/*
* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include "words.h"
#include "algorithms.h"
word Add(word *C, const word *A, const word *B, unsigned int N)
{
assert (N%2 == 0);
word carry = 0;
for (unsigned int i = 0; i < N; i+=2)
{
dword u = (dword) carry + A[i] + B[i];
C[i] = LOW_WORD(u);
u = (dword) HIGH_WORD(u) + A[i+1] + B[i+1];
C[i+1] = LOW_WORD(u);
carry = HIGH_WORD(u);
}
return carry;
}
word Subtract(word *C, const word *A, const word *B, unsigned int N)
{
assert (N%2 == 0);
word borrow=0;
for (unsigned i = 0; i < N; i+=2)
{
dword u = (dword) A[i] - B[i] - borrow;
C[i] = LOW_WORD(u);
u = (dword) A[i+1] - B[i+1] - (word)(0-HIGH_WORD(u));
C[i+1] = LOW_WORD(u);
borrow = 0-HIGH_WORD(u);
}
return borrow;
}
int Compare(const word *A, const word *B, unsigned int N)
{
while (N--)
if (A[N] > B[N])
return 1;
else if (A[N] < B[N])
return -1;
return 0;
}
// It is the job of the calling code to ensure that this won't carry.
// If you aren't sure, use the next version that will tell you if you need to
// grow your integer.
// Having two of these creates ever so slightly more code but avoids having
// ifdefs all over the rest of the code checking the following type stuff which
// causes warnings in certain compilers about unused parameters in release
// builds. We can't have that can we!
/*
Allows avoid this all over bigint.cpp and primes.cpp
ifdef _DEBUG
TUint carry = Increment(Ptr(), Size());
assert(!carry);
else
Increment(Ptr(), Size())
endif
*/
void IncrementNoCarry(word *A, unsigned int N, word B)
{
assert(N);
word t = A[0];
A[0] = t+B;
if (A[0] >= t)
return;
for (unsigned i=1; i<N; i++)
if (++A[i])
return;
assert(0);
}
word Increment(word *A, unsigned int N, word B)
{
assert(N);
word t = A[0];
A[0] = t+B;
if (A[0] >= t)
return 0;
for (unsigned i=1; i<N; i++)
if (++A[i])
return 0;
return 1;
}
//See commments above about IncrementNoCarry
void DecrementNoCarry(word *A, unsigned int N, word B)
{
assert(N);
word t = A[0];
A[0] = t-B;
if (A[0] <= t)
return;
for (unsigned i=1; i<N; i++)
if (A[i]--)
return;
assert(0);
}
word Decrement(word *A, unsigned int N, word B)
{
assert(N);
word t = A[0];
A[0] = t-B;
if (A[0] <= t)
return 0;
for (unsigned i=1; i<N; i++)
if (A[i]--)
return 0;
return 1;
}
void TwosComplement(word *A, unsigned int N)
{
Decrement(A, N);
for (unsigned i=0; i<N; i++)
A[i] = ~A[i];
}
static word LinearMultiply(word *C, const word *A, word B, unsigned int N)
{
word carry=0;
for(unsigned i=0; i<N; i++)
{
dword p = (dword)A[i] * B + carry;
C[i] = LOW_WORD(p);
carry = HIGH_WORD(p);
}
return carry;
}
static void AtomicMultiply(word *C, const word *A, const word *B)
{
/*
word s;
dword d;
if (A1 >= A0)
if (B0 >= B1)
{
s = 0;
d = (dword)(A1-A0)*(B0-B1);
}
else
{
s = (A1-A0);
d = (dword)s*(word)(B0-B1);
}
else
if (B0 > B1)
{
s = (B0-B1);
d = (word)(A1-A0)*(dword)s;
}
else
{
s = 0;
d = (dword)(A0-A1)*(B1-B0);
