/*
* Copyright (c) 1998-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include "trsasignfb.h"
#include "t_input.h"
#include <asymmetric.h>
#include <padding.h>
#include <bigint.h>
#include "performancetest.h"
_LIT8(KInputStart, "<input>");
_LIT8(KKeyBitsStart, "<keybits>");
_LIT8(KKeyBitsEnd, "</keybits>");
CRSASignFB::~CRSASignFB()
{
delete iBody;
}
CRSASignFB::CRSASignFB(RFs& aFs, CConsoleBase& aConsole, Output& aOut)
: CTestAction(aConsole, aOut), iFs(aFs), iPerfTestIterations(100)
{
}
CTestAction* CRSASignFB::NewL(RFs& aFs, CConsoleBase& aConsole, Output& aOut,
const TTestActionSpec& aTestActionSpec)
{
CTestAction* self = CRSASignFB::NewLC(aFs, aConsole,
aOut, aTestActionSpec);
CleanupStack::Pop();
return self;
}
CTestAction* CRSASignFB::NewLC(RFs& aFs, CConsoleBase& aConsole, Output& aOut,
const TTestActionSpec& aTestActionSpec)
{
CRSASignFB* self = new(ELeave) CRSASignFB(aFs, aConsole, aOut);
CleanupStack::PushL(self);
self->ConstructL(aTestActionSpec);
return self;
}
TRSAPrivateKeyType CRSASignFB::TypeOfCrypto()
{
return iCryptoType;
}
void CRSASignFB::ConstructL(const TTestActionSpec& aTestActionSpec)
{
CTestAction::ConstructL(aTestActionSpec);
iBody = HBufC8::NewL(aTestActionSpec.iActionBody.Length());
iBody->Des().Copy(aTestActionSpec.iActionBody);
if (CPerformance::PerformanceTester()->IsTestingPerformance())
{// Number of test iterations
TPtrC8 itsPtr = Input::ParseElement(aTestActionSpec.iActionBody, KIterationsStart, KIterationsEnd);
if (itsPtr!=KNullDesC8)
{
TLex8 lex;
lex.Assign(itsPtr);
User::LeaveIfError(lex.Val(iPerfTestIterations));
if (iPerfTestIterations > KMaxIterations)
User::Panic(_L("AsymmetricPerformance.exe"), KErrArgument);
}
TPtrC8 cryptoPtr = Input::ParseElement(aTestActionSpec.iActionBody, KTypeOfCryptoStart, KTypeOfCryptoEnd);
if (cryptoPtr.CompareF(KRSAStandard) == 0)
{
iCryptoType = EStandard;
}
else if (cryptoPtr.CompareF(KRSAStandardCRT) == 0)
{
iCryptoType = EStandardCRT;
}
else
{
User::Panic(_L("AsymmetricPerformance.exe"), KErrArgument);
}
}
TPtrC8 keyBitsPtr = Input::ParseElement(*iBody, KKeyBitsStart, KKeyBitsEnd);
if (keyBitsPtr!=KNullDesC8)
{
TLex8 lex;
lex.Assign(keyBitsPtr);
User::LeaveIfError(lex.Val(iKeyBits));
}
}
void CRSASignFB::DoPerformPrerequisite(TRequestStatus& aStatus)
{
TRequestStatus* status = &aStatus;
HBufC8* input = Input::ParseElementHexL(*iBody, KInputStart);
CleanupStack::PushL(input);
iSigInput = CHashingSignatureInput::NewL(CMessageDigest::ESHA1);
iSigInput->Update(*input);
iInput = iSigInput->Final().AllocL();
CleanupStack::PopAndDestroy(input);
User::RequestComplete(status, KErrNone);
iActionState = CTestAction::EAction;
}
void CRSASignFB::DoPerformPostrequisite(TRequestStatus& aStatus)
{
TRequestStatus* status = &aStatus;
delete iInput;
delete iSigInput;
iFinished = ETrue;
User::RequestComplete(status, iActionResult);
}
void CRSASignFB::DoReportAction(void)
{
}
void CRSASignFB::DoCheckResult(TInt)
{
if (iResult)
iConsole.Printf(_L("."));
else
iConsole.Printf(_L("X"));
}
void CRSASignFB::Hex(HBufC8& aString)
{
TPtr8 ptr=aString.Des();
if (aString.Length()%2)
{
ptr.SetLength(0);
return;
}
TInt i;
for (i=0;i<aString.Length();i+=2)
{
TUint8 tmp;
tmp=(TUint8)(aString[i]-(aString[i]>'9'?('A'-10):'0'));
tmp*=16;
tmp|=(TUint8)(aString[i+1]-(aString[i+1]>'9'?('A'-10):'0'));
ptr[i/2]=tmp;
}
ptr.SetLength(aString.Length()/2);
}
void CRSASignFB::PerformAction(TRequestStatus& aStatus)
{
TRequestStatus* status = &aStatus;
if (CPerformance::PerformanceTester()->IsTestingPerformance())
{
iConsole.Printf(_L(">")); // Indicates start of test
TRAP(iActionResult, DoPerformanceTestActionL());
}
else
{
TRAP(iActionResult, DoPerformActionL());
}
if (iActionResult==KErrNoMemory)
User::Leave(iActionResult); // For OOM testing
User::RequestComplete(status, iActionResult);
iActionState = CTestAction::EPostrequisite;
}
void CRSASignFB::DoPerformanceTestActionL()
