/*
* Copyright (c) 1999-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include <e32base.h>
#include <random.h>
#include <padding.h>
#include <securityerr.h>
#include <cryptopanic.h>
#include "paddingshim.h"
/* CPadding */
CPadding::CPadding(void) : iBlockBytes(-1)
{
}
EXPORT_C CPadding::CPadding(TInt aBlockBytes) : iBlockBytes(aBlockBytes)
{
__ASSERT_ALWAYS(aBlockBytes > 0, User::Invariant());
}
EXPORT_C void CPadding::SetBlockSize(TInt aBlockBytes)
{
__ASSERT_ALWAYS(aBlockBytes > 0, User::Invariant());
iBlockBytes = aBlockBytes;
}
EXPORT_C TInt CPadding::BlockSize(void) const
{
return iBlockBytes;
}
EXPORT_C TInt CPadding::MaxPaddedLength(TInt /*aInputBytes*/) const
{
return BlockSize();
}
EXPORT_C TInt CPadding::MaxUnPaddedLength(TInt aInputBytes) const
{
return aInputBytes - MinPaddingLength();
}
EXPORT_C void CPadding::PadL(const TDesC8& aInput, TDes8& aOutput)
{
// Check that the input is small enough to fit inside one padded block
// Won't leave if input text is equal to blocksize. Let DoPadL handle such situations
if(aInput.Length() > BlockSize() - MinPaddingLength()
&& aInput.Length() != BlockSize())
User::Leave(KErrArgument);
// Check that the output descriptor supplied is large enough to store the result
if(aOutput.MaxLength() < MaxPaddedLength(aInput.Length()))
User::Leave(KErrOverflow);
// Call the virtual function, implemented by derived classes
DoPadL(aInput, aOutput);
}
TInt CPadding::GetExtension(TUint aExtensionId, TAny*& a0, TAny* a1)
{
return Extension_(aExtensionId, a0, a1);
}
/* CPaddingNone */
EXPORT_C CPaddingNone* CPaddingNone::NewL(TInt aBlockBytes)
{
__ASSERT_ALWAYS(aBlockBytes > 0, User::Leave(KErrArgument));
return CPaddingNoneShim::NewL(aBlockBytes);
}
EXPORT_C CPaddingNone* CPaddingNone::NewLC(TInt aBlockBytes)
{
CPaddingNone* self = CPaddingNone::NewL(aBlockBytes);
CleanupStack::PushL(self);
return self;
}
EXPORT_C CPaddingNone::CPaddingNone(TInt aBlockBytes):CPadding(aBlockBytes)
{
}
void CPaddingNone::DoPadL(const TDesC8& aInput,TDes8& aOutput)
{
aOutput.Append(aInput);
}
void CPaddingNone::UnPadL(const TDesC8& aInput,TDes8& aOutput)
{
__ASSERT_DEBUG(aOutput.MaxLength() >= MaxPaddedLength(aInput.Length()), User::Panic(KCryptoPanic, ECryptoPanicOutputDescriptorOverflow));
aOutput.Append(aInput);
}
TInt CPaddingNone::MinPaddingLength(void) const
{
return 0;
}
TInt CPaddingNone::MaxPaddedLength(TInt aInputSize) const
{
return aInputSize;
}
/* CPaddingSSLv3 */
EXPORT_C CPaddingSSLv3* CPaddingSSLv3::NewL(TInt aBlockBytes)
{
