/*
* Copyright (c) 2005-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
/**
@file
*/
#include "pkcs5kdf.h"
/* Before complaining about the variable names in this file,
* read the pkcs5 spec and all will become clear.
*/
EXPORT_C void TPKCS5KDF::DeriveKeyL(TDes8& aKey, const TDesC8& aPasswd, const TDesC8& aSalt,
const TUint aIterations)
{
CSHA1* sha1 = CSHA1::NewL();
CleanupStack::PushL(sha1);
CHMAC* hmac = CHMAC::NewL(aPasswd, sha1);
CleanupStack::Pop(sha1); //hmac now owns it
CleanupStack::PushL(hmac);
TUint hashBytes = hmac->HashSize();
TUint c = aIterations;
TUint l = aKey.Length() / hashBytes;
if(aKey.Length() % hashBytes != 0) //round up if mod !=0
{
l+=1;
}
TUint r = aKey.Length() - (l-1) * hashBytes; //r == length of last block
HBufC8* TiTemp = HBufC8::NewLC(hashBytes);
TUint32* Ti = (TUint32*)(TiTemp->Ptr());
aKey.SetLength(0); //we've already saved the length we want
HBufC8* STemp = HBufC8::NewLC(aSalt.Length() + sizeof(TUint32));
TUint32* S = (TUint32*)(STemp->Ptr());
HBufC8* UiTemp = HBufC8::NewLC(hashBytes);
TUint32* Ui = (TUint32*)(UiTemp->Ptr());
const TUint32* salt = (TUint32*)(aSalt.Ptr());
TUint saltBytes = aSalt.Length();
for(TUint i = 1; i<=l; i++)
{
F(*hmac, Ti, S, Ui, hashBytes, salt, saltBytes, c, i);
if(i == l)
aKey.Append((TUint8*)Ti, r);
else
aKey.Append((TUint8*)Ti, hashBytes);
}
CleanupStack::PopAndDestroy(UiTemp);
CleanupStack::PopAndDestroy(STemp);
CleanupStack::PopAndDestroy(TiTemp);
CleanupStack::PopAndDestroy(hmac);
}
void TPKCS5KDF::F(CMessageDigest& aDigest, TUint32* aAccumulator,
TUint32* S, TUint32* Ui, TUint aHashBytes, const TUint32* aSalt,
TUint aSaltBytes, TUint c, TUint i)
{
TUint8 itmp[4];
itmp[0] = (TUint8)((i >> 24) & 0xff);
itmp[1] = (TUint8)((i >> 16) & 0xff);
itmp[2] = (TUint8)((i >> 8) & 0xff);
itmp[3] = (TUint8)(i & 0xff);
TUint8* endOfS = Mem::Copy(S, aSalt, aSaltBytes);
Mem::Copy((TUint32*)endOfS, (TUint32*)&itmp, 4);
TPtr8 sptr((TUint8*)S, aSaltBytes+4);
sptr.SetLength(aSaltBytes+4);
Mem::Copy(aAccumulator, (TUint32*)((aDigest.Final(sptr)).Ptr()),aHashBytes);
Mem::Copy(Ui, aAccumulator, aHashBytes);
for(TUint j=1; j<c; j++)
{
TPtr8 uiptr((TUint8*)Ui, aHashBytes);
uiptr.SetLength(aHashBytes);
Mem::Copy(Ui, (TUint32*)((aDigest.Final(uiptr)).Ptr()), aHashBytes);
XORString(Ui, aAccumulator, aHashBytes);
}
}
inline void TPKCS5KDF::XORString(const TUint32* aOp1, TUint32* aOp2,
TUint aLength)
{
const TUint32* i = aOp1;
//this will overflow the whole final word if aLength % 4 != 0
//but I can't see this mattering cuz all memory allocation is on a word by word basis
//i don't want to do this byte by byte as it'll be way slower
//also, every sane digest is going to be a multiple of 4 -- so this isn't a problem
for( ; aOp1 != (TUint32*)((TUint8*)i + aLength); )
{
*aOp2++ ^= *aOp1++;
}
}