/*
* Copyright (c) 2003-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#include <bigint.h>
#include <euserext.h>
#include "algorithms.h"
#include "words.h"
#include "windowslider.h"
#include "mont.h"
EXPORT_C CMontgomeryStructure* CMontgomeryStructure::NewLC(
const TInteger& aModulus)
{
CMontgomeryStructure* self = new(ELeave) CMontgomeryStructure;
CleanupStack::PushL(self);
self->ConstructL(aModulus);
return self;
}
CMontgomeryStructure::~CMontgomeryStructure()
{
iModulus.Close();
iModulusInv.Close();
iWorkspace.Close();
iResult.Close();
}
void CMontgomeryStructure::ConstructL(const TInteger& aModulus)
{
User::LeaveIfError(aModulus.IsOdd() ? KErrNone : KErrArgument);
iModulusInv = RInteger::NewEmptyL(aModulus.Size());
iWorkspace = RInteger::NewEmptyL(5*aModulus.Size());
iModulus = RInteger::NewL(aModulus);
iResult = RInteger::NewEmptyL(aModulus.Size());
RecursiveInverseModPower2(iModulusInv.Ptr(), iWorkspace.Ptr(),
iModulus.Ptr(), iModulus.Size());
}
CMontgomeryStructure::CMontgomeryStructure()
{
}
TInteger& CMontgomeryStructure::ConvertIn(TInteger& aInteger) const
{
aInteger <<= WordsToBits(iModulus.Size());
aInteger %= iModulus;
return aInteger;
}
TInteger& CMontgomeryStructure::ConvertOutL(TInteger& aInteger) const
{
TUint* const T = iWorkspace.Ptr();
TUint* const R = aInteger.Ptr();
const TUint N = iModulus.Size();
User::LeaveIfError((aInteger.Size() <= N) ? KErrNone : KErrArgument);
CopyWords(T, aInteger.Ptr(), aInteger.Size());
SetWords(T + aInteger.Size(), 0, 2*N - aInteger.Size());
MontgomeryReduce(R, T+2*N, T, iModulus.Ptr(), iModulusInv.Ptr(), N);
return aInteger;
}
void CMontgomeryStructure::DoMultiplyL(TInteger& aResult, const TInteger& aA,
const TInteger& aB) const
{
User::LeaveIfError((aResult.Size() == iModulus.Size()) ? KErrNone : KErrArgument);
TUint* const T = iWorkspace.Ptr();
TUint* const R = aResult.Ptr();
const TUint N = iModulus.Size();
const TUint* const aReg = aA.Ptr();
const TUint* const bReg = aB.Ptr();
const TUint aSize = aA.Size();
const TUint bSize = aB.Size();
User::LeaveIfError((aSize <= N && bSize <= N) ? KErrNone : KErrArgument);
AsymmetricMultiply(T, T+2*N, aReg, aSize, bReg, bSize);
SetWords(T+aSize+bSize, 0, 2*N - aSize - bSize);
MontgomeryReduce(R, T+2*N, T, iModulus.Ptr(), iModulusInv.Ptr(), N);
}
const TInteger& CMontgomeryStructure::SquareL(const TInteger& aA) const
{
RInteger a = RInteger::NewL(aA);
CleanupStack::PushL(a);
DoSquareL(iResult, ConvertIn(a));
ConvertOutL(iResult);
CleanupStack::PopAndDestroy(&a);
return iResult;
}
void CMontgomeryStructure::DoSquareL(TInteger& aResult, const TInteger& aA) const
{
User::LeaveIfError((aResult.Size() == iModulus.Size()) ? KErrNone : KErrArgument);
TUint* const T = iWorkspace.Ptr();
TUint* const R = aResult.Ptr();
const TUint N = iModulus.Size();
const TUint* const aReg = aA.Ptr();
const TUint aSize = aA.Size();
User::LeaveIfError((aSize <= N) ? KErrNone : KErrArgument);
RecursiveSquare(T, T+2*N, aReg, aSize);
SetWords(T+2*aSize, 0, 2*N-2*aSize);
MontgomeryReduce(R, T+2*N, T, iModulus.Ptr(), iModulusInv.Ptr(), N);
}