__ASSERT_ALWAYS(aBlockBytes > 0, User::Leave(KErrArgument));
return CPaddingSSLv3Shim::NewL(aBlockBytes);
}
EXPORT_C CPaddingSSLv3* CPaddingSSLv3::NewLC(TInt aBlockBytes)
{
CPaddingSSLv3* self = CPaddingSSLv3::NewL(aBlockBytes);
CleanupStack::PushL(self);
return self;
}
EXPORT_C CPaddingSSLv3::CPaddingSSLv3(TInt aBlockBytes):CPadding(aBlockBytes)
{
}
void CPaddingSSLv3::DoPadL(const TDesC8& aInput,TDes8& aOutput)
{
TInt paddingBytes=BlockSize()-(aInput.Length()%BlockSize());
aOutput.Append(aInput);
aOutput.SetLength(aOutput.Length()+paddingBytes);
for (TInt i=1;i<=paddingBytes;i++)
{
aOutput[aOutput.Length()-i]=(TUint8)(paddingBytes-1);
}
}
void CPaddingSSLv3::UnPadL(const TDesC8& aInput,TDes8& aOutput)
{
TInt paddingLen = aInput[aInput.Length()-1] + 1;
if (paddingLen > aInput.Length())
{
User::Leave(KErrInvalidPadding);
}
TInt outlen = aInput.Length() - paddingLen;
__ASSERT_DEBUG(aOutput.MaxLength() >= outlen, User::Panic(KCryptoPanic, ECryptoPanicOutputDescriptorOverflow));
aOutput.Append(aInput.Left(outlen));
}
TInt CPaddingSSLv3::MinPaddingLength(void) const
{
//if aInputBytes is 1 less than the blocksize then we get 1 byte of padding
return 1;
}
TInt CPaddingSSLv3::MaxPaddedLength(TInt aInputBytes) const
{
TUint padBytes = BlockSize() - (aInputBytes % BlockSize());
return padBytes + aInputBytes;
}
/* CPaddingPKCS1Signature */
EXPORT_C CPaddingPKCS1Signature* CPaddingPKCS1Signature::NewL(TInt aBlockBytes)
{
return CPaddingPKCS1SignatureShim::NewL(aBlockBytes);
}
EXPORT_C CPaddingPKCS1Signature* CPaddingPKCS1Signature::NewLC(TInt aBlockBytes)
{
CPaddingPKCS1Signature* self = CPaddingPKCS1Signature::NewL(aBlockBytes);
CleanupStack::PushL(self);
return self;
}
EXPORT_C CPaddingPKCS1Signature::CPaddingPKCS1Signature(TInt aBlockBytes)
: CPadding(aBlockBytes)
{
}
void CPaddingPKCS1Signature::DoPadL(const TDesC8& aInput,TDes8& aOutput)
{
aOutput.SetLength(BlockSize());
TInt i;
TInt j;
aOutput[0]=0;
TInt startOfData=BlockSize()-aInput.Length();
// PKCS1 also specifies a block type 0 for private key operations but
// does not recommend its use. This block type (0) is compatible with
// unpadded data though so you can create PKCS1 type 0 blocks using
// CPaddingNone.
aOutput[1]=1; // Block type 1 (private key operation)
for (i=2;i<(startOfData-1);i++)
{
aOutput[i]=0xff;
}
j=0;
aOutput[startOfData-1]=0; // separator
for (i=startOfData;i<BlockSize();i++,j++)
{
aOutput[i]=aInput[j];
}
}
void CPaddingPKCS1Signature::UnPadL(const TDesC8& aInput,TDes8& aOutput)
{
// erm, oops, this is not quite as simplistic as it first looks...