}
*/
// this segment is the branchless equivalent of above
word D[4] = {A[1]-A[0], A[0]-A[1], B[0]-B[1], B[1]-B[0]};
unsigned int ai = A[1] < A[0];
unsigned int bi = B[0] < B[1];
unsigned int di = ai & bi;
dword d = (dword)D[di]*D[di+2];
D[1] = D[3] = 0;
unsigned int si = ai + !bi;
word s = D[si];
dword A0B0 = (dword)A[0]*B[0];
C[0] = LOW_WORD(A0B0);
dword A1B1 = (dword)A[1]*B[1];
dword t = (dword) HIGH_WORD(A0B0) + LOW_WORD(A0B0) + LOW_WORD(d) + LOW_WORD(A1B1);
C[1] = LOW_WORD(t);
t = A1B1 + HIGH_WORD(t) + HIGH_WORD(A0B0) + HIGH_WORD(d) + HIGH_WORD(A1B1) - s;
C[2] = LOW_WORD(t);
C[3] = HIGH_WORD(t);
}
static word AtomicMultiplyAdd(word *C, const word *A, const word *B)
{
word D[4] = {A[1]-A[0], A[0]-A[1], B[0]-B[1], B[1]-B[0]};
unsigned int ai = A[1] < A[0];
unsigned int bi = B[0] < B[1];
unsigned int di = ai & bi;
dword d = (dword)D[di]*D[di+2];
D[1] = D[3] = 0;
unsigned int si = ai + !bi;
word s = D[si];
dword A0B0 = (dword)A[0]*B[0];
dword t = A0B0 + C[0];
C[0] = LOW_WORD(t);
dword A1B1 = (dword)A[1]*B[1];
t = (dword) HIGH_WORD(t) + LOW_WORD(A0B0) + LOW_WORD(d) + LOW_WORD(A1B1) + C[1];
C[1] = LOW_WORD(t);
t = (dword) HIGH_WORD(t) + LOW_WORD(A1B1) + HIGH_WORD(A0B0) + HIGH_WORD(d) + HIGH_WORD(A1B1) - s + C[2];
C[2] = LOW_WORD(t);
t = (dword) HIGH_WORD(t) + HIGH_WORD(A1B1) + C[3];
C[3] = LOW_WORD(t);
return HIGH_WORD(t);
}
static inline void AtomicMultiplyBottom(word *C, const word *A, const word *B)
{
dword t = (dword)A[0]*B[0];
C[0] = LOW_WORD(t);
C[1] = HIGH_WORD(t) + A[0]*B[1] + A[1]*B[0];
}
#define MulAcc(x, y) \
p = (dword)A[x] * B[y] + c; \
c = LOW_WORD(p); \
p = (dword)d + HIGH_WORD(p); \
d = LOW_WORD(p); \
e += HIGH_WORD(p);
#define SaveMulAcc(s, x, y) \
R[s] = c; \
p = (dword)A[x] * B[y] + d; \
c = LOW_WORD(p); \
p = (dword)e + HIGH_WORD(p); \
d = LOW_WORD(p); \
e = HIGH_WORD(p);
#define MulAcc1(x, y) \
p = (dword)A[x] * A[y] + c; \
c = LOW_WORD(p); \
p = (dword)d + HIGH_WORD(p); \
d = LOW_WORD(p); \
e += HIGH_WORD(p);
#define SaveMulAcc1(s, x, y) \
R[s] = c; \
p = (dword)A[x] * A[y] + d; \
c = LOW_WORD(p); \
p = (dword)e + HIGH_WORD(p); \
d = LOW_WORD(p); \
e = HIGH_WORD(p);
#define SquAcc(x, y) \
p = (dword)A[x] * A[y]; \
p = p + p + c; \
c = LOW_WORD(p); \
p = (dword)d + HIGH_WORD(p); \
d = LOW_WORD(p); \
e += HIGH_WORD(p);
#define SaveSquAcc(s, x, y) \
R[s] = c; \
p = (dword)A[x] * A[y]; \
p = p + p + d; \
c = LOW_WORD(p); \
p = (dword)e + HIGH_WORD(p); \
d = LOW_WORD(p); \
e = HIGH_WORD(p);
// VC60 workaround: MSVC 6.0 has an optimization problem that makes
// (dword)A*B where either A or B has been cast to a dword before
// very expensive. Revisit a CombaSquare4() function when this
// problem is fixed.
// WARNING: KeithR. 05/08/03 This routine doesn't work with gcc on hardware
// either. I've completely removed it. It may be worth looking into sometime
// in the future.
