/*
* Copyright (c) 2007-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
* Example CTestStep derived implementation
*
*/
/**
@file
@internalTechnology
*/
#include "symmetriccipherobjectreusestep.h"
#include "filewriter.h"
#include "filecompare.h"
using namespace CryptoSpi;
CSymmetricCipherObjectReuseStep::CSymmetricCipherObjectReuseStep(TInt aOffset) : iOffset(aOffset)
{
}
CSymmetricCipherObjectReuseStep::~CSymmetricCipherObjectReuseStep()
{
}
TVerdict CSymmetricCipherObjectReuseStep::doTestStepPreambleL()
{
SetTestStepResult(EPass);
return TestStepResult();
}
TVerdict CSymmetricCipherObjectReuseStep::doTestStepL()
{
INFO_PRINTF1(_L("*** Symmetric Cipher - Object Reuse ***"));
INFO_PRINTF2(_L("HEAP CELLS: %d"), User::CountAllocCells());
if (TestStepResult()==EPass)
{
//Assume failure, unless all is successful
SetTestStepResult(EFail);
TPtrC keyPath;
TPtrC srcPath;
TVariantPtrC algorithm;
TVariantPtrC operationMode;
TVariantPtrC paddingMode;
if( !GetStringFromConfig(ConfigSection(),KConfigEncryptKey, keyPath) ||
!GetStringFromConfig(ConfigSection(),KConfigSourcePath, srcPath) ||
!GetStringFromConfig(ConfigSection(),KConfigAlgorithmUid, algorithm) ||
!GetStringFromConfig(ConfigSection(),KConfigOperationMode, operationMode) ||
!GetStringFromConfig(ConfigSection(),KConfigPaddingMode, paddingMode ))
{
User::Leave(KErrNotFound);
}
else
{
//Create an instance of TKeyProperty
TKeyProperty keyProperty;
//Load the key data using the
CFileReader* keyData = CFileReader::NewLC(keyPath);
CCryptoParams* params = CCryptoParams::NewLC();
params->AddL( *keyData, KSymmetricKeyParameterUid);
CKey* key=CKey::NewL(keyProperty, *params);
CleanupStack::PushL(key);
CCryptoParams* xparams = NULL;
if (TUid(algorithm) == KArc4Uid)
{
//Set the RC4 DiscardBytes to 0
xparams = CCryptoParams::NewL();
xparams->AddL(NULL, KARC4DiscardBytes);
CleanupStack::PushL(xparams);
}
if (TUid(algorithm) == KRc2Uid)
{
TInt keylen = TPtrC8(*keyData).Length() * 8;
xparams = CCryptoParams::NewLC();
//Set the RC2 EffectiveKeyLen according to the input key size
xparams->AddL( keylen, KRC2EffectiveKeyLenBits);
}
INFO_PRINTF1(_L("Creating Symmetric Cipher Object..."));
// Create a Symmetric Cipher with the values from the ini config file
CryptoSpi::CSymmetricCipher * impl = NULL;
TRAPD(err,CSymmetricCipherFactory::CreateSymmetricCipherL
(
impl,
algorithm,
*key,
KCryptoModeEncryptUid,
operationMode,
paddingMode,
xparams));
if(impl && (err == KErrNone))
{
CleanupStack::PushL(impl);
const TInt KObjectReuseItterations = 5; // 5 iterations should be enough to check the object reuse feature
// the no of iteration is reduced, to reduce the time taken for execution
//Boolean to denote the state
TBool testPass = ETrue;
/*************** Encrypt/Decrypt Reuse Loop ****************/
for(TInt index = 0; index < KObjectReuseItterations; index++)
{
INFO_PRINTF3(_L("i=%d : START HEAP CELLS: %d"),index, User::CountAllocCells());
//-----RESET IMPLEMENTATION OBJECT (NORMAL LOGGING)----------
impl->Reset();
TRAP(err,impl->SetKeyL(*key));
if(err != KErrNone)
{
ERR_PRINTF3(_L("*** ERROR:%d - SetKeyL() i=%d ***"),err,index);
User::Leave(err);
}
TRAP(err,impl->SetCryptoModeL(KCryptoModeEncryptUid));
if(err != KErrNone)
