32 l, r;
// Split the block into 2 word-sized big endian portions
GetBlockBigEndian(aBuffer, l, r);
IPerm(l,r);
DoTransform(l, r, iK);
FPerm(l,r);
// Put the portions back into the block as little endian
PutBlockBigEndian(aBuffer, r, l);
ModeEncryptEnd(aBuffer);
aBuffer += KDesBlockBytes;
}
}
void CDesExtendImpl::TransformDecrypt(
TUint8* aBuffer,
TUint aNumBlocks)
{
for (TInt i = 0; i < aNumBlocks; ++i)
{
ModeDecryptStart(aBuffer);
TUint32 l, r;
// Split the block into 2 word-sized big endian portions
GetBlockBigEndian(aBuffer, l, r);
IPerm(l,r);
DoTransform(l, r, iK);
FPerm(l,r);
// Put the portions back into the block as little endian
PutBlockBigEndian(aBuffer, r, l);
ModeDecryptEnd(aBuffer);
aBuffer += KDesBlockBytes;
}
}
void CDesExtendImpl::SetKeySchedule()
{
if (iCryptoMode.iUid == KCryptoModeEncrypt)
{
SetEncryptKeySchedule(*iKey, iK);
}
else
{
ASSERT(iCryptoMode.iUid == KCryptoModeDecrypt);
SetDecryptKeySchedule(*iKey, iK);
}
}
void CDesExtendImpl::DoTransform(TUint32& l, TUint32& r, const TUint32* aKeySchedule)
{
TInt i = 0;
for (; i<8; i++)
{
TUint32 work = rotrFixed(r, 4U) ^ aKeySchedule[4*i+0];
l ^= DES_TABLE::sbox[6][(work) & 0x3f]
^ DES_TABLE::sbox[4][(work >> 8) & 0x3f]
^ DES_TABLE::sbox[2][(work >> 16) & 0x3f]
^ DES_TABLE::sbox[0][(work >> 24) & 0x3f];
work = r ^ aKeySchedule[4*i+1];
l ^= DES_TABLE::sbox[7][(work) & 0x3f]
^ DES_TABLE::sbox[5][(work >> 8) & 0x3f]
^ DES_TABLE::sbox[3][(work >> 16) & 0x3f]
^ DES_TABLE::sbox[1][(work >> 24) & 0x3f];
work = rotrFixed(l, 4U) ^ aKeySchedule[4*i+2];
r ^= DES_TABLE::sbox[6][(work) & 0x3f]
^ DES_TABLE::sbox[4][(work >> 8) & 0x3f]
^ DES_TABLE::sbox[2][(work >> 16) & 0x3f]
^ DES_TABLE::sbox[0][(work >> 24) & 0x3f];
work = l ^ aKeySchedule[4*i+3];
r ^= DES_TABLE::sbox[7][(work) & 0x3f]
^ DES_TABLE::sbox[5][(work >> 8) & 0x3f]
^ DES_TABLE::sbox[3][(work >> 16) & 0x3f]
^ DES_TABLE::sbox[1][(work >> 24) & 0x3f];
}
}
void CDesExtendImpl::SetEncryptKeySchedule(const TDesC8& aKey, TUint32* aKeySchedule)
{
TInt i=0, j=0, l=0, m=0;
// Form a byte array from aKey, taking endianess into account (little->big)
TUint8 key[8]; // For big endian byte array
Mem::Copy(&key, &aKey[0], 8);
TUint8 buffer[56+56+8];
TUint8* const pc1m = &buffer[0]; /* place to modify pc1 into */
TUint8* const pcr = pc1m + 56; /* place to rotate pc1 into */
TUint8* const ks = pcr + 56;
for (j=0; j<56; j++)
{/* convert pc1 to bits of key */
l = DES_TABLE::pc1[j]-1; /* integer bit location */
m = l & 07; /* find bit */
pc1m[j]=(key[l>>3] & /* find which key byte l is in */
bytebit[m]) /* and which bit of that byte */
? (TUint8)1 : (TUint8)0; /* and store 1-bit result */
}
for (i=0; i<16; i++)
{/* key chunk for each iteration */
Mem::FillZ(ks,8); /* Clear key schedule */
for (j=0; j<56; j++)
/* rotate pc1 the right amount */
pcr[j] = pc1m[(l=j+DES_TABLE::totrot[i])<(j<28? 28 : 56) ? l: l-28];
/* rotate left and right halves independently */
for (j=0; j<48; j++)
{/* select bits individually */
/* check bit that goes to ks[j] */
if (pcr[DES_TABLE::pc2[j]-1])
{/* mask it in if it's there */
l= j % 6;
ks[j/6] |= bytebit[l] >> 2;
}
}
/* Now convert to odd/even interleaved form for use in F */
(*(aKeySchedule+(2*i))) = ((TUint32)ks[0] << 24)
| ((TUint32)ks[2] << 16)
| ((TUint32)ks[4] << 8)
| ((TUint32)ks[6]);
(*(aKeySchedule+(2*i+1))) = ((TUint32)ks[1] << 24)
| ((TUint32)ks[3] << 16)
| ((TUint32)ks[5] << 8)
| ((TUint32)ks[7]);
}
}
void CDesExtendImpl::SetDecryptKeySchedule(const TDesC8& aKey, TUint32* aKeySchedule)
{
SetEncryptKeySchedule(aKey, aKeySchedule);
ReverseKeySchedule(aKeySchedule);
}