/*#ifndef __WINS__
static void CombaSquare4(word *R, const word *A)
{
dword p;
word c, d, e;
p = (dword)A[0] * A[0];
R[0] = LOW_WORD(p);
c = HIGH_WORD(p);
d = e = 0;
SquAcc(0, 1);
SaveSquAcc(1, 2, 0);
MulAcc1(1, 1);
SaveSquAcc(2, 0, 3);
SquAcc(1, 2);
SaveSquAcc(3, 3, 1);
MulAcc1(2, 2);
SaveSquAcc(4, 2, 3);
R[5] = c;
p = (dword)A[3] * A[3] + d;
R[6] = LOW_WORD(p);
R[7] = e + HIGH_WORD(p);
}
#endif */
static void CombaMultiply4(word *R, const word *A, const word *B)
{
dword p;
word c, d, e;
p = (dword)A[0] * B[0];
R[0] = LOW_WORD(p);
c = HIGH_WORD(p);
d = e = 0;
MulAcc(0, 1);
MulAcc(1, 0);
SaveMulAcc(1, 2, 0);
MulAcc(1, 1);
MulAcc(0, 2);
SaveMulAcc(2, 0, 3);
MulAcc(1, 2);
MulAcc(2, 1);
MulAcc(3, 0);
SaveMulAcc(3, 3, 1);
MulAcc(2, 2);
MulAcc(1, 3);
SaveMulAcc(4, 2, 3);
MulAcc(3, 2);
R[5] = c;
p = (dword)A[3] * B[3] + d;
R[6] = LOW_WORD(p);
R[7] = e + HIGH_WORD(p);
}
static void CombaMultiply8(word *R, const word *A, const word *B)
{
dword p;
word c, d, e;
p = (dword)A[0] * B[0];
R[0] = LOW_WORD(p);
c = HIGH_WORD(p);
d = e = 0;
MulAcc(0, 1);
MulAcc(1, 0);
SaveMulAcc(1, 2, 0);
MulAcc(1, 1);
MulAcc(0, 2);
SaveMulAcc(2, 0, 3);
MulAcc(1, 2);
MulAcc(2, 1);
MulAcc(3, 0);
SaveMulAcc(3, 0, 4);
MulAcc(1, 3);
MulAcc(2, 2);
MulAcc(3, 1);
MulAcc(4, 0);
SaveMulAcc(4, 0, 5);
MulAcc(1, 4);
MulAcc(2, 3);
MulAcc(3, 2);
MulAcc(4, 1);
MulAcc(5, 0);
SaveMulAcc(5, 0, 6);
MulAcc(1, 5);
MulAcc(2, 4);
MulAcc(3, 3);
MulAcc(4, 2);
MulAcc(5, 1);
MulAcc(6, 0);
SaveMulAcc(6, 0, 7);
MulAcc(1, 6);
MulAcc(2, 5);
MulAcc(3, 4);
MulAcc(4, 3);
MulAcc(5, 2);
MulAcc(6, 1);
MulAcc(7, 0);
SaveMulAcc(7, 1, 7);
MulAcc(2, 6);
MulAcc(3, 5);
MulAcc(4, 4);
MulAcc(5, 3);
MulAcc(6, 2);
MulAcc(7, 1);
SaveMulAcc(8, 2, 7);
MulAcc(3, 6);
MulAcc(4, 5);
MulAcc(5, 4);
MulAcc(6, 3);
MulAcc(7, 2);
SaveMulAcc(9, 3, 7);
MulAcc(4, 6);
MulAcc(5, 5);
MulAcc(6, 4);
MulAcc(7, 3);
SaveMulAcc(10, 4, 7);
MulAcc(5, 6);
MulAcc(6, 5);
MulAcc(7, 4);
SaveMulAcc(11, 5, 7);
MulAcc(6, 6);
MulAcc(7, 5);
SaveMulAcc(12, 6, 7);
MulAcc(7, 6);
R[13] = c;
p = (dword)A[7] * B[7] + d;
R[14] = LOW_WORD(p);
R[15] = e + HIGH_WORD(p);
}
static void CombaMultiplyBottom4(word *R, const word *A, const word *B)
{
dword p;
word c, d, e;
p = (dword)A[0] * B[0];
R[0] = LOW_WORD(p);
c = HIGH_WORD(p);
d = e = 0;
MulAcc(0, 1);
MulAcc(1, 0);
SaveMulAcc(1, 2, 0);
MulAcc(1, 1);
MulAcc(0, 2);
R[2] = c;
R[3] = d + A[0] * B[3] + A[1] * B[2] + A[2] * B[1] + A[3] * B[0];
}
static void CombaMultiplyBottom8(word *R, const word *A, const word *B)
{
dword p;
word c, d, e;
p = (dword)A[0] * B[0];
R[0] = LOW_WORD(p);
c = HIGH_WORD(p);
d = e = 0;
MulAcc(0, 1);
MulAcc(1, 0);
SaveMulAcc(1, 2, 0);
MulAcc(1, 1);
MulAcc(0, 2);
SaveMulAcc(2, 0, 3);
MulAcc(1, 2);
MulAcc(2, 1);
MulAcc(3, 0);
