crypto/weakcryptospi/test/tcryptospi/src/hmacincrementalhmacwithreplicatestep.cpp
/*
* Copyright (c) 2007-2010 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
* Example CTestStep derived implementation
*
*/
/**
@file
@internalTechnology
*/
#include "hmacincrementalhmacwithreplicatestep.h"
#include <cryptospi/cryptohashapi.h>
#include <cryptospi/keys.h>
#include <cryptospi/plugincharacteristics.h>
using namespace CryptoSpi;
CHmacIncrementalHmacWithReplicateStep::~CHmacIncrementalHmacWithReplicateStep()
{
}
CHmacIncrementalHmacWithReplicateStep::CHmacIncrementalHmacWithReplicateStep()
{
SetTestStepName(KHmacIncrementalHmacWithReplicateStep);
}
TVerdict CHmacIncrementalHmacWithReplicateStep::doTestStepPreambleL()
{
SetTestStepResult(EPass);
return TestStepResult();
}
TVerdict CHmacIncrementalHmacWithReplicateStep::doTestStepL()
{
if (TestStepResult()==EPass)
{
//Assume faliure, unless all is successful
SetTestStepResult(EFail);
INFO_PRINTF1(_L("*** Hmac - Incremental Hash with Replicate ***"));
INFO_PRINTF2(_L("HEAP CELLS: %d"), User::CountAllocCells());
TVariantPtrC algorithmUid;
TVariantPtrC operationModeUid;
TPtrC sourcePath;
TPtrC expectedHash;
TPtrC encryptKey;
TVariantPtrC keyType;
//Extract the Test Case ID parameter from the specified INI file
if(!GetStringFromConfig(ConfigSection(),KConfigAlgorithmUid,algorithmUid) ||
!GetStringFromConfig(ConfigSection(),KConfigOperationMode,operationModeUid) ||
!GetStringFromConfig(ConfigSection(),KConfigSourcePath,sourcePath) ||
!GetStringFromConfig(ConfigSection(),KConfigExHashHmacValue,expectedHash) ||
!GetStringFromConfig(ConfigSection(),KConfigEncryptKey,encryptKey) ||
!GetStringFromConfig(ConfigSection(),KConfigEncryptKeyType,keyType))
{
ERR_PRINTF1(_L("** Error: Failed to Load Configuration Parameters **"));
SetTestStepResult(EFail);
}
else
{
//Create a pointer for the Hash + Key (Hmac) Implementation Object
CHash* hmacImpl = NULL;
//Convert encryption key to an 8 Bit Descriptor
HBufC8* keyStr = HBufC8::NewLC(encryptKey.Length());
TPtr8 keyStrPtr = keyStr->Des();
keyStrPtr.Copy(encryptKey);
//Create an new CryptoParams object to encapsulate the key type and secret key string
CCryptoParams* keyParams = CCryptoParams::NewL();
CleanupStack::PushL(keyParams);
keyParams->AddL(*keyStr,keyType);
//Create Key Object
TKeyProperty keyProperty;
CKey* key=CKey::NewL(keyProperty,*keyParams);
CleanupStack::PushL(key);
//Retrieve a Hmac Factory Object
TRAPD(err,CHashFactory::CreateHashL(hmacImpl,
algorithmUid,
operationModeUid,
key,
NULL));
if(hmacImpl && (err == KErrNone))
{
//Push the Hmac Implementation Object onto the Cleanup Stack
CleanupStack::PushL(hmacImpl);
RFs fsSession;
//Create a connection to the file server
err = fsSession.Connect();
if(err != KErrNone)
{
ERR_PRINTF2(_L("*** Error: File Server Connection - %d ***"), err);
SetTestStepResult(EFail);
}
else
{
RFile sourceFile;
CleanupClosePushL(sourceFile);
//Open the specified source file
err = sourceFile.Open(fsSession,sourcePath, EFileRead);
if(err != KErrNone)
{
ERR_PRINTF2(_L("*** Error: Opening Source File - %d ***"), err);
SetTestStepResult(EFail);
}
else
{
TInt sourceLength = 0;
TInt readPosition = 0;
TInt readIncrement = 0;
TBool hashComplete = EFalse;
TBool hashReplicated = EFalse;
TPtrC8 hashStr;
CHash* hmacReplicateImpl = NULL;
User::LeaveIfError(sourceFile.Size(sourceLength));
//Divide the total size of the source file up into individual equal sized blocks to read
//over several increments
readIncrement = sourceLength/KDataReadBlocks;
do
{
//Create a heap based descriptor to store the data
HBufC8* sourceData = HBufC8::NewL(readIncrement);
CleanupStack::PushL(sourceData);
TPtr8 sourcePtr = sourceData->Des();
//Read in a block of data from the source file from the current position