EXPORT_C const TInteger& CMontgomeryStructure::ExponentiateL(
const TInteger& aBase, const TInteger& aExponent) const
{
//See HAC 14.85
if ((iResult.Size() != iModulus.Size()) ||
(aBase >= iModulus) ||
(!aBase.IsPositive()) ||
(!aExponent.IsPositive()))
{
User::Leave(KErrArgument);
}
// 1.1 Precomputation
// g1 <- g
// g2 <- g^2
RInteger g2 = RInteger::NewL(aBase);
CleanupStack::PushL(g2);
ConvertIn(g2);
//ConvertIn can shrink g2, because we call DoSquare on g2, g2 must be the same size as the modulus
g2.CleanGrowL(iModulus.Size());
RInteger g1 = RInteger::NewL(g2);
CleanupStack::PushL(g1);
DoSquareL(g2, g2);
TWindowSlider slider(aExponent);
// 1.2
// For i from 1 to (2^(k-1) -1) do g2i+1 <- g2i-1 * g2
TUint count = (1 << (slider.WindowSize()-1)) - 1; //2^(k-1) -1
RRArray<RInteger> powerArray(count+1); //+1 because we append g1
User::LeaveIfError(powerArray.Append(g1));
CleanupStack::Pop(&g1);
CleanupClosePushL(powerArray);
for(TUint k=1; k <= count; k++)
{
RInteger gi = RInteger::NewEmptyL(iModulus.Size());
DoMultiplyL(gi, g2, powerArray[k-1]);
User::LeaveIfError(powerArray.Append(gi));
}
// 2 A <- 1, i <- t
RInteger temp = RInteger::NewL(TInteger::One());
CleanupStack::PushL(temp);
ConvertIn(temp);
RInteger& A = iResult;
//Set A to one converted in for this modulus without changing the memory size of A (iResult)
A.CopyL(temp, EFalse);
CleanupStack::PopAndDestroy(&temp);
TInt i = aExponent.BitCount() - 1;
// 3 While i>=0 do:
while( i>=0 )
{
// 3.1 If ei == 0 then A <- A^2
if(!aExponent.Bit(i))
{
DoSquareL(A, A);
i--;
}
// 3.2 Find longest bitstring ei,ei-1,...,el s.t. i-l+1<=k and el==1
// and do:
// A <- (A^2^(i-l+1)) * g[the index indicated by the bitstring value]
else
{
slider.FindNextWindow(i);
assert(slider.Length() >= 1);
for(TUint j=0; j<slider.Length(); j++)
{
DoSquareL(A, A);
}
DoMultiplyL(A, A, powerArray[slider.Value()>>1]);
i -= slider.Length();
}
}
CleanupStack::PopAndDestroy(2, &g2); //powerArray, g2
return ConvertOutL(A); // A == iResult
}
// Methods are excluded from coverage due to the problem with BullsEye on ONB.
// Manually verified that these methods are functionally covered.
#ifdef _BullseyeCoverage
#pragma suppress_warnings on
#pragma BullseyeCoverage off
#pragma suppress_warnings off
#endif
const TInteger& CMontgomeryStructure::ReduceL(
const TInteger& aInteger) const
{
RInteger temp = RInteger::NewL(aInteger);
CleanupStack::PushL(temp);
ConvertIn(temp);
iResult.CopyL(ConvertOutL(temp), EFalse);
CleanupStack::PopAndDestroy(&temp);
return iResult;
}
CMontgomeryStructure* CMontgomeryStructure::NewL(
const TInteger& aModulus)
{
CMontgomeryStructure* self = CMontgomeryStructure::NewLC(aModulus);
CleanupStack::Pop(self);
return self;
}
const TInteger& CMontgomeryStructure::MultiplyL(const TInteger& aA,
const TInteger& aB) const
{
RInteger a = RInteger::NewL(aA);
CleanupStack::PushL(a);
RInteger b = RInteger::NewL(aB);
CleanupStack::PushL(b);
DoMultiplyL(iResult, ConvertIn(a), ConvertIn(b));
ConvertOutL(iResult);
CleanupStack::PopAndDestroy(&b);
CleanupStack::PopAndDestroy(&a);
return iResult;
}