SaveMulAcc(3, 0, 4);
MulAcc(1, 3);
MulAcc(2, 2);
MulAcc(3, 1);
MulAcc(4, 0);
SaveMulAcc(4, 0, 5);
MulAcc(1, 4);
MulAcc(2, 3);
MulAcc(3, 2);
MulAcc(4, 1);
MulAcc(5, 0);
SaveMulAcc(5, 0, 6);
MulAcc(1, 5);
MulAcc(2, 4);
MulAcc(3, 3);
MulAcc(4, 2);
MulAcc(5, 1);
MulAcc(6, 0);
R[6] = c;
R[7] = d + A[0] * B[7] + A[1] * B[6] + A[2] * B[5] + A[3] * B[4] +
A[4] * B[3] + A[5] * B[2] + A[6] * B[1] + A[7] * B[0];
}
#undef MulAcc
#undef SaveMulAcc
static void AtomicInverseModPower2(word *C, word A0, word A1)
{
assert(A0%2==1);
dword A=MAKE_DWORD(A0, A1), R=A0%8;
for (unsigned i=3; i<2*WORD_BITS; i*=2)
R = R*(2-R*A);
assert(R*A==1);
C[0] = LOW_WORD(R);
C[1] = HIGH_WORD(R);
}
// ********************************************************
#define A0 A
#define A1 (A+N2)
#define B0 B
#define B1 (B+N2)
#define T0 T
#define T1 (T+N2)
#define T2 (T+N)
#define T3 (T+N+N2)
#define R0 R
#define R1 (R+N2)
#define R2 (R+N)
#define R3 (R+N+N2)
// R[2*N] - result = A*B
// T[2*N] - temporary work space
// A[N] --- multiplier
// B[N] --- multiplicant
void RecursiveMultiply(word *R, word *T, const word *A, const word *B, unsigned int N)
{
assert(N>=2 && N%2==0);
if (N==2)
AtomicMultiply(R, A, B);
else if (N==4)
CombaMultiply4(R, A, B);
else if (N==8)
CombaMultiply8(R, A, B);
else
{
const unsigned int N2 = N/2;
int carry;
int aComp = Compare(A0, A1, N2);
int bComp = Compare(B0, B1, N2);
switch (2*aComp + aComp + bComp)
{
case -4:
Subtract(R0, A1, A0, N2);
Subtract(R1, B0, B1, N2);
RecursiveMultiply(T0, T2, R0, R1, N2);
Subtract(T1, T1, R0, N2);
carry = -1;
break;
case -2:
Subtract(R0, A1, A0, N2);
Subtract(R1, B0, B1, N2);
RecursiveMultiply(T0, T2, R0, R1, N2);
carry = 0;
break;
case 2:
Subtract(R0, A0, A1, N2);
Subtract(R1, B1, B0, N2);
RecursiveMultiply(T0, T2, R0, R1, N2);
carry = 0;
break;
case 4:
Subtract(R0, A1, A0, N2);
Subtract(R1, B0, B1, N2);
RecursiveMultiply(T0, T2, R0, R1, N2);
Subtract(T1, T1, R1, N2);
carry = -1;
break;
default:
SetWords(T0, 0, N);
carry = 0;
}
RecursiveMultiply(R0, T2, A0, B0, N2);
RecursiveMultiply(R2, T2, A1, B1, N2);
// now T[01] holds (A1-A0)*(B0-B1), R[01] holds A0*B0, R[23] holds A1*B1
carry += Add(T0, T0, R0, N);
carry += Add(T0, T0, R2, N);
carry += Add(R1, R1, T0, N);
assert (carry >= 0 && carry <= 2);
Increment(R3, N2, carry);
}
}
// R[2*N] - result = A*A
// T[2*N] - temporary work space
// A[N] --- number to be squared
void RecursiveSquare(word *R, word *T, const word *A, unsigned int N)
{
assert(N && N%2==0);
if (N==2)
AtomicMultiply(R, A, A);
else if (N==4)
{
// VC60 workaround: MSVC 6.0 has an optimization problem that makes
// (dword)A*B where either A or B has been cast to a dword before
// very expensive. Revisit a CombaSquare4() function when this
// problem is fixed.