{
ERR_PRINTF3(_L("*** ERROR:%d - SetCryptoModeL() i=%d ***"),err,index);
User::Leave(err);
}
if(TUid(algorithm) != KArc4Uid)
{
impl->SetOperationModeL(operationMode);
if(err != KErrNone)
{
ERR_PRINTF3(_L("*** ERROR:%d - SetOperationModeL() i=%d ***"),err,index);
User::Leave(err);
}
TRAP(err,impl->SetPaddingModeL(paddingMode));
if(err != KErrNone)
{
ERR_PRINTF3(_L("*** ERROR:%d - SetPaddingModeL() i=%d ***"),err,index);
User::Leave(err);
}
}
//------------------------------------------------------
//find out the block size for this algorithm
TInt blockSize(0);
if (TUid(operationMode) == KOperationModeCTRUid)
{
blockSize = CtrModeCalcBlockSizeL(*impl);
}
else
{
blockSize = impl->BlockSize();
}
HBufC8* iv = NULL;
if ((TUid(operationMode) == KOperationModeCBCUid) || (TUid(operationMode) == KOperationModeCTRUid))
{
// block size is in bits so to allocate the correct number of bytes divide by 8
// iv is left on the cleanup stack for the duration of the test and deleted in a conditional at the end of the outer block.
// If this conditional block changes, take care to update the condition for deleting this allocated IV, near the end of this function.
iv = HBufC8::NewLC(blockSize/8);
// blocksize is in bits so to allocate the correct number of 8 byte chunks divide by 64
for(TInt i = 0 ; i <blockSize/64 ; i++)
{
iv->Des().Append(_L8("12345678"));
}
TRAP_LOG(err,impl->SetIvL(iv->Des()));
}
// convert to bytesize
blockSize/=8;
blockSize += iOffset;
//read from src file
CFileReader* srcData = CFileReader::NewLC(srcPath,blockSize);
// first step is to read from the src file one block
// at a time, encrypt that block and then write
// the encrypted block out to a temporary file.
CFileWriter* encryptedDataWriter = CFileWriter::NewLC(TPtrC(KTempEncryptedFilePath));
TInt numBlocks = srcData->NumBlocks();
INFO_PRINTF1(_L("Starting Incremental Encryption..."));
for(TInt i = 1 ; i <= numBlocks ; i++)
{
TRAP_LOG(err,srcData->ReadBlockL());
//Create buffer for encrypted data
TInt maxOutputLength = impl->MaxFinalOutputLength(TPtrC8(*srcData).Length());
HBufC8* encrypted = HBufC8::NewLC(maxOutputLength);
TPtr8 encryptedPtr = encrypted->Des();
if(i == numBlocks)
{
TRAP(err,impl->ProcessFinalL(*srcData, encryptedPtr));
if(err != KErrNone)
{
ERR_PRINTF3(_L("*** ERROR:%d - ProcessFinalL() Block=%d ***"),err,i);
User::Leave(err);
}
}
else
{
TRAP(err,impl->ProcessL(*srcData, encryptedPtr));
if(err != KErrNone)
{
ERR_PRINTF3(_L("*** ERROR:%d - ProcessL() Block=%d ***"),err,i);
User::Leave(err);
}
}
TRAP_LOG(err,encryptedDataWriter->WriteBlockL(encryptedPtr));
CleanupStack::PopAndDestroy(encrypted);
}
CleanupStack::PopAndDestroy(encryptedDataWriter);
//Switch to Decrypt Crypto Mode
TRAP(err,impl->SetCryptoModeL(KCryptoModeDecryptUid));
if(err != KErrNone)
{
ERR_PRINTF3(_L("*** ERROR:%d - SetCryptoModeL() i=%d ***"),err,index);
User::Leave(err);
}
//If in CTR mode need to reset the keystream to the start of the sequence used for encryption.
if(TUid(operationMode) == KOperationModeCTRUid)
{
impl->SetIvL(iv->Des());
}
// the next step is to read the previously encrypted data
// from the temporary file decrypting this one block
// at a time and outputing this to a temporary file.
