crypto/weakcryptospi/test/tcryptospi/src/symmetriccipherencrypteddatacheckstep.cpp
/*
* Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
* Example CTestStep derived implementation
*
*/
/**
@file
@internalTechnology
*/
#include "symmetriccipherencrypteddatacheckstep.h"
using namespace CryptoSpi;
CSymmetricCipherEncryptedDataCheckStep::CSymmetricCipherEncryptedDataCheckStep()
{
}
CSymmetricCipherEncryptedDataCheckStep::~CSymmetricCipherEncryptedDataCheckStep()
{
}
TVerdict CSymmetricCipherEncryptedDataCheckStep::doTestStepPreambleL()
{
SetTestStepResult(EPass);
return TestStepResult();
}
TVerdict CSymmetricCipherEncryptedDataCheckStep::doTestStepL()
{
INFO_PRINTF1(_L("*** Symmetric Cipher - Encrypted Data Check ***"));
INFO_PRINTF2(_L("HEAP CELLS: %d"), User::CountAllocCells());
if (TestStepResult()==EPass)
{
//Assume faliure, unless all is successful
SetTestStepResult(EFail);
TVariantPtrC operationMode;
// Create a Symmetric Cipher with the values from the ini file
CryptoSpi::CSymmetricCipher * impl = NULL;
CKey* key = NULL;
SetupCipherL(ETrue, ETrue, operationMode, impl, key);
INFO_PRINTF1(_L("Plugin loaded."));
CleanupStack::PushL(key);
CleanupStack::PushL(impl);
//read from src file
HBufC8* srcData = ReadInPlaintextL();
CleanupStack::PushL(srcData);
//Create buffer for encrypted data
TInt maxOutputLength = impl->MaxFinalOutputLength(srcData->Length());
HBufC8* encrypted = HBufC8::NewLC(maxOutputLength);
TPtr8 encryptedPtr = encrypted->Des();
TInt err;
if (((TUid)operationMode == KOperationModeCBCUid) || (TUid(operationMode) == KOperationModeCTRUid))
{
TInt blockSize(0);
if (TUid(operationMode) == KOperationModeCTRUid)
{
blockSize = CtrModeCalcBlockSizeL(*impl);
}
else
{
blockSize = impl->BlockSize();
}
// blocksize is in bits so to allocate the correct number of bytes devide by 8
HBufC8* iv = HBufC8::NewLC(blockSize/8);
// blocksize is in bits so to allocate the correct number of 8 byte chunks divide by 64
for(TInt i = 0 ; i < blockSize/64 ; i++)
{
iv->Des().Append(_L8("12345678"));
}
TRAP_LOG(err,impl->SetIvL(iv->Des()));
CleanupStack::PopAndDestroy(iv);
}
INFO_PRINTF1(_L("Encrypting Source Data..."));
//Perform the encryption operation
TRAP_LOG(err, impl->ProcessFinalL((*srcData), encryptedPtr));
if(err == KErrNone)
{
//Check that expected data equals the encrypted data
HBufC8* encryptedFileData = ReadInHexCiphertextL();
CleanupStack::PushL(encryptedFileData);
if( !encryptedPtr.Compare(TPtrC8(*encryptedFileData)))
{
INFO_PRINTF1(_L("PASS : Encrypted Cipher Text Matches Expected Data"));
SetTestStepResult(EPass);
}
else
{
INFO_PRINTF1(_L("FAIL : Encrypted Cipher Text and Expected Data Mismatch"));
SetTestStepResult(EFail);
}
CleanupStack::PopAndDestroy(encryptedFileData);
}
CleanupStack::PopAndDestroy(encrypted);
CleanupStack::PopAndDestroy(srcData);
CleanupStack::PopAndDestroy(impl);
CleanupStack::PopAndDestroy(key);
}
INFO_PRINTF2(_L("HEAP CELLS: %d"), User::CountAllocCells());
return TestStepResult();
}
TVerdict CSymmetricCipherEncryptedDataCheckStep::doTestStepPostambleL()
{
return TestStepResult();
}