// WARNING: KeithR. 05/08/03 This routine doesn't work with gcc on hardware
// either. I've completely removed it. It may be worth looking into sometime
// in the future. Therefore, we use the CombaMultiply4 on all targets.
//#ifdef __WINS__
CombaMultiply4(R, A, A);
/*#else
CombaSquare4(R, A);
#endif*/
}
else
{
const unsigned int N2 = N/2;
RecursiveSquare(R0, T2, A0, N2);
RecursiveSquare(R2, T2, A1, N2);
RecursiveMultiply(T0, T2, A0, A1, N2);
word carry = Add(R1, R1, T0, N);
carry += Add(R1, R1, T0, N);
Increment(R3, N2, carry);
}
}
// R[N] - bottom half of A*B
// T[N] - temporary work space
// A[N] - multiplier
// B[N] - multiplicant
void RecursiveMultiplyBottom(word *R, word *T, const word *A, const word *B, unsigned int N)
{
assert(N>=2 && N%2==0);
if (N==2)
AtomicMultiplyBottom(R, A, B);
else if (N==4)
CombaMultiplyBottom4(R, A, B);
else if (N==8)
CombaMultiplyBottom8(R, A, B);
else
{
const unsigned int N2 = N/2;
RecursiveMultiply(R, T, A0, B0, N2);
RecursiveMultiplyBottom(T0, T1, A1, B0, N2);
Add(R1, R1, T0, N2);
RecursiveMultiplyBottom(T0, T1, A0, B1, N2);
Add(R1, R1, T0, N2);
}
}
// R[N] --- upper half of A*B
// T[2*N] - temporary work space
// L[N] --- lower half of A*B
// A[N] --- multiplier
// B[N] --- multiplicant
void RecursiveMultiplyTop(word *R, word *T, const word *L, const word *A, const word *B, unsigned int N)
{
assert(N>=2 && N%2==0);
if (N==2)
{
AtomicMultiply(T, A, B);
((dword *)R)[0] = ((dword *)T)[1];
}
else if (N==4)
{
CombaMultiply4(T, A, B);
((dword *)R)[0] = ((dword *)T)[2];
((dword *)R)[1] = ((dword *)T)[3];
}
else
{
const unsigned int N2 = N/2;
int carry;
int aComp = Compare(A0, A1, N2);
int bComp = Compare(B0, B1, N2);
switch (2*aComp + aComp + bComp)
{
case -4:
Subtract(R0, A1, A0, N2);
Subtract(R1, B0, B1, N2);
RecursiveMultiply(T0, T2, R0, R1, N2);
Subtract(T1, T1, R0, N2);
carry = -1;
break;
case -2:
Subtract(R0, A1, A0, N2);
Subtract(R1, B0, B1, N2);
RecursiveMultiply(T0, T2, R0, R1, N2);
carry = 0;
break;
case 2:
Subtract(R0, A0, A1, N2);
Subtract(R1, B1, B0, N2);
RecursiveMultiply(T0, T2, R0, R1, N2);
carry = 0;
break;
case 4:
Subtract(R0, A1, A0, N2);
Subtract(R1, B0, B1, N2);
RecursiveMultiply(T0, T2, R0, R1, N2);
Subtract(T1, T1, R1, N2);
carry = -1;
break;
default:
SetWords(T0, 0, N);
carry = 0;
}
RecursiveMultiply(T2, R0, A1, B1, N2);
// now T[01] holds (A1-A0)*(B0-B1), T[23] holds A1*B1
CopyWords(R0, L+N2, N2);
word c2 = Subtract(R0, R0, L, N2);
c2 += Subtract(R0, R0, T0, N2);
word t = (Compare(R0, T2, N2) == -1);
carry += t;
carry += Increment(R0, N2, c2+t);
carry += Add(R0, R0, T1, N2);
