/*
* Copyright (c) 2006-2009 Nokia Corporation and/or its subsidiary(-ies).
* All rights reserved.
* This component and the accompanying materials are made available
* under the terms of the License "Eclipse Public License v1.0"
* which accompanies this distribution, and is available
* at the URL "http://www.eclipse.org/legal/epl-v10.html".
*
* Initial Contributors:
* Nokia Corporation - initial contribution.
*
* Contributors:
*
* Description:
*
*/
#ifndef __SYMMETRICCIPHERIMPL_H__
#define __SYMMETRICCIPHERIMPL_H__
/**
@file
@internalComponent
@released
*/
#include <e32base.h>
#include <e32cmn.h>
#include <cryptospi/cryptospidef.h>
#include <padding.h>
#include "symmetriccipherplugin.h"
/** The maximum block size supported (in bytes) */
const TUint KMaxBlockSizeSupported = 32;
/**
Abstract base class for symmetric cipher plug-ins.
*/
namespace SoftwareCrypto
{
using namespace CryptoSpi;
NONSHARABLE_CLASS(CSymmetricCipherImpl) : public CBase, public MSymmetricCipher
{
public:
/**
Implemented by each cipher subclass to determine whether the
specified key length is valid for that cipher.
This is called by ConstructL and SetKeyL
@param aKeyLength The key length in bytes to verify.
*/
virtual TBool IsValidKeyLength(TInt aKeyBytes) const = 0;
/**
Helper function implemented by concrete cipher sub-class that
allows GetCharacteristicsL to return the correct characteristics object.
@return The implemention uid
*/
virtual TUid ImplementationUid() const = 0;
/**
Gets the strength of the current key, needed to check whether the cipher
may operate if strong cryptography is not enabled.
@return The strength of the current key
*/
virtual TInt GetKeyStrength() const;
// Override MPlugin virtual functions
void Close();
TAny* GetExtension(TUid aExtensionId);
void GetCharacteristicsL(const TCharacteristics*& aPluginCharacteristics);
// End of MPlugin
// Override MSymmetricCipherBase virtual functions
TInt KeySize() const;
/// Destructor
~CSymmetricCipherImpl();
protected:
//Constructor
CSymmetricCipherImpl();
/**
Second phase of construction. Always call ConstructL in the super-class
if your override this method.
@param aKey The key to initialise the cipher with.
*/
virtual void ConstructL(const CKey& aKey);
/**
Extracts the raw symmetric key from a generic key object. The buffer
is placed on the cleanup stack.
@param aKey The key object
@return A buffer containing the raw key value
*/
HBufC8* ExtractKeyDataLC(const CKey& aKey) const;
/**
Zeros a buffer before deleting it to ensure that
the contents will not be visible to another process if the page
is re-used.
@param aBuffer The pointer (possibly null) to the buffer to delete. This
is set to null after deletion.
*/
void SecureDelete(HBufC8*& aBuffer);
/**
Extracts the raw key from aKey and sets iKey and iKeyBytes
The key length is also checked to meet export restrictions and
to ensure that it is appropriate for the cipher.
@param aKey The key
*/
virtual void DoSetKeyL(const CKey& aKey);
protected:
/// the key, extracted from a CKey object
HBufC8* iKey;
/// key size in bytes
TUint iKeyBytes;
};
NONSHARABLE_CLASS(CSymmetricStreamCipherImpl) : public CSymmetricCipherImpl
{
public:
// Destructor
~CSymmetricStreamCipherImpl();
// Override MSymmetricCipherBase virtual functions
TInt BlockSize() const;
void SetKeyL(const CKey& aKey); // override DoSetKeyL instead
void SetCryptoModeL(TUid aCryptoMode);
void SetOperationModeL(TUid aOperationMode);
void SetPaddingModeL(TUid aPaddingMode);
void SetIvL(const TDesC8& aIv);
TInt MaxOutputLength(TInt aInputLength) const;
TInt MaxFinalOutputLength(TInt aInputLength) const;
// End of MSymmetricCipherBase
// Override MSymmetricCipher virtual functions
void ProcessL(const TDesC8& aInput, TDes8& aOutput);
void ProcessFinalL(const TDesC8& aInput, TDes8& aOutput);
// End of MSymmetricCipher
protected:
// Constructor
CSymmetricStreamCipherImpl();
// Override CSymmetricCipherImpl virtual functions
virtual void ConstructL(const CKey& aKey);
/**
Performs an encryption or decryption on supplied data.
@param aData On input, data to be transformed;
on return, transformed data.
*/
virtual void DoProcess(TDes8& aData) = 0;
};
NONSHARABLE_CLASS(CSymmetricBlockCipherImpl) : public CSymmetricCipherImpl
{
public:
/**
This function is invoked by SetKey and SetCryptoMode
allowing the cipher sub-class to rebuild it's key schedule.