{
__UHEAP_MARK;
iResult = EFalse;
TTimeIntervalMicroSeconds keyCreateTime(0);
TTimeIntervalMicroSeconds signTime(0);
TTimeIntervalMicroSeconds verifyTime(0);
TTime start, end;
TTimeIntervalSeconds diff(0);
const TTimeIntervalSeconds KIterationTime(iPerfTestIterations);
// Time key pair creation
CRSAKeyPair *rsaPair = NULL;
TUint noRSAPairs = 0;
start.UniversalTime();
while (diff < KIterationTime)
{
rsaPair = CRSAKeyPair::NewLC(iKeyBits, TypeOfCrypto());
CleanupStack::PopAndDestroy();
noRSAPairs++;
end.UniversalTime();
end.SecondsFrom(start, diff);
}
end.UniversalTime();
keyCreateTime = end.MicroSecondsFrom(start);
TReal keycreatetime = I64REAL(keyCreateTime.Int64());
rsaPair=CRSAKeyPair::NewLC(iKeyBits, TypeOfCrypto()); // Create one keypair for operations
CRSAPKCS1v15Signer* signer = CRSAPKCS1v15Signer::NewL(rsaPair->PrivateKey());
CleanupStack::PushL(signer);
CRSAPKCS1v15Verifier* verifier = CRSAPKCS1v15Verifier::NewL(rsaPair->PublicKey());
CleanupStack::PushL(verifier);
const CRSASignature *testSig;
// Time signing
diff = 0;
TInt noSignings = 0;
start.UniversalTime();
while (diff < KIterationTime)
{
testSig = signer->SignL(*iInput);
delete testSig;
noSignings++;
end.UniversalTime();
end.SecondsFrom(start, diff);
}
end.UniversalTime();
signTime = end.MicroSecondsFrom(start);
TReal signtime = I64REAL(signTime.Int64());
// Time verification
TInt noVerifies = 0;
diff = 0;
testSig = signer->SignL(*iInput);
CleanupStack::PushL(const_cast<CRSASignature*>(testSig));
start.UniversalTime();
while (diff < KIterationTime)
{
iResult = verifier->VerifyL(*iInput, *testSig);
// do as many verfies as possible
if (!iResult)
{
break;
}
noVerifies++;
end.UniversalTime();
end.SecondsFrom(start, diff);
}
end.UniversalTime();
verifyTime = end.MicroSecondsFrom(start);
TReal verifytime = I64REAL(verifyTime.Int64());
CleanupStack::PopAndDestroy(4); // verifier,signer,testSig,rsaPairs
__UHEAP_MARKEND;
if (iResult)
{
TBuf<256> buf;
TReal rate = I64REAL(keyCreateTime.Int64()) / noRSAPairs;
_LIT(KKeyCreateTime, "\tKeyCreate\t%f");
buf.Format(KKeyCreateTime, rate, noRSAPairs, keycreatetime);
iOut.writeString(buf);
rate = I64REAL(signTime.Int64()) / noSignings;
_LIT(KSignTime, "\tSigning\t%f");
buf.Format(KSignTime, rate, noSignings, signtime);
iOut.writeString(buf);
rate = I64REAL(verifyTime.Int64()) / noVerifies;
_LIT(KVerifyTime, "\tVerifying\t%f");
buf.Format(KVerifyTime, rate, noVerifies, verifytime);
iOut.writeString(buf);
}
else
{
_LIT(KNoTimingInfo, "\tTest Failed! No benchmark data\n");
iOut.writeString(KNoTimingInfo);
}
}
void CRSASignFB::DoPerformActionL()
{
__UHEAP_MARK;
iResult = EFalse;
CRSAKeyPair* rsaPair = CRSAKeyPair::NewLC(512, TypeOfCrypto());
CRSAPKCS1v15Signer* signer = CRSAPKCS1v15Signer::NewL(rsaPair->PrivateKey());
CleanupStack::PushL(signer);
CRSAPKCS1v15Verifier* verifier = CRSAPKCS1v15Verifier::NewL(rsaPair->PublicKey());
CleanupStack::PushL(verifier);
const CRSASignature* signature = signer->SignL(*iInput);
CleanupStack::PushL(const_cast<CRSASignature*>(signature));
if(verifier->VerifyL(*iInput, *signature))
{
iResult = ETrue;
}
// Check the input and output lengths.
if ((signer->MaxInputLength() == verifier->MaxInputLength()) && (signer->MaxOutputLength() == verifier->MaxOutputLength()))
{
iResult = ETrue;
}
else
{
iResult = EFalse;
iOut.writeString(_L("\n\t FAIL : RSA Signer-Verifier Max Input/Output length mismatch. \n\r"));
}
// Test the key pair generation with wrong key type.
CRSAKeyPair* rsaPair1 = NULL;
TRAPD(err, rsaPair1 = CRSAKeyPair::NewLC(512, TRSAPrivateKeyType(EStandardCRT+2)));
if (err != KErrArgument)
{
iResult = EFalse;
iOut.writeString(_L("\n\t FAIL : RSA Key Pair generation for wrong key type expected to fail but succeeded. \n\r"));
CleanupStack::PopAndDestroy(rsaPair1);
}
CleanupStack::PopAndDestroy(4, rsaPair); //signature, verifier, signer, rsaPair
__UHEAP_MARKEND;
}