carry += Add(R0, R0, T3, N2);
CopyWords(R1, T3, N2);
assert (carry >= 0 && carry <= 2);
Increment(R1, N2, carry);
}
}
// R[NA+NB] - result = A*B
// T[NA+NB] - temporary work space
// A[NA] ---- multiplier
// B[NB] ---- multiplicant
void AsymmetricMultiply(word *R, word *T, const word *A, unsigned int NA, const word *B, unsigned int NB)
{
if (NA == NB)
{
if (A == B)
RecursiveSquare(R, T, A, NA);
else
RecursiveMultiply(R, T, A, B, NA);
return;
}
if (NA > NB)
{
TClassSwap(A, B);
TClassSwap(NA, NB);
//std::swap(A, B);
//std::swap(NA, NB);
}
assert(NB % NA == 0);
assert((NB/NA)%2 == 0); // NB is an even multiple of NA
if (NA==2 && !A[1])
{
switch (A[0])
{
case 0:
SetWords(R, 0, NB+2);
return;
case 1:
CopyWords(R, B, NB);
R[NB] = R[NB+1] = 0;
return;
default:
R[NB] = LinearMultiply(R, B, A[0], NB);
R[NB+1] = 0;
return;
}
}
RecursiveMultiply(R, T, A, B, NA);
CopyWords(T+2*NA, R+NA, NA);
unsigned i;
for (i=2*NA; i<NB; i+=2*NA)
RecursiveMultiply(T+NA+i, T, A, B+i, NA);
for (i=NA; i<NB; i+=2*NA)
RecursiveMultiply(R+i, T, A, B+i, NA);
if (Add(R+NA, R+NA, T+2*NA, NB-NA))
Increment(R+NB, NA);
}
// R[N] ----- result = A inverse mod 2**(WORD_BITS*N)
// T[3*N/2] - temporary work space
// A[N] ----- an odd number as input
void RecursiveInverseModPower2(word *R, word *T, const word *A, unsigned int N)
{
if (N==2)
AtomicInverseModPower2(R, A[0], A[1]);
else
{
const unsigned int N2 = N/2;
RecursiveInverseModPower2(R0, T0, A0, N2);
T0[0] = 1;
SetWords(T0+1, 0, N2-1);
RecursiveMultiplyTop(R1, T1, T0, R0, A0, N2);
RecursiveMultiplyBottom(T0, T1, R0, A1, N2);
Add(T0, R1, T0, N2);
TwosComplement(T0, N2);
RecursiveMultiplyBottom(R1, T1, R0, T0, N2);
}
}
#undef A0
#undef A1
#undef B0
#undef B1
#undef T0
#undef T1
#undef T2
#undef T3
#undef R0
#undef R1
#undef R2
#undef R3
// R[N] --- result = X/(2**(WORD_BITS*N)) mod M
// T[3*N] - temporary work space
// X[2*N] - number to be reduced
// M[N] --- modulus
// U[N] --- multiplicative inverse of M mod 2**(WORD_BITS*N)
void MontgomeryReduce(word *R, word *T, const word *X, const word *M, const word *U, unsigned int N)
{
RecursiveMultiplyBottom(R, T, X, U, N);
RecursiveMultiplyTop(T, T+N, X, R, M, N);
if (Subtract(R, X+N, T, N))
{
#ifdef _DEBUG
word carry = Add(R, R, M, N);
assert(carry);
#else
Add(R, R, M, N);
#endif
}
}
// do a 3 word by 2 word divide, returns quotient and leaves remainder in A
static word SubatomicDivide(word *A, word B0, word B1)
{
// assert {A[2],A[1]} < {B1,B0}, so quotient can fit in a word
assert(A[2] < B1 || (A[2]==B1 && A[1] < B0));
dword p, u;
word Q;
// estimate the quotient: do a 2 word by 1 word divide
if (B1+1 == 0)