N.B. It is assumed that the key schedule is NOT modified
by TransformEncrypt or TransformDecrypt
*/
virtual void SetKeySchedule() = 0;
// Override MPlugin virtual functions
void Reset(); // Always call reset in super-class if you override this
// End of MPlugin virtual functions
// Override MSymmetricCipherBase virtual functions
TInt BlockSize() const;
void SetKeyL(const CKey& aKey); // override DoSetKeyL instead
void SetCryptoModeL(TUid aCryptoMode); // override DoSetCryptoModeL instead
void SetOperationModeL(TUid aOperationMode); // override DoSetOperationMode instead
void SetPaddingModeL(TUid aPaddingMode); // override DoSetPaddingModeL instead
void SetIvL(const TDesC8& aIv);
TInt MaxOutputLength(TInt aInputLength) const;
TInt MaxFinalOutputLength(TInt aInputLength) const;
// End of MSymmetricCipherBase
// Override MSymmetricCipher virtual functions
void ProcessL(const TDesC8& aInput, TDes8& aOutput);
void ProcessFinalL(const TDesC8& aInput, TDes8& aOutput);
// End of MSymmetricCipher
/// Destructor
~CSymmetricBlockCipherImpl();
protected:
/**
Constructor
@param aBlockBytes The block size in bytes
@param aOperationMode The mode of operation e.g. CBC
@param aCryptoMode Whether to encrypt or decrypt
*/
CSymmetricBlockCipherImpl(
TUint8 aBlockBytes,
TUid aOperationMode,
TUid aCryptoMode,
TUid aPaddingMode);
// Override CSymmetricCipherImpl virtual functions
virtual void ConstructL(const CKey& aKey);
/**
Validates and sets the crypto mode (iCryptoMode)
@param aCryptoMode The crypto mode
*/
virtual void DoSetCryptoModeL(TUid aCryptoMode);
/**
Validates and sets the operation mode (iOperationMode)
@param aOperationMode The operation mode
*/
virtual void DoSetOperationModeL(TUid aOperationMode);
/**
Validates and sets the padding mode (iPaddingMode & iPadding)
@param aPadding The desired padding mode
*/
virtual void DoSetPaddingModeL(TUid aPadding);
void DoSetIvL(const TDesC8& aIv);
inline void ModeEncryptStart(TUint8* aBuffer);
inline void ModeEncryptEnd(TUint8* aBuffer);
inline void ModeDecryptStart(TUint8* aBuffer);
inline void ModeDecryptEnd(TUint8* aBuffer);
private:
/**
Encrypts a number of blocks of data
@param aBuffer The buffer containing exactly aNumBlocks of data to destructively encrypt
@param aNumBlocks The number of blocks of data to encrypt
*/
virtual void TransformEncrypt(TUint8* aBuffer, TUint aNumBlocks) = 0;
/**
Decrypts a number of blocks of data
@param aBuffer The buffer containing exactly aNumBlocks of data to destructively decrypt
@param aNumBlocks The number of blocks of data to decrypt
*/
virtual void TransformDecrypt(TUint8* aBuffer, TUint aNumBlocks) = 0;
/// Pad the last block and encrypt
void DoProcessFinalEncryptL(const TDesC8& aInput, TDes8& aOutput);
/// Decrypt and unpad the last block
void DoProcessFinalDecryptL(const TDesC8& aInput, TDes8& aOutput);
inline void Transform(TUint8* aBuffer, TUint aNumBlocks);
protected:
/// block size in bytes, current largest block size is 16 bytes (AES)
TUint8 iBlockBytes;
/// encryption or decryption
TUid iCryptoMode;
/// The block cipher mode e.g. ECB, CBC
TUid iOperationMode;
/// the current padding scheme
TUid iPaddingMode;
/// the initialisation vector
RBuf8 iIv;
/// current padding scheme implementation
CPadding* iPadding;
/// buffer to store blocks
RBuf8 iInputStore;
/// buffer to store input / output of padding
RBuf8 iPaddingBlock;
/// The current block of cipher text - for CBC
TUint32* iCurrentCipherText;
/// A pointer to the current block of cipher text
TUint8* iCurrentCipherTextPtr;
/// The result of the transform
TUint32* iCbcRegister;
/// A pointer to the result of the transform
TUint8* iCbcRegisterPtr;
};
inline void CSymmetricBlockCipherImpl::Transform(TUint8* aBuffer, TUint aNumBlocks)
{
if (iCryptoMode.iUid == KCryptoModeEncrypt)
{
TransformEncrypt(aBuffer, aNumBlocks);
}
else if (iCryptoMode.iUid == KCryptoModeDecrypt)
{
TransformDecrypt(aBuffer, aNumBlocks);
}
else
{
ASSERT(EFalse);
}
}
inline void CSymmetricBlockCipherImpl::ModeEncryptStart(TUint8* aBuffer)
{
if (iOperationMode.iUid == KOperationModeCBC)
{
for (TInt i = 0; i < iBlockBytes; ++i)
{
aBuffer[i] ^= iCbcRegisterPtr[i];
}
}
}
inline void CSymmetricBlockCipherImpl::ModeEncryptEnd(TUint8* aBuffer)
{
if (iOperationMode.iUid == KOperationModeCBC)
{
for (TInt i = 0; i < iBlockBytes; ++i)
{
iCbcRegisterPtr[i] = aBuffer[i];
}
}
}
inline void CSymmetricBlockCipherImpl::ModeDecryptStart(TUint8* aBuffer)
{
if (iOperationMode.iUid == KOperationModeCBC)
{
for (TInt i = 0; i < iBlockBytes; ++i)
{
iCurrentCipherTextPtr[i] = aBuffer[i];
}
}
}
inline void CSymmetricBlockCipherImpl::ModeDecryptEnd(TUint8* aBuffer)
{
if (iOperationMode.iUid == KOperationModeCBC)
{
// xor the output with the previous cipher text
for (TInt i = 0; i < iBlockBytes; ++i)
{
aBuffer[i] ^= iCbcRegisterPtr[i];
iCbcRegisterPtr[i] = iCurrentCipherTextPtr[i];
}
}
}
}
#endif // __SYMMETRICCIPHERIMPL_H__