err = sourceFile.Read(readPosition,sourcePtr,readIncrement);
//Update the read position by adding the number of bytes read
readPosition += readIncrement;
if(readPosition == readIncrement)
{
//Read in the first block from the data file into the Hmac implementation object
if(hashReplicated == EFalse)
{
hmacImpl->Hash(*sourceData);
INFO_PRINTF2(_L("Intial Hmac - Bytes Read: %d"), readPosition);
}
else
{
hmacReplicateImpl->Hash(*sourceData);
INFO_PRINTF2(_L("Intial Hmac (Replicate) - Bytes Read: %d"), readPosition);
}
}
else if(readPosition >= sourceLength)
{
//Reading in the final block, constructs the complete hash value and returns it within a TPtrC8
hashStr.Set(hmacReplicateImpl->Final(*sourceData));
//Sets the Complete Flag to ETrue in order to drop out of the loop
hashComplete = ETrue;
TInt totalRead = (readPosition - readIncrement) + (*sourceData).Length();
INFO_PRINTF2(_L("Final Hmac - Bytes Read: %d"),totalRead);
}
//If the read position is half the source length and the implementation
//object hasn't already been replicated
else if((readPosition >= sourceLength/2) && (hashReplicated == EFalse))
{
INFO_PRINTF1(_L("Replicating Hmac Object..."));
//Create a Copy of the existing Hmac Object with NO internal message state
hmacReplicateImpl = hmacImpl->ReplicateL();
hashReplicated = ETrue;
//Sets the read position back to 0 inorder to restart the file read from the beginning
readPosition =0;
INFO_PRINTF2(_L("*** HMAC REPLICATE - Bytes Read: %d ***"), readPosition);
}
else
{
//Update the message data within the Hmac object with the new block
if(hashReplicated == EFalse)
{
hmacImpl->Update(*sourceData);
INFO_PRINTF2(_L("Hmac Update - Bytes Read: %d"), readPosition);
}
else
{
hmacReplicateImpl->Update(*sourceData);
INFO_PRINTF2(_L("Hmac Update (Replicate) - Bytes Read: %d"), readPosition);
}
}
CleanupStack::PopAndDestroy(sourceData);
}while(hashComplete == EFalse);
//Create a NULL TCharacteristics pointer
const TCharacteristics* charsPtr(NULL);
//Retrieve the characteristics for the hash implementation object
TRAP_LOG(err, hmacImpl->GetCharacteristicsL(charsPtr));
//Static cast the characteristics to type THashCharacteristics
const THashCharacteristics* hashCharsPtr = static_cast<const THashCharacteristics*>(charsPtr);
//The hash output size is returned in Bits, divide by 8 to get the Byte size
TInt hashSize = hashCharsPtr->iOutputSize/8;
//Retrieve the final 8bit hash value and convert to 16bit
HBufC* hashData = HBufC::NewLC(hashSize);
TPtr hashPtr = hashData->Des();
hashPtr.Copy(hashStr);
//Take the 16bit descriptor and convert the string to hexadecimal
TVariantPtrC convertHash;
convertHash.Set(hashPtr);
HBufC* hmacResult = convertHash.HexStringLC();
INFO_PRINTF2(_L("*** Hashed Data: %S ***"),&*hmacResult);
INFO_PRINTF2(_L("*** Expected Hash: %S ***"),&expectedHash);
//If the returned hash value matches the expected hash, Pass the test
if(*hmacResult == expectedHash)
{
INFO_PRINTF1(_L("*** Hmac - Incremental Hash with Replicate : PASS ***"));
SetTestStepResult(EPass);
}
else
{
ERR_PRINTF2(_L("*** FAIL: Hashed and Expected Value Mismatch ***"), err);
SetTestStepResult(EFail);
}
CleanupStack::PopAndDestroy(hmacResult);
CleanupStack::PopAndDestroy(hashData);
delete hmacReplicateImpl;
}
//Cleanup the Source RFile
CleanupStack::PopAndDestroy();
}
fsSession.Close();
CleanupStack::PopAndDestroy(hmacImpl);
}
else
{
ERR_PRINTF2(_L("*** FAIL: Failed to Create Hmac Object - %d ***"), err);
SetTestStepResult(EFail);
}
CleanupStack::PopAndDestroy(key);
CleanupStack::PopAndDestroy(keyParams);
CleanupStack::PopAndDestroy(keyStr);
}
}
INFO_PRINTF2(_L("HEAP CELLS: %d"), User::CountAllocCells());
return TestStepResult();
}
TVerdict CHmacIncrementalHmacWithReplicateStep::doTestStepPostambleL()
{
return TestStepResult();
}