Q = A[2];
else
Q = word(MAKE_DWORD(A[1], A[2]) / (B1+1));
// now subtract Q*B from A
p = (dword) B0*Q;
u = (dword) A[0] - LOW_WORD(p);
A[0] = LOW_WORD(u);
u = (dword) A[1] - HIGH_WORD(p) - (word)(0-HIGH_WORD(u)) - (dword)B1*Q;
A[1] = LOW_WORD(u);
A[2] += HIGH_WORD(u);
// Q <= actual quotient, so fix it
while (A[2] || A[1] > B1 || (A[1]==B1 && A[0]>=B0))
{
u = (dword) A[0] - B0;
A[0] = LOW_WORD(u);
u = (dword) A[1] - B1 - (word)(0-HIGH_WORD(u));
A[1] = LOW_WORD(u);
A[2] += HIGH_WORD(u);
Q++;
assert(Q); // shouldn't overflow
}
return Q;
}
// do a 4 word by 2 word divide, returns 2 word quotient in Q0 and Q1
static inline void AtomicDivide(word *Q, const word *A, const word *B)
{
if (!B[0] && !B[1]) // if divisor is 0, we assume divisor==2**(2*WORD_BITS)
{
Q[0] = A[2];
Q[1] = A[3];
}
else
{
word T[4];
T[0] = A[0]; T[1] = A[1]; T[2] = A[2]; T[3] = A[3];
Q[1] = SubatomicDivide(T+1, B[0], B[1]);
Q[0] = SubatomicDivide(T, B[0], B[1]);
#ifdef _DEBUG
// multiply quotient and divisor and add remainder, make sure it equals dividend
assert(!T[2] && !T[3] && (T[1] < B[1] || (T[1]==B[1] && T[0]<B[0])));
word P[4];
AtomicMultiply(P, Q, B);
Add(P, P, T, 4);
assert(Mem::Compare((TUint8*)P, 4*WORD_SIZE, (TUint8*)A, 4*WORD_SIZE)==0);
#endif
}
}
// for use by Divide(), corrects the underestimated quotient {Q1,Q0}
static void CorrectQuotientEstimate(word *R, word *T, word *Q, const word *B, unsigned int N)
{
assert(N && N%2==0);
if (Q[1])
{
T[N] = T[N+1] = 0;
unsigned i;
for (i=0; i<N; i+=4)
AtomicMultiply(T+i, Q, B+i);
for (i=2; i<N; i+=4)
if (AtomicMultiplyAdd(T+i, Q, B+i))
T[i+5] += (++T[i+4]==0);
}
else
{
T[N] = LinearMultiply(T, B, Q[0], N);
T[N+1] = 0;
}
#ifdef _DEBUG
word borrow = Subtract(R, R, T, N+2);
assert(!borrow && !R[N+1]);
#else
Subtract(R, R, T, N+2);
#endif
while (R[N] || Compare(R, B, N) >= 0)
{
R[N] -= Subtract(R, R, B, N);
Q[1] += (++Q[0]==0);
assert(Q[0] || Q[1]); // no overflow
}
}
// R[NB] -------- remainder = A%B
// Q[NA-NB+2] --- quotient = A/B
// T[NA+2*NB+4] - temp work space
// A[NA] -------- dividend
// B[NB] -------- divisor
void Divide(word *R, word *Q, word *T, const word *A, unsigned int NA, const word *B, unsigned int NB)
{
assert(NA && NB && NA%2==0 && NB%2==0);
assert(B[NB-1] || B[NB-2]);
assert(NB <= NA);
// set up temporary work space
word *const TA=T;
word *const TB=T+NA+2;
word *const TP=T+NA+2+NB;
// copy B into TB and normalize it so that TB has highest bit set to 1
unsigned shiftWords = (B[NB-1]==0);
TB[0] = TB[NB-1] = 0;
CopyWords(TB+shiftWords, B, NB-shiftWords);
unsigned shiftBits = WORD_BITS - BitPrecision(TB[NB-1]);