CFileReader* encryptedDataReader = CFileReader::NewLC(TPtrC(KTempEncryptedFilePath),blockSize);
CFileWriter* decryptedDataWriter = CFileWriter::NewLC(TPtrC(KTempDecryptedFilePath));
numBlocks = encryptedDataReader->NumBlocks();
INFO_PRINTF1(_L("Starting Incremental Decryption..."));
for(TInt i = 1 ; i <= numBlocks ; i++)
{
encryptedDataReader->ReadBlockL();
//Create buffer for encrypted data
TInt maxOutputLength = impl->MaxFinalOutputLength(TPtrC8(*encryptedDataReader).Length());
HBufC8* decrypted = HBufC8::NewLC(maxOutputLength);
TPtr8 decryptedPtr = decrypted->Des();
//Perform the decryption operation
if(i == numBlocks)
{
TRAP(err,impl->ProcessFinalL(*encryptedDataReader, decryptedPtr));
if(err != KErrNone)
{
ERR_PRINTF3(_L("*** ERROR:%d - ProcessFinalL() Block=%d ***"),err,i);
User::Leave(err);
}
}
else
{
TRAP(err,impl->ProcessL(*encryptedDataReader, decryptedPtr));
if(err != KErrNone)
{
ERR_PRINTF3(_L("*** ERROR:%d - ProcessL() Block=%d ***"),err,i);
User::Leave(err);
}
}
TRAP_LOG(err,decryptedDataWriter->WriteBlockL(decryptedPtr));
CleanupStack::PopAndDestroy(decrypted);
}
CleanupStack::PopAndDestroy(decryptedDataWriter);
CleanupStack::PopAndDestroy(encryptedDataReader);
CleanupStack::PopAndDestroy(srcData);
if((TUid(operationMode) == KOperationModeCBCUid) || (TUid(operationMode) == KOperationModeCTRUid))
{
// Iv is left on the cleanupstack at creation.
// If it becomes possible for operationMode to be modified during
// the test this needs to be re-engineered.
CleanupStack::PopAndDestroy(iv);
}
// compare the src with the file thats been
// encrypted then decrypted
// Note: Returning 0 means that the files match
if(!TFileCompare::CompareL(srcPath,TPtrC(KTempDecryptedFilePath)))
{
INFO_PRINTF2(_L("*** PASS = Source File and Decrypted Data Match - i=%d ***"),index);
}
else
{
testPass = EFalse;
ERR_PRINTF2(_L("*** ERROR: Source File and Decrypted Data Mismatch - i=%d ***"),index);
}
RFs rFs;
rFs.Connect();
rFs.Delete( KTempDecryptedFilePath );
rFs.Delete( KTempEncryptedFilePath );
rFs.Close();
INFO_PRINTF3(_L("*** i=%d : END HEAP CELLS: %d ***"),index, User::CountAllocCells());
}
/*************** END OF LOOP ****************/
CleanupStack::PopAndDestroy(impl);
if(testPass == EFalse)
{
ERR_PRINTF1(_L("*** TEST FAIL : Symmetric Cipher - Object Reuse ***"));
}
else
{
INFO_PRINTF1(_L("*** TEST PASS : Symmetric Cipher - Object Reuse ***"));
SetTestStepResult(EPass);
}
}
else
{
ERR_PRINTF2(_L("*** FAIL: Failed to Create Symmetric Object - %d ***"), err);
User::Leave(err);
}
if (TUid(algorithm) == KArc4Uid || TUid(algorithm) == KRc2Uid)
{
CleanupStack::PopAndDestroy(xparams);
}
CleanupStack::PopAndDestroy(key);
CleanupStack::PopAndDestroy(params);
CleanupStack::PopAndDestroy(keyData);
}
}
INFO_PRINTF2(_L("HEAP CELLS: %d"), User::CountAllocCells());
return TestStepResult();
}
TVerdict CSymmetricCipherObjectReuseStep::doTestStepPostambleL()
{
return TestStepResult();
}