// our integer class will strip any leading zeros so we might actually
// get some real data that starts out looking like padding but isn't
// really
TInt inputLen = aInput.Length();
if (inputLen <=0 )
User::Leave(KErrInvalidPadding); // Invalid padding data
// Leading zero may have been stripped off by integer class
TInt dataStart=0;
if (aInput[dataStart] == 0)
{
++dataStart;
}
if (dataStart < inputLen && aInput[dataStart]) // might be mode one or mode zero,
{
++dataStart;
while (dataStart < inputLen && aInput[dataStart] == 0xff)
{
++dataStart;
}
if (dataStart == inputLen || aInput[dataStart]) // this would mean theres no zero between 0x01ff and data...so its not mode one
dataStart=0; // mode zero, start from begining of data
else
++dataStart;
}
else // We've definitely got a mode zero
{ // or broken data, assume mode zero
dataStart=0;
}
TInt len=inputLen-dataStart;
__ASSERT_DEBUG(aOutput.MaxLength() >= len, User::Panic(KCryptoPanic, ECryptoPanicOutputDescriptorOverflow));
aOutput.SetLength(len);
TInt i=0;
while (dataStart<inputLen)
{
aOutput[i++]=aInput[dataStart++];
}
}
TInt CPaddingPKCS1Signature::MinPaddingLength(void) const
{
return 11; //0x00, 0x01, <MIN of 8 0xFF octets> , 0x00
}
/* CPaddingPKCS1Encryption */
EXPORT_C CPaddingPKCS1Encryption* CPaddingPKCS1Encryption::NewL(
TInt aBlockBytes)
{
return CPaddingPKCS1EncryptionShim::NewL(aBlockBytes);
}
EXPORT_C CPaddingPKCS1Encryption* CPaddingPKCS1Encryption::NewLC(
TInt aBlockBytes)
{
CPaddingPKCS1Encryption* self = CPaddingPKCS1Encryption::NewL(aBlockBytes);
CleanupStack::PushL(self);
return self;
}
EXPORT_C CPaddingPKCS1Encryption::CPaddingPKCS1Encryption(TInt aBlockBytes)
: CPadding(aBlockBytes)
{
}
void CPaddingPKCS1Encryption::DoPadL(const TDesC8& aInput,TDes8& aOutput)
{
aOutput.SetLength(BlockSize());
aOutput[0]=0;
TInt startOfData=BlockSize()-aInput.Length();
aOutput[1]=2; // Block type 2 (public key operation)
TBuf8<256> rnd(256);
TRAPD(err, GenerateRandomBytesL(rnd));
if((err != KErrNone) && (err != KErrNotSecure))
User::Leave(err);
TInt i = 2;
TInt j = 0;
for (; i<(startOfData-1);)
{
if (rnd[j])
{
aOutput[i++]=rnd[j];
}
if (++j==256)
{
TRAP(err, GenerateRandomBytesL(rnd));
if((err != KErrNone) && (err != KErrNotSecure))
User::Leave(err);
j=0;
}
}
j=0;
aOutput[startOfData-1]=0; // separator
for (i=startOfData;i<BlockSize();i++,j++)
{
aOutput[i]=aInput[j];
}
}
void CPaddingPKCS1Encryption::UnPadL(const TDesC8& aInput,TDes8& aOutput)
{
TInt inputLen = aInput.Length();
if (inputLen <= 0)
User::Leave(KErrInvalidPadding); // Invalid padding data
// Leading zero may have been stripped off by integer class
TInt dataStart=0;
if (aInput[dataStart] == 0)
{
++dataStart;
}
// expecting mode 2 padding, otherwise broken
if (dataStart == inputLen || aInput[dataStart] != 2)
{
User::Leave(KErrInvalidPadding);
}
++dataStart;
// skip random non zero bytes
while (dataStart < inputLen && aInput[dataStart])
{
++dataStart;
}
// expecting zero separator
if (dataStart == inputLen || aInput[dataStart] != 0)
{
User::Leave(KErrInvalidPadding);
}
++dataStart;
TInt len = inputLen - dataStart;
__ASSERT_DEBUG(aOutput.MaxLength() >= len, User::Panic(KCryptoPanic, ECryptoPanicOutputDescriptorOverflow));
aOutput.SetLength(len);
TInt i=0;
while (dataStart<inputLen)
{
aOutput[i++]=aInput[dataStart++];
}
}
TInt CPaddingPKCS1Encryption::MinPaddingLength(void) const
{
return 11; //0x00, 0x02, <min of 8 random octets>, 0x00
}