assert(shiftBits < WORD_BITS);
ShiftWordsLeftByBits(TB, NB, shiftBits);
// copy A into TA and normalize it
TA[0] = TA[NA] = TA[NA+1] = 0;
CopyWords(TA+shiftWords, A, NA);
ShiftWordsLeftByBits(TA, NA+2, shiftBits);
if (TA[NA+1]==0 && TA[NA] <= 1)
{
Q[NA-NB+1] = Q[NA-NB] = 0;
while (TA[NA] || Compare(TA+NA-NB, TB, NB) >= 0)
{
TA[NA] -= Subtract(TA+NA-NB, TA+NA-NB, TB, NB);
++Q[NA-NB];
}
}
else
{
NA+=2;
assert(Compare(TA+NA-NB, TB, NB) < 0);
}
word BT[2];
BT[0] = TB[NB-2] + 1;
BT[1] = TB[NB-1] + (BT[0]==0);
// start reducing TA mod TB, 2 words at a time
for (unsigned i=NA-2; i>=NB; i-=2)
{
AtomicDivide(Q+i-NB, TA+i-2, BT);
CorrectQuotientEstimate(TA+i-NB, TP, Q+i-NB, TB, NB);
}
// copy TA into R, and denormalize it
CopyWords(R, TA+shiftWords, NB);
ShiftWordsRightByBits(R, NB, shiftBits);
}
static inline unsigned int EvenWordCount(const word *X, unsigned int N)
{
while (N && X[N-2]==0 && X[N-1]==0)
N-=2;
return N;
}
// return k
// R[N] --- result = A^(-1) * 2^k mod M
// T[4*N] - temporary work space
// A[NA] -- number to take inverse of
// M[N] --- modulus
unsigned int AlmostInverse(word *R, word *T, const word *A, unsigned int NA, const word *M, unsigned int N)
{
assert(NA<=N && N && N%2==0);
word *b = T;
word *c = T+N;
word *f = T+2*N;
word *g = T+3*N;
unsigned int bcLen=2, fgLen=EvenWordCount(M, N);
unsigned int k=0, s=0;
SetWords(T, 0, 3*N);
b[0]=1;
CopyWords(f, A, NA);
CopyWords(g, M, N);
FOREVER
{
word t=f[0];
while (!t)
{
if (EvenWordCount(f, fgLen)==0)
{
SetWords(R, 0, N);
return 0;
}
ShiftWordsRightByWords(f, fgLen, 1);
if (c[bcLen-1]) bcLen+=2;
assert(bcLen <= N);
ShiftWordsLeftByWords(c, bcLen, 1);
k+=WORD_BITS;
t=f[0];
}
unsigned int i=0;
while (t%2 == 0)
{
t>>=1;
i++;
}
k+=i;
if (t==1 && f[1]==0 && EvenWordCount(f, fgLen)==2)
{
if (s%2==0)
CopyWords(R, b, N);
else
Subtract(R, M, b, N);
return k;
}
ShiftWordsRightByBits(f, fgLen, i);
t=ShiftWordsLeftByBits(c, bcLen, i);
if (t)
{
c[bcLen] = t;
bcLen+=2;
assert(bcLen <= N);
}
if (f[fgLen-2]==0 && g[fgLen-2]==0 && f[fgLen-1]==0 && g[fgLen-1]==0)
fgLen-=2;
if (Compare(f, g, fgLen)==-1)
{
TClassSwap<word*>(f,g);
TClassSwap<word*>(b,c);
s++;
}
Subtract(f, f, g, fgLen);
if (Add(b, b, c, bcLen))
{
b[bcLen] = 1;
bcLen+=2;
assert(bcLen <= N);
}
}
}
// R[N] - result = A/(2^k) mod M
// A[N] - input
// M[N] - modulus
void DivideByPower2Mod(word *R, const word *A, unsigned int k, const word *M, unsigned int N)
{
CopyWords(R, A, N);
while (k--)
{
if (R[0]%2==0)
ShiftWordsRightByBits(R, N, 1);
else
{
word carry = Add(R, R, M, N);
ShiftWordsRightByBits(R, N, 1);
R[N-1] += carry<<(WORD_BITS-